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Abstract "This paper explores face identification and recognition using MATLAB software,
implementing fuzzy morphological erosion based on Generalized Almost Distributive Fuzzy
Lattices (GADFL). Face recognition involves identifying a face biometric process used to iden-
tify or verify a person by analyzing their facial features. The focus here is on recognizing faces
from binary images. Fuzzy morphological erosion is one of the most widely used fuzzy tech-
niques in image processing due to its foundation in distributive fuzzy lattices. This operation is
primarily applied to process various face reactions (binary images), where a partial ordering and
a fuzzy lattice structure are evident. Face recognition is achieved by analyzing intensity value
measurements of input images. The training dataset was compiled from various sources, in-
corporating metrics such as Peak Signal-to-Noise Ratio (PSNR), Signal-to-Noise Ratio (SNR),
and the Structural Similarity Index (SSIM). The system demonstrated effective performance,
achieving an 80% recognition accuracy. MATLAB software was utilized for implementing the
proposed methodology."

1 Introduction

The study of shape and structure is referred to as “mathematical morphology.” Morphological
operations have a wide range of applications, including morphology that deals with transforma-
tions. The analysis of binary images was the first use of mathematical morphology [1]. The bi-
nary pictures are maps A : U → [0, 1], where U denotes the Euclidean plane R2 or the Cartesian
grid Z2 respectively, and the image value at each point x ∈ U can only be 0 or 1, representing
black and white [2, 3]. Serra proposed grayscale morphological expansion of the binary morpho-
logical operator. Fuzzy mathematical morphology’s purpose is to apply several approaches have
been attempted [4]. For example, the notion of fuzzy subset inclusion grade is used by Xu, J.,
and Giardina, C.R. to define the core operations of fuzzy mathematical morphology [5]. Zadeh’s
A ≤ B iff A(x) ≤ B(x)∀ x ∈ U , which has been used by numerous writers to build weaker
conceptions, is one example of several approaches to the fuzzy subsets of A, B of a universe U.

Since the 1990s, face recognition algorithms have been created. One of the most difficult
elements of the technology is face recognition systems, which require of action with better
discriminatory strength [6]. Many dimension reduction methods linear discriminant analysis
(LDA) [7], the principal component of analysis (PCA) [8], and (ICA) [9], have been proposed
in previous research. Many computer vision applications, like as activity recognition, car safety,
and surveillance [10], rely on object detection and tracking. A face detection system utilising
MATLAB is presented here, which can recognise not only a human face but also eyes and the
upper body. Humans find face detection to be a simple operation, while computers do not. Due to
huge intra-class variances induced by changes in facial look, lighting, and expression, it has been
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recognised as the most complex and challenging subject in the field of computer vision [11]. In
any space that is linear to the original picture space, such differences cause the face distribution
to be very nonlinear and complex.

The significance of lattice theory (order theory) as a fundamental mathematical topic that
gives a new perspective on a collection of elements and an ordering relation known as a partial
order [12] has long been recognised. The phrase ’y includes x’ denotes this partial order, which
is symbolised by x ≥ y. In this work, we will focus on generalised virtually distributive fuzzy
lattices in addition to lattice algebra [13]. Using a set R and a nearly distributive fuzzy lattice L,
we define a fuzzy subset A of R as a function A : R×R → [0, 1], where A((r)) is the degree of
membership of element x accordingly (R, A) [14, 15, 16]. L (R, A) can then be enlarged to the
point where (R, A) is effectively a distributive fuzzy lattice by inserting the fuzzy morphological
dilation. As a result, for underexposed data, the order relation can be enlarged to the interval
[0, 1/2] or [1/2, 1], respectively.

Finally, using a biometric process based on intensity value measurements of input photos,
the detection of faces was completed. The training images came from a number of sources,
including the PSNR, SNR, and numerous structural aspects of the SSIM. The system worked
effectively, detecting faces with an accuracy of 80%. This paper’s software requirements are
MATLAB software.

2 Preliminaries

"A few fundamental definitions are discussed.

Definition 2.1 (GADFL). Let (R,A) be a fuzzy poset and L(R, ∧,∨) be an algebra type (2, 2).
If L(R, A) satisfies the following axioms, we call it a Generalized Almost Distributive Fuzzy
Lattice.

(i) A ((a ∧ b) ∧ c, a ∧ (b ∧ c)) = A (a ∧ (b ∧ c) , (a ∧ b) ∧ c) = 1;

(ii) A (a ∧ (b ∨ c) , (a ∧ b) ∨ (a ∧ c)) = A ((a ∧ b) ∨ (a ∧ c) , a ∧ (b ∨ c)) = 1;

(iii) A (a ∨ (b ∧ c) , (a ∨ b) ∧ (a ∨ c)) = A ((a ∨ b) ∧ (a ∨ c) , a ∨ (b ∧ c)) = 1;

(iv) A (a ∧ (a ∨ b) , a) = A (a, a ∧ (a ∨ b)) = 1;

(v) A ((a ∨ b) ∧ a, a) = A (a, (a ∨ b) ∧ a) = 1;

(vi) A ((a ∧ b) ∨ b, b) = A (b, (a ∧ b) ∨ b) = 1 for all a, b, c ∈ R.

