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Abstract The present numerical work explores the influence of rotation on penetrative thermal convection at the onset
in magnetic nanofluid (MGfluid), purely driven by internal heating, under the action of variable gravity conditions. The
analysis is restricted to a thin layer of water based magnetic nanofluid (W-MGfluid) and ester based magnetic nanofluid
(E-MGfluid), in which three modes—Brownian diffusion, thermophoresis, and magnetophoresis—are identified as critical
components of the convective process. The Chebyshev pseudospectral method has been utilized as a computational technique
to precisely assess stability criteria and pinpoint the critical conditions marking the onset of convection. This approach
enables an exact analysis of the eigenvalue problem, central in the framework of the theory of linear stability. By means of
this approach, critical conditions for the onset of convection may be determined within the study, and how these conditions
vary with different varied physical parameters may be ascertained. The discussion focuses on rotational speed, the intensity
of internal heating, and the variable gravitational field acting on these physical parameters, which may influence the onset of
convection via neutral stability curves (NsCurves) and critical stability curves (CsCurves). To this aim, relevant parameters
such as Taylor number, Rayleigh number, Langevin parameter, modified diffusivity ratios, Lewis number, and concentration
Rayleigh number are investigated to understand their contribution to the MGfluid. These results give detailed information
about the coupled interaction of these parameters and enhance predictive capabilities regarding the convection behavior of
the MGfluid in applications.

1 Introduction
MGfluid, colloidal suspensions comprising magnetic nanoparticles dispersed in a carrier liquid, have garnered considerable
attention for their exceptional thermal conductivity and sensitivity to magnetic fields. Their ability to modulate heat transfer
and fluid flow under magnetic influence has led to widespread applications across various fields, including cooling systems,
biomedical technology, and energy devices [1]. When exposed to complex environments, such as a rotating medium with
variable gravity and internal heat sources, the convective behavior of these nanofluids becomes highly intricate. Investigating
the onset of convection in such conditions is crucial for advancing theoretical knowledge and practical applications relevant
to geophysical, astrophysical, and industrial settings.

Research on thermal instability in ferromagnetic fluids was pioneered by Sekar and Vaidyanathan [2]. They explored
how ferromagnetic fluids behave under rotation about a vertical axis in the presence of a vertical magnetic field. Using the
Brinkman model with free-free boundary conditions, they discovered that the stability of the system is enhanced in scenarios
with low permeability and high rotational speeds. This study laid the groundwork for further exploration into how factors
such as medium permeability and rotation affect the stability of ferromagnetic fluids in porous environments. Building upon
these findings, Sunil and Mahajan [3] extended the analysis by examining nonlinear stability in magnetized ferrofluids heated
from below in a rotating porous medium. Their study, which used stress-free boundary conditions, revealed the presence of
subcritical instabilities, underscoring the complex interaction between magnetic and buoyancy forces. The results showed that
rotation has significant effects on both linear and nonlinear stability, offering deeper insight into the dynamics of ferrofluids
in rotating systems.

Buongiorno’s foundational work on convective transport in nanofluids identified critical slip mechanisms, including
Brownian motion and thermophoresis, as drivers of nanoparticle movement [4]. Following this, Nield and Kuznetsov [5]
investigated instability onset in nanofluid-saturated porous media, considering both non-oscillatory and oscillatory convection
patterns. Their theoretical framework provided a new perspective on nanofluid behavior in porous systems. Later, refining the
model with more realistic boundary conditions, they found that oscillatory convection is unlikely under these constraints [6].
This advancement contributed significantly to the understanding of nanofluids in porous environments. Further expanding
on nanofluid instability, Bhadauria and Agarwal [7] analyzed thermal instability in a rotating porous medium saturated with
nanofluid, with particular focus on nanoparticle distribution. Their research, grounded in both linear and nonlinear stability
theories, demonstrated that rotational effects, quantified by the Taylor number, play a stabilizing role, especially in scenarios
with high rotation. This study highlighted the necessity of considering both nanoparticle distribution and rotational forces
when assessing nanofluid stability in porous media. For additional insights, see [8, 9, 10].