Definition 2.2 (Erosion). An operator ε : L → L′ is Erosion if it commutes with the infimum, for
all xi ∈ L′, ε (Sixi) = S′ε(xi), where S denotes the infimum associated with ≥ and S′ denotes
the infimum associated with ≥′.

Definition 2.3 (Peak signal-to-noise ratio and Signal-to-noise ratio). The ratio of an image’s
maximum attainable power to the power of corrupting noise that degrades its quality of represen-
tation is called the peak signal-to-noise ratio, or PSNR. A picture’s PSNR needs to be calculated
by comparing it to the maximum power achievable, perfect clean image. The decibel ratio of
signal to noise power in relation to background noise level is known as the signal-to-noise ratio,
or SNR.

Definition 2.4 (Structural Similarity Index (SSIM)). A perceptual metric called the Structural
Similarity Index (SSIM) is used to quantify the amount of image quality loss. It’s a full reference
metric that necessitates the use of two images: a reference image and a processed image, both of
which must be captured from the same image capture.

"

3 Fuzzy Morphological Erosion of Generalized Almost Distributive Fuzzy
Lattices

"This section covers the notion of Fuzzy morphological erosion, as well as some theorems, in
the context of Generalized Almost Distributive Fuzzy Lattices.
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Definition 3.1. Fuzzy Morphological Erosion of GADFL with the binary operation infimum and
its structuring and least elements are S and 0. Moreover, let {Xi} be a collection of elements
from L(R, A). An operator εS : R×R → [0, 1] on L is defined by

εS A (x) = infy∈R [S (y − x) ∗A (y) , 0] > 0 ∀ x ∈ R

Theorem 3.2. Let L(R, A) be a GADFL. Then the fuzzy erosion A1 ≥ A2 ∈ L(R, A) which
implies εS (A2, A1) > 0.

Proof. Given L(R, A) be a GADFL. For every x, y ∈ R
Define the fuzzy erosion, S structuring element

εS A1 (x) = infy∈R [S1 (y − x) ∗A1 (y) , 0] > 0 ∀ x ∈ R

And εV A2 (x) = infy∈R [S1 (y − x) ∗A2 (y) , 0] > 0 ∀ x ∈ R,
To prove A1 ≥ A2 ⇒ εS (A2, A1) > 0
Suppose A1 = S1 (y − x) and A2 = S2 (y − x)∀x ∈ R
Then A1 ≥ A2 ⇒ S1 (y − x) ≥ S2 (y − x)
⇒ εS1 (x) ≥ εS2 (x) (∵ (S1, S2) = S), εS (x) = S(y − x)
⇒ ε (S2 (x) , S1 (x)) > 0 [∵ a ≥ b ⇒ A (b, a) > 0]
⇒ (infy∈R [S2 (y − x) ∗A2 (y) , 0] , infy∈R [S1 (y − x) ∗A1 (y) , 0])
⇒ (infy∈R

(
infy∈R [(S2 (y − x) , S1 (y − x)) ∗ (A2 (y) , A1 (y)), 0]

)
> 0

⇒ (infy∈R [S (y − x) ∗ (A2 (y) , A1 (y)) , 0] > 0 (∵ (S1, S2) = S)
⇒ εS (A2, A1) > 0
Thus A1 ≥ A2 ⇒ εS (A2, A1) > 0
Hence proved.

Theorem 3.3. If operation * is distributes over arbitrary meets, then given a family of GADFL,
fuzzy set {Ai|i ∈ I} ⊆ L(R, A), it holds εS(

∧
i∈IAi) =

∧
i∈I(εS(Ai))

Proof. Let family of fuzzy sets {Ai|i ∈ I} ⊆ L(R, A) and y ∈ R.
We have εS

(∧
i∈IAi

)
(y)

= infy∈R

[
S (y − x) ∗

∧
i∈IAi (y) , 0

]
> 0

= infy∈R

[∧
i∈IS (y − x) ∗ Ai (y) , 0

]
> 0

=
∧

i∈I infy∈R [S (y − x) ∗ Ai (y) , 0] > 0
=

∧
i∈I(εS(Ai))

Thus εS
(∧

i∈IAi

)
=

∧
i∈I (εS(Ai)). Hence proved.