The influence of internal and external heating on convection in porous media has been a longstanding area of research.
Early studies by Gasser and Kazimi [11] using linear stability theory revealed that convection could be driven by either
internal heating or heating from below. Ames and Cobb [12] expanded this area by examining penetrative convection induced
by internal heating alone in porous media. Utilizing linear and nonlinear approaches, they elucidated the conditions that lead
to convective initiation, providing foundational insights into convection driven by internal heat sources. Related research can
be found in [13, 14, 15, 16, 17]. In more recent work, Yadav et al. [18] investigated convection driven by internal heating
in a rotating, nanofluid-saturated porous medium using the Brinkman model. Their study demonstrated how internal heating
and rotational effects interplay to drive convective processes in complex systems. Similarly, Nanjundappa et al. [19] studied
penetrative ferroconvection in a porous layer under a uniform vertical magnetic field. Employing the Brinkman-extended
Darcy model, they analyzed how magnetic forces and internal heating influence the convection patterns in such systems,
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enriching our understanding of ferrofluid behavior in magnetized and rotating porous media.
Gravity variations with height is a significant factor in large-scale natural convection processes such as oceanic and

atmospheric convection affect the dynamics of convection in ways often neglected in laboratory conditions, where gravity is
assumed constant. Rionero and Straughan [14] explored the role of variable gravity in natural convection within porous media,
discovering that gravity variations could instigate convection when coupled with an internal heat source, thereby opening
new avenues for understanding convection in porous environments. Subsequent research by Alex and Patil [21] examined
double-diffusive convection within isotropic porous layers, focusing on gravity’s influence. Their findings contributed to
understanding the role of gravity variations in complex systems. Kaloni and Qiao [22] further advanced this research using
energy methods to analyze the nonlinear stability of convection under variable gravity, incorporating an inclined temperature
gradient to illustrate how varying gravitational conditions affect convection patterns. More recent studies, such as those by
Chand et al. [23, 24], examined variable gravity’s effects on convection in nanofluid-saturated porous layers, integrating
particle dynamics like Brownian motion and thermophoresis into the analysis. Their work provided a comprehensive view
of how gravity variations and nanoparticle interactions influence convection, especially under rotational forces in nanofluid
systems.

This study aims to explore the onset of penetrative convection driven by internal heating in a rotating, magnetic-fluid-
saturated medium, with a particular focus on variable gravity effects. The investigation centers on a thin horizontal layer
exposed to both internal heat sources and external magnetic fields, analyzing the impact of parameters such as the Taylor
number, Rayleigh number, Langevin parameter, modified diffusivity ratios, Lewis number, and concentration Rayleigh num-
ber on the initiation and behavior of penetrative convection. By examining these factors in detail, this study seeks to deepen
our understanding of how internal heating and magnetic influences interact to shape convection in magnetized fluid systems.

2 Geometrical Configuration
An infinite horizontal layer of incompressible magneto-gravitational fluid permeates a medium uniformly throughout the
domain z ∈ [0, d]. The fluid is assumed to be incompressible, simplifying the governing equations by eliminating density
variations. This configuration facilitates the study of flow dynamics and stability under the combined effects of magnetic
fields and gravitational forces, providing resistance and influencing permeability and convection. Here, the gravity g acting
downward, the magnetic field, H = Hext

0 k, is applied vertically, and the system rotates around the z-axis with angular
velocity Ω = (0, 0,Ω). Convection is driven by an internal heat source of strength Q (see Figure 1).
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Figure 1. Geometric configuration of the problem

3 Formulation
Building upon the formulations provided in [4], [25], [26] and [27], we derive the governing equations for the system using
the Boussinesq approximation. This approximation allows for the simplification of the momentum, continuity, and energy
equations by assuming that density variations are only significant in the buoyancy term. These equations incorporate the
combined influences of thermal, buoyancy, and magnetic effects, which are essential for examining the convective stability
of the fluid.

∇ · u = 0. (3.1)

ρf

(
∂u

∂t
+ u · ∇u

)
= −∇p + µ∇2u + µ0(M · ∇)H − ρg(1 + ϵh(z))k + 2ρf (u×Ω), (3.2)

∂ϕ

∂t
+ u ·∇ϕ = ∇ ·

(
DB∇ϕ +DT

∇T

T0
−DH∇H

)
. (3.3)
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(ρc)f

(
∂T

∂t
+ u ·∇T

)
= ∇ · (k1∇T ) + ρpcp (DB∇T ·∇ϕ

+DT
∇T ·∇T

T0
−DH∇T ·∇H

)
+Q, (3.4)

∇ ·B = 0, ∇×H = 0, B = µ0(M +H). (3.5)

Meq =
H

H
[M0 + χ(H −H0)−Km(T − T0) +Kp(ϕ− ϕ0)]. (3.6)

The boundary conditions (bcs ) can be expressed as

w = 0, T = T0, ϕ = ϕ0 at z = 0 and at z = d, (3.7)

Applying a dimensionless transformation to equations (3.1)–(3.6) yields the following system of equations.

∇ · u = 0, (3.8)

1
Pr

(
∂u

∂t
+ u ·∇u

)
= −∇p +∇2u + λ1(M ·∇)H

− (Rnϕ− T +RaNNϕTϕ− ρ1ϕ + ρ2)s(z)k + Ta1/2(u× k), (3.9)

∂ϕ

∂t
+ u ·∇ϕ =

1
Le

∇2ϕ +
Na

Le
∇2T −

Na
′

Le
∇2H, (3.10)

∂T

∂t
+ u ·∇T =∇2T +

Nb

Le
(∇T ·∇ϕ) +

NaNb

Le
(∇T ·∇T )

−
Na

′
Nb

Le
(∇T ·∇H) + 2Ra, (3.11)

χ2∇ ·M +∇ ·H = 0, (3.12)

M =
H

H

(1 + χ)

χ2

{
χ

1 + χ
H −

M1

M3
T +

M ′
1

M ′
3
ϕ +

χ2 − χ

1 + χ

}
, (3.13)

where λ1 =
µ0M0H0K

κµ
, ρ1 =

gαρfd
3ϕ0T0

κµ
, ρ2 =

gρfd
3(1 + αT0)

κµ
,

RaN = 1 − ϕ0, Nϕ =
ϕ0

1 − ϕ0
, s(z) = 1 + ϵh(z).

The dimensionless parameters introduced are as follows:

Pr =
µ

ρfκ
, Rn =

(ρp − ρf )ϕ0gd
3

µκ
, Le =

κ

DB
, Ra =

ρfgαQd
5

2µκk1
, Ta =

4Ω2d4

ν2

M1 =
µ0µκχ

2H2
0

(ρfgαT0)2d4(1 + χ)
, M

′
1 =

µ0χ
2H2

0

ρfgαd(1 + χ)ϕ0
, M3 =

µ0χH
2
0

ρfgαdT0
,

M
′
3 =

µ0χH
2
0

ρfgαdϕ0
, Nb =

(ρc)p

(ρc)f
ϕ0, Na =

µκDT

ρfgαϕ0d3DBT0
, Na

′
=
DHH0

DBϕ0
.

Here Pr: Prandtl number, Rn: concentration Rayleigh number, Le: Lewis number, Ra: Rayleigh number, Ta: Taylor
number, M1, M ′

1, M3, M ′
3 are the magnetic parameters, Nb is the modified particle-density increment and Na, Na

′
are

the modified diffusivity ratios. The bcs (3.7) in non-dimensional form become

w = 0, T =
ρfgαd

3T0

µκ
, ϕ = 1 at z = 0 and at z = 1, (3.14)
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4 The steady solution
In basic state, the assumption is

ub = 0,whereas pb, ϕb, Tb,Hb,Mb are functions of z only. (4.1)

The equations (3.9)–(3.13), under the assumption (4.1), using bcs (3.14), and following [25], give the solution of basic state
as follows:

ub = 0, p = pb(z), Tb = Ra(z − z2) +
ρfgαd

3T0

µκ
, ϕb = s∗Ra(z − z2) + 1,

Hb =

(
M1

M3
−
M ′

1

M ′
3
s∗

)
Ra(z − z2) + 1, Mb = −

1
χ2

(
M1

M3
−
M ′

1

M ′
3
s∗

)
Ra(z − z2) + 1, (4.2)

where s∗ =

(
−Na +

M1

M3
Na

′
)/(

1 +
M

′
1

M
′
3

Na
′
)
.