Theorem 3.4. Let S1 and S2be two structuring elements and εSi
: R ×R → [0, 1] (i = 1, 2) the

fuzzy erosion operator in L(R, A)) associated with them. If * represents the usual composition,
it is verified (εs1 ∗ εS2) = εεS1

(S2).

Proof. For all A ∈ L(R,A)
(εS1 ∗ εS2) (A) = εS1( εS2(A)) Therefore ∀ x ∈ R
((εS1 ∗ εS2) (A) (x) = εS1 ( εS2 (A)) (x)
= infy∈R [S1 (y − x) ∗ εS2 (A) (y) , 0] > 0
= infy∈R [S1 (y − x) ∗ infz∈R[S2 (z − y) ∗A (z) , 0] , 0] > 0
= infy∈R [inf [S1 (y − x) ∗ [S2 (z − y) ∗A (z) , 0]] > 0
= infz∈R[A (z) ∗ infy∈R [S1 (y − x) ∗ S2 (z − y)], 0] > 0
If we take z − y = r, then the last expression is equal to
infz∈R[A (z) ∗ infr∈R [S1 (z − r − x) ∗ S2 (r)], 0] > 0
= infz∈R [A (z) ∗ εS1 (S2) (z − x) , 0] > 0
and applying the commutativity of *, we have
= supz∈R [εS1 (S2) (z − x) ∗A (z) , 0] > 0
= (εεS1 (S2)

(A))(x)

∴ ((εS1 ∗ εS2) (A))(x) = (εεS1
S2 (A))(x)

Thus (εS1 ∗ εS2) = εεS1
(S2)

Hence proved.
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Theorem 3.5. Let εS be a fuzzy erosion in GADFL L(R, A). Then the following are equivalent.

(i) L(R,A) is an ADFL.

(ii) For any structuring element ‘U’ of L(R, A)), εU is a fuzzy erosion on L(R,A).

(iii) εV is a fuzzy erosion on L (R, A) .

Proof. (i) (1) ⇒ (2)
Assume (1)
Let ‘U’ is a structuring element L(R,A) Then εU is a fuzzy erosion on L(R, A). Let x, y ∈

R.

⇒ A (x) = U (y − x) ∀ y ∈ R

= U (y − x) > 0

∴ A (y − x, 0) > 0
⇒ A (0, 0) > 0 and εU A (x) = {x ∈ R | U (y − x) ∗A(y)} ∀ y ∈ R
⇒ A [(y − x) ∗A (y) , 0] = A(x ∗ y, 0) = 1
= A (0, 0) > 0
⇒ infy∈R [U (y − x) ∗A (y) , 0] > 0
⇒ εU A(x) > 0
Thus εU A(x) = infy∈R{U (y − x) ∗A (y) , 0} > 0
Hence εU is a fuzzy erosion on L(R, A). Hence (1) ⇒ (2)
ii) (2) ⇒ (3) It is obvious.
iii) (3) ⇒ (1)
Assume (3)
εV is a fuzzy erosion it is defined.
εV A(x) = infy∈R{V (y − x) ∗A (y) , 0} > 0∀ x ∈ R
Since infy∈R{V (y − x) ∗A (y) , 0} > 0
⇒ εV A(x) > 0
Thus x, y ∈ R, since εV A(x) is a fuzzy erosion on L(R,A).
Thus εV A (x) > 0.
Therefore L(R, A) be an ADFL.

"

4 Algorithm:

Original photos and face identification approaches have been able to improve the PSNR, SNR,
and different structural elements of the SSIM from training images using this algorithm.

Step 1: Select a set of original photographs.
Step 2: Find the binary images from the original photos.
Step 3: On the binary set of images, do morphological erosion.
Step 4: We determine the minimum and maximum value from the set values of
the training images using the fuzzy function (write down the formula).
Step 5: The information is saved for subsequent face detection processing.
Step 6: Choose an input image that changes totally or somewhat from the origi-
nals.
Step 7: Compare and take minimum value of the neighbor.
Step 8: Set the pixel value to that minimum value.



106 T. Sangeetha and S. Senthamilselvi

Step 9: Take all the neighbourhoods.
Step 10: Take logical different SE (Structural Element).
Step 11: Fuzzy erosion function for logical SE
Step 12: Compare and take maximum value of the neighbor
Step 13: And set the pixel value to that maximum value.
Step 14: Take all the neighbourhoods.
Step 15: Image plot original image and fuzzy Image.
Step 16: The input image’s face is recognized. PSNR, SNR, and SSIM are
calculated from scratch and compared to database images. The most closely
matching photograph is utilized to determine the person’s name.

This algorithm utilizes MATLAB to enhance biometric identification by optimizing the PSNR,
SNR, and key structural elements of the SSIM in the training images.