5 Analysis of linear stability mechanisms
Considering the disturbances with an amplitude τ (τ → 0) to (4.1) we have:

u = ub+τu, p = pb + τp, T = Tb + τθ, ϕ = ϕb + τϕ,

M = Mb + τM , H = Hb + τH. (5.1)

On setting (5.1) in equations [(3.8)–(3.13)], linearizing them about basic state solution, we get

1
Pr

∂∇2w

∂t
= ∇4w + {(M3 −RasM

′
3s

∗)Ra(1 − 2z)}
∂∇2

1ψ

∂z
+

{
RaN −

(
M1Ra−Ra

M3M
′
1

M ′
3
s∗

)

×(1 − 2z)− (RaNNϕs
∗Ra(z − z2))s(z)

}
∇2

1θ +

{(
Ra

M3M
′
1

M ′
3

−RasM
′
1Ras

∗

)

×(1 − 2z)− (Rn +RaNNϕRa(z − z2))s(z)
}
∇2

1ϕ− Ta1/2 ∂ξ

∂z
, (5.2)

1
Pr

∂ξ

∂t
= ∇2ξ + Ta1/2 ∂w

∂z
, (5.3)

∂ϕ

∂t
= −s∗Ra(1 − 2z)w +

1
Le

∇2ϕ +
Na

Le
∇2θ −

Na
′

Le

∂

∂z
∇2ψ, (5.4)

∂θ

∂t
= −Ra(1 − 2z)w +∇2θ +

{
Nb

Le
s∗ +

2NaNb
Le

−
NbNa

′
M1

LeM3
+
NbNa

′
M ′

1

LeM ′
3

s∗

}

×Ra(1 − 2z)
∂θ

∂z
+
Nb

Le
Ra(1 − 2z)

∂ϕ

∂z
−
NbNa

′

Le
Ra(1 − 2z)

∂2ψ

∂z2
, (5.5)

∂2ψ

∂z2
=

M1

M3

∂θ

∂z
−
M ′

1

M ′
3

∂ϕ

∂z
−

(1 + χ2)

(1 + χ)
∇2

1ψ. (5.6)

In order to perform the normal mode analysis, following [25], all the perturbation quantities w, θ, ϕ, ψ are assumed in the
form

{w, ξ, θ, ϕ, ψ} = {w(z), ξ(z), θ(z), ϕ(z), ψ(z)} exp{σt + i(kxx + kyy)}, (5.7)

On substituting (5.7) into the set of Equations (5.2)–(5.6) gives

σ

Pr
(4D2 − k2)w(z) = (4D2 − k2)2w(z)−

{
RaN +

(
M1Ra−Ra

M3M
′
1

M ′
3
s∗

)
z

−(RaNNϕRas
∗ (1 − z2)

4
s

(
1 + z

2

)}
k2θ(z) +

{(
Ra

M3M
′
1

M ′
3

−RasM
′
1Ras

∗

)
z +Rn

+RaNNϕRa
(1 − z2)

4
s

(
1 + z

2

)}
k2ϕ(z) + {(M3 −RasM

′
3s

∗)Ra}2k2zDψ(z)− 2Ta1/2Dξ, (5.8)

σ

Pr
ξ = (4D2 − k2)ξ + 2Ta1/2Dw, (5.9)
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σϕ(z) =s∗Razw(z) +
1
Le

(4D2 − k2)ϕ(z) +
Na

Le
(4D2 − k2)θ(z)

−
2Na

′

Le
(4D2 − k2)Dψ(z), (5.10)

σθ(z) =Razw(z) + (4D2 − k2)θ(z)−
{
Nb

Le
s∗ +

2NaNb
Le

−
NbNa

′
M1

LeM3
+
NbNa

′
M ′

1

LeM ′
3

s∗

}

× 2RaDθ(z)− 2
Nb

Le
RazDϕ(z) + 4

NbNa
′

Le
RazD2ψ(z), (5.11)

{
4D2 −

k2(1 + χ2)

(1 + χ)

}
ψ(z)−

2M1

M3
Dθ(z) +

2M
′
1

M
′
3

Dϕ(z) = 0, (5.12)

The considered bcs for rigid-free (RF ) boundaries are as follows:

w = Dw = ξ = θ = Dϕ = 2(1 + χ)Dψ − kψ = 0 at z = −1,

w = D2w = Dξ = θ = Dϕ = 2(1 + χ)Dψ + kψ = 0 at z = +1.

}
(5.13)

6 Method of solution
To solve the system of equations (5.8)–(5.12) under the bcs (5.13), we use a numerical method inspired by [29]. The system
is transformed into an eigenvalue problem, and MATLAB’s EIG function, in conjunction with the QZ algorithm which is
employed to identify the dominant eigenvalue, σ = σr + iσi, where σr represents the real part. The dominant eigenvalue
with the largest real part, σr , is crucial in determining system stability.

We then apply the secant method to iteratively adjust parameters until σr approaches zero, which corresponds to a point
on the NsCurve. This procedure is repeated for a range of wave numbers, k, to create a complete stability curve, following
the methodology of [28]. This combined approach of eigenvalue analysis and iterative techniques effectively maps out the
system’s stability boundary.

7 Results and discussion
We present numerical profiles for W-MGfluid and E-MGfluid flows through RF bcs .The physical parameter values
used in this analysis are drawn from the studies by [29] and [30]. In our approach, we examine the behavior of the system
by investigating these configurations, W-MGfluid and E-MGfluid, in which different magneto-fluidic parameters play
a critical role. These numerical results help us understand the stability characteristics and convection patterns specific to
each configuration. By implementing these parameter values from well-established sources, we ensure that our results align
closely with prior theoretical and experimental findings. This analysis offers insights into how the RF bcs influence the
system dynamics, shedding light on the role of each physical parameter in controlling stability and flow structure in magneto-
fluid systems.
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Figure 2. NsCurves for different values of variable gravity parameter ϵ for (a) W-MGfluid & (b)
E-MGfluid .

Figure 2 demonstrates the stabilizing influence of the variable gravity parameter, ϵ, on the system. As the value of ϵ
increases, the NsCurves shifts upward, indicating a higher critical Rayleigh number, Rac. This increase in Rac reflects
enhanced system stability under variable gravity conditions. The stabilizing effect arises because variable gravity induces
variations in buoyancy forces, which counteract convective disturbances. Consequently, a larger ϵ makes it more difficult for
instability to develop, thus requiring a higher threshold for convection to occur.
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Figure 3. NsCurves for different values of modified diffusivity ratio Na for (a) W-MGfluid &
(b) E-MGfluid .
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Figure 4. CsCurves representing variation of Rac as a function Na′ for different values Rn for
(a) W-MGfluid & (b) E-MGfluid .
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Figure 5. CsCurves representing variation of Rac as a function Nb for different values αL for (a)
W-MGfluid & (b) E-MGfluid .

Figure 3 shows that NsCurves shifts downward with the increase of Na showing the destabilizing effect on the system
of the parameter Na. This relationship arises because higher values of Na amplify thermophoretic diffusion, which subse-
quently drives the movement of magnetic nanoparticles. The increase in thermophoretic diffusivity generates disturbances
within the MGfluid, leading to a lower value of Rac.
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Figure 6. CsCurves representing variation of Rac as a function Ta for different values Le for (a)
W-MGfluid & (b) E-MGfluid .