5 Face Recognition Techniques (GADFL) as a Fuzzy Morphological Erosion
Process in MATLAB

The above algorithm, implemented using MATLAB, is effective for face recognition by opti-
mizing PSNR, SNR, and structural similarity (SSIM). Figures 5.1 and 5.2 below demonstrate
the application of face detection techniques using GADFL.

Figure 1. (a) and (b)

Figure 1. (c) and (d)
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Figure 1. (e) and (f)

Figure 1. (g) and (h) FACE 1 – Original SE and Different SE.

Figure 2. (a)

Figure 2. (b) and (c)
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Figure 2. (d) and (e)

Figure 2. (f) and (g)

Figure 2. (h) and (i) FACE 2 – Original SE and Different SE.

6 Face Recognition (Noise Ratio) experimental table and Data Analysis

The face recognition problem was solved using fuzzy lattice theory. In the algorithm, we can
locate a fuzzy morphological erosion point where the picture can be recognized. Tables 6.1 &
6.2 indicate the appropriate values for Peak-SNR, SNR, and SSIM for the fuzzy erosion approx-
imation in face detection.

In MATLAB, you can calculate PSNR, SNR, and SSIM for a biometric image before and
after morphological operations with different structural element (SE) sizes.

Table 1. Experimental result for Face 1 Erosion Structural Element (SE).
Values Original SE (0,0) SE (5,5) SE (7,7) SE (9,9) SE (11,11) SE (13,13) SE (25,25) SE (35,35)

PSNR 28.5512 28.6957 27.3216 27.5414 27.3969 27.5659 27.9405 28.1713
SNR 25.1758 27.0638 27.0651 27.0863 27.0754 27.0714 27.0701 27.0701
SSIM 0.7048 0.6322 0.4692 0.5243 0.4775 0.4954 0.5359 0.5599

The experimental table (Table 6.1) evaluates the performance of the face recognition system
based on three key metrics:

PSNR (Peak Signal-to-Noise Ratio): Measures the quality of the image after the erosion
operation. A higher PSNR indicates better image quality.

SNR (Signal-to-Noise Ratio): Evaluates the ratio between the useful signal (face features)
and the noise in the image. Higher SNR values are indicative of cleaner data for recognition.
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SSIM (Structural Similarity Index): Assesses the structural similarity between the processed
and original images. A higher SSIM indicates that the image features, such as the face structure,
are better preserved during processing.
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Figure 3. Data Analysis for Face 1 Erosion Structural Element (SE).

Table 2. Experimental results for Face 2 Erosion Structural Element (SE).
Values Original SE SE (5,5) SE (7,7) SE (9,9) SE (11,11) SE (13,13) SE (25,25) SE (35,35)

PSNR 27.9568 27.9163 27.9377 27.9317 27.3969 27.9472 27.9268 27.9408
SNR 27.1007 27.0601 27.0815 27.0755 27.0803 27.0910 27.0706 27.0846
SSIM 0.5788 0.5775 0.5784 0.5779 0.5781 0.5783 0.5780 0.5785

These values suggest that the different SE sizes used in morphological operations have a min-
imal impact on the overall image quality. The slight variations in PSNR, SNR, and SSIM across
SE sizes imply that the morphological preprocessing does not significantly alter the core features
of the biometric image, ensuring that the identification system can still perform accurately. The
choice of SE size (such as 5x5, 7x7, etc.) may be optimized based on specific needs like noise
reduction or feature enhancement.
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PSNR 27.9568 27.9163 27.9377 27.9317 27.3969 27.9472 27.9268 27.9408 

SNR 27.1007 27.0601 27.0815 27.0755 27.0803 27.0910 27.0706 27.0846 

SSIM 0.5788 0.5775 0.5784 0.5779 0.5781 0.5783 0.5780 0.5785 

Figure 4. Data Analysis for Face 2 Erosion Structural Element (SE).

7 Conclusion

In this study, implemented a face recognition system using MATLAB that utilizes the fuzzy
morphological erosion operator to biometric process various facial reaction images. The system
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is built on the principles of Generalized Almost Distributive Fuzzy Lattices, where also derived
several relevant theorems related to fuzzy morphological erosion. The algorithm is capable of
evaluating critical performance metrics, including Peak Signal-to-Noise Ratio (PSNR), Signal-
to-Noise Ratio (SNR), and the Structural Similarity Index (SSIM). These metrics are tabulated
and analyzed, reflecting the structural framework of Generalized Almost Distributive Fuzzy Lat-
tices. For future work, we propose investigating the application of fuzzy morphological opera-
tors such as opening and closing on color images in combination with face detection techniques.
This approach aims to further refine and optimize the entire face recognition and biometric iden-
tification process within the Generalized Almost Distributive Fuzzy Lattices framework using
MATLAB.
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