Figure 4 highlight the stabilizing effect of Na
′

and destabilizing impact of the parameter Rn on the system’s stability.
As shown in the figure, increasing Rn leads to a decrease in the critical Rayleigh number, Rac, which marks the onset of
convection. This reduction in Rac occurs because higher Rn values intensify the Brownian motion of nanoparticles, en-
hancing particle diffusion within the fluid. The increased nanoparticle activity due to Brownian motion triggers disturbances,
which promote convective instability and thus lower the stability threshold of the system. Consequently, a higher Rn results
in a lower Rac, revealing that Rn acts as a destabilizing factor.

Figure 5 illustrates the relationship between the critical Rayleigh number, Rac, and the parameter Nb for three different
values of the Langvein parameter, αL. The plot shows that Rac remains almost unchanged as Nb increases, suggesting
that Nb has a minimal impact on the onset of thermal convection. In contrast, the influence of αL on Rac is much more
significant. This is due to the fact that the internal heat source forces become more dominant than the magnetic forces, which
reduces disturbances in the MGfluid as the magnetic field strengthens. Consequently, Rac increases, which delays the
onset of convection. In conclusion, while the parameter Nb has little effect on the critical Rayleigh number, the Langvein
parameter, αL, plays a crucial role in delaying convection by raising the critical threshold for instability in the system.

Figure 6 presents the relationship betweenRac and the Taylor number, Ta, for three distinct values of the Lewis number,
Le. The plot demonstrates the destabilizing effect of Le and the stabilizing effect of Ta. The destabilizing influence of Le
arises because a higher Lewis number increases the thermal diffusivity relative to mass diffusivity, enhancing temperature
gradients and promoting more intense convective motion. On the other hand, in a Newtonian fluid, rotation generates vorticity,
which results in higher horizontal velocities between the plates. This increased horizontal motion reduces the vertical fluid
movement, thereby delaying the onset of convection, which accounts for the stabilizing effect of the Taylor number [31].
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Table 1. Values of Rac & kc for W-MGfluid & E-MGfluid .

RR-boundaries

W-MGfluid E-MGfluid

h(z1) Ta kc Rac kc Rac

z1 1000 4.4 1940 4.4 2665
2000 4.8 2014 4.8 2767
3000 5.0 2074 5.0 2851
4000 5.3 2125 5.3 2923
5000 5.5 2169 5.4 2985
6000 5.6 2207 5.6 3041
7000 5.7 2242 5.7 3091
8000 5.9 2273 5.8 3137
9000 6.0 2302 5.9 3179
10000 6.0 2328 6.0 3218

−z1 1000 4.3 1959 4.4 2705
2000 4.7 2034 4.8 2807
3000 5.0 2095 5.0 2892
4000 5.3 2146 5.3 2963
5000 5.5 2189 5.5 3025
6000 5.6 2227 5.6 3080
7000 5.8 2260 5.7 3129
8000 5.9 2291 5.8 3174
9000 6.0 2319 5.9 3215
10000 6.1 2345 6.0 3253

−z2
1 1000 4.3 1957 4.4 2699

2000 4.7 2031 4.8 2802
3000 5.0 2092 5.0 2886
4000 5.3 2143 5.3 2958
5000 5.5 2186 5.4 3020
6000 5.6 2224 5.6 3075
7000 5.8 2258 5.7 3124
8000 5.9 2289 5.8 3169
9000 6.0 2317 5.9 3210
10000 6.1 2343 6.0 3249

Tables (1-3) present the values of kc and Rac as a function of the Taylor number, Ta, under different gravity variations,
namely z1, −z1, and −z2

1 . These values are calculated for W-MGfluid and E-MGfluid , across three distinct boundary
conditions: Rigid–Rigid (RR), Rigid–Free (RF ), and Free–Free (FF ). The tables reveal that Rac is highest when both
boundaries are rigid and lowest when both boundaries are free, indicating that the system is most stable with rigid boundaries
and least stable with free boundaries. Furthermore, the data show a consistent trend where both kc and Rac increase as the
Taylor number, Ta, rises, regardless of the boundary conditions. This suggests that as Ta increases, the system’s stability
is enhanced, delaying the onset of penetrative convection. Additionally, the increase in Ta results in a reduction in the cell
size, further affecting the convection dynamics. Thus, Ta plays a significant role in modulating the onset of convection and
the size of the convective cells.
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Table 2. Values of Rac & kc for W-MGfluid & E-MGfluid .

RF − boundaries

W-MGfluid E-MGfluid

h(z1) Ta kc Rac kc Rac

z1 1000 4.0 1343 4.0 1838
2000 4.5 1482 4.5 2032
3000 4.9 1585 4.9 2177
4000 5.2 1670 5.2 2295
5000 5.5 1741 5.5 2396
6000 5.7 1804 5.7 2484
7000 5.9 1861 5.9 2563
8000 6.0 1912 6.0 2635
9000 6.2 1960 6.2 2702
10000 6.3 2003 6.3 2763

−z1 1000 4.0 1361 4.0 1872
2000 4.5 1500 4.5 2066
3000 4.9 1603 4.9 2211
4000 5.2 1687 5.2 2329
5000 5.5 1759 5.5 2429
6000 5.7 1822 5.7 2518
7000 5.9 1879 5.9 2597
8000 6.0 1930 6.0 2669
9000 6.2 1977 6.2 2735
10000 6.3 2020 6.3 2796

−z2
1 1000 4.0 1359 4.0 1867

2000 4.5 1498 4.5 2062
3000 4.9 1601 4.9 2207
4000 5.2 1685 5.2 2325
5000 5.5 1757 5.5 2425
6000 5.7 1820 5.7 2514
7000 5.9 1876 5.9 2593
8000 6.0 1928 6.0 2665
9000 6.2 1975 6.2 2731
10000 6.3 2018 6.3 2792
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Table 3. Values of Rac & kc for W-MGfluid & E-MGfluid .

FF-boundaries

W-MGfluid E-MGfluid

h(z1) Ta kc Rac kc Rac

z1 1000 4.0 1346 4.0 1847
2000 4.1 1482 4.4 2040
3000 4.7 1590 4.9 2186
4000 5.2 1676 5.2 2305
5000 5.5 1748 5.5 2406
6000 5.8 1811 5.7 2494
7000 6.0 1866 5.9 2572
8000 6.1 1916 6.1 2642
9000 6.3 1961 6.3 2707
10000 6.4 2003 6.4 2766

−z1 1000 4.0 1361 4.0 1877
2000 4.0 1493 4.2 2069
3000 4.5 1604 4.8 2218
4000 5.1 1693 5.2 2338
5000 5.5 1766 5.5 2439
6000 5.8 1828 5.8 2527
7000 6.0 1883 6.0 2605
8000 6.2 1932 6.1 2675
9000 6.3 1977 6.3 2738
10000 6.4 2019 6.4 2798

−z2
1 1000 4.0 1359 4.0 1873

2000 4.0 1492 4.3 2066
3000 4.6 1602 4.8 2214
4000 5.1 1691 5.2 2334
5000 5.5 1764 5.5 2435
6000 5.8 1826 5.7 2523
7000 6.0 1881 6.0 2601
8000 6.2 1930 6.1 2671
9000 6.3 1975 6.3 2735
10000 6.4 2017 6.4 2794
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8 Conclusions
In this study, we explored how variable gravity influences the initiation of penetrative convection driven by internal heating
within a rotating thin layer of MGfluid under the effect of an external magnetic field. The main findings are as follows.
The parameters, namely, ϵ, αL, Na

′
, and Ta were found to delay the onset of convection, thereby enhancing the system’s

stability. Conversely, parametersNa, Le, andRn promote convection, whereasNb has a minimal impact. As Ta increases,
the size of convection cells decreases. This relationship suggests that smaller cell sizes contribute to a more stable system. The
system achieves maximum stability under RR bcs and minimum stability under FF bcs boundary conditions. Furthermore,
the E-MGfluid configuration demonstrates slightly higher stability than the W-MGfluid configuration. These insights
advance our understanding of how variable gravity, boundary conditions, and other parameters affect the onset of penetrative
convection in a rotating MGfluid, offering valuable perspectives for enhancing stability in such fluid systems.
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