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Abstract In this paper, we study the topological dynamics of a two-dimensional shift space
XG through matrices M and N ; which are indexed with allowed triangular patterns of form c

a b ,
x z
y respectively. We investigate how the characteristics of matrices M and N are related to one
another. We prove that if MIJ ̸= 0 ⇔ NI1J1 ̸= 0 holds for all E-pairs (I, I1) and (J, J1), then
XG ̸= ∅ and contains periodic points. We establish that for such shift spaces, (1, 1)-mixing
notions (transitivity, doubly transitivity and weak mixing) can be studied through the block pre-
sentation of matrix M . We prove that if MIJ ̸= 0 ⇔ NI1J1 ̸= 0 holds, then (1, 1)-weak mixing
and (r, s)-weak mixing (for rs > 0) are equivalent. In the process, we discuss (r, s)-transitivity
and (r, s)-weak mixing of shift space XG through appropriate triangular patterns. These results
provide a deeper understanding of the dynamics of shift spaces, with implications for fields such
as dynamical systems, control theory, computational biology, and information theory, where the
study of periodicity, mixing, and transitivity is essential for optimizing algorithms and system
behavior.

1 Introduction

Symbolic dynamics plays a crucial role in analyzing the behavior of various discrete dynami-
cal systems. By representing any discrete system as a factor of a symbolic system, researchers
gain insights into the qualitative aspects of its dynamics. This enables the visualization of the
underlying properties and characteristics inherent in the system. The versatility of symbolic dy-
namics extends beyond theoretical realms, finding practical applications in diverse fields. For
instance, it is utilized in automata theory, data transmission and storage, communication sys-
tems, study of quasi-crystals, boolean control networks, computational economics and biology
[8, 12, 18, 6, 4, 21]. Prior to proceeding further, we’ll provide an overview of essential prelimi-
naries.

Let A = {a1, a2, . . . an} be a finite set of symbols with discrete topology and AZ2
, the

collection of all functions x : Z2 → A be endowed with product topology. The function
d : AZ2 × AZ2 → R+ defined as d(x, y) = 1

n+1 (where n is the least non-negative integer such
that x ̸= y in Rn = [−n, n]2) is a metric on AZ2

. For any v ∈ Z2, the map σv : AZ2 → AZ2
de-

fined as σv(y)|u = y|u+v (for all u ∈ Z2) is a 2-dimensional shift map and is a homeomorphism.
Let S ⊂ Z2, then elements of AS are called patterns (over S) and elements of AZ2

are called
configurations. A configuration y ∈ AZ2

is referred to as periodic if for some v ∈ Z2 \ {(0, 0)},
σv(y)|u = y|u for all u ∈ Z2. A subset Y of AZ2

is called shift-invariant if σv(Y ) ⊆ Y for all
v ∈ Z2. A non-empty, closed, and shift-invariant subset Y of AZ2

is called a subshift (of AZ2
).

Let F be the collection of finite patterns and let XF = {x ∈ AZ2
: x|P /∈ F for all P ⊂ Z2},

then XF is referred to as a 2-dimensional shift of finite type (SFT). A pattern is considered
allowed (or valid) if it does not contain any elements from F . For any SFT X , the set of all
valid patterns is represented as B(X). Refer to [3, 5, 8, 9, 12, 14, 19] for details.

A 2-dimensional SFT X is transitive if for every pair of non-empty open sets U1 and U2
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in X , σn(U1) ∩ U2 ̸= ∅ for some n ∈ Z2. The SFT X is r-transitive (r ∈ Z2) if for any pair
of non-empty open sets U1 and U2 in X , σnr(U1) ∩ U2 ̸= ∅ for some n ∈ Z. The SFT X is
referred to as weakly mixing if for any pair of non-empty open sets Ui and Vi in X (i = 1, 2),
σn(Ui)∩Vi ̸= ∅ for some n ∈ Z2. The SFT X is r-weakly mixing if for any pair of non-empty
open sets Ui and Vi in X (i = 1, 2), σkr(Ui) ∩ Vi ̸= ∅ for some k ∈ Z. Let Am×m be a binary
matrix (with entries 0 and 1), then A is termed irreducible if for any pair of indices i, j, ∃ n ∈ N
such that An

ij > 0. The matrix A is said to be primitive if An > 0 for some n ∈ N. A 1-
dimensional SFT X is referred to as doubly transitive if for all non-empty open sets U1 and U2
in X , ∃ p, q ∈ N such that σp(U1)∩U2 ̸= ∅ and σ−q(U1)∩U2 ̸= ∅. Further, a 1-dimensional
SFT XA is doubly transitive ⇔ A is irreducible. See [5, 7, 8, 12, 22] for details.

Let X be a 1-dimensional SFT, then X ∼= XG for some graph G. Let H and V be graphs
with alphabet A as a common set of vertices, and if graphs H and V respectively determine
the horizontal and vertical compatibility of vertices; then we denote the tuple G = (H,V) as
a 2-dimensional graph. For the sake of simplicity, we represent the 2-dimensional graph as
G = (H,V ), where H and V are the adjacency matrices of graphs H and V respectively. It is
evident that if H and V don’t have any zero rows (or columns), then the shift space satisfying
the condition (HV )kl ̸= 0 ⇔ (V H)kl ̸= 0 for all k, l ∈ V (G) (and its one-sided implications)
is always non-empty and possesses periodic points. As the imposed condition forces every tri-
angular pattern of the form ∗

∗ ∗ , ∗ ∗
∗ to be extended to a valid 1 × 1 square pattern of XG, the

condition captures the extendability of the generated (valid) patterns for XG. But in the ab-
sence of the imposed condition, a given pattern may or may not be extended to valid rectangles
of arbitrary sizes. In such cases, let A1 = { c

a b : ∃ d ∈ V(G) such that d c
a b ∈ B(XG)} and

A2 = {y z
x : ∃ w ∈ V(G) such that y z

x w ∈ B(XG)}. Next, consider two matrices M and N that
are indexed with the elements of A1 and A2 in the following way:

For I = a3
a1 a2

, J = a6
a4 a5

R = b2 b3
b1

, S = b5 b6
b4

,

MIJ =

{
1, if a3 = a4 and a3 a5

a2
∈ A2

0, otherwise
and NRS =

{
1, if b3 = b4 and b5

b2 b3
∈ A1

0, otherwise.

Let I = a3
a1 a2

and J = a4 a3
a1

be valid triangular patterns such that a4 a3
a1 a2

∈ B(XG), then (I, J)
is referred to as an E-pair and I (or J) is called the E-partner of pattern J (or I). We say a
shift space XG has unique E-pairs if every index of M and N is uniquely extended to a valid
1 × 1 square pattern of XG. If M and N consist of some zero rows (or columns), then the cor-
responding indices do not contribute to the generation of valid configurations, and removal of
such indices does not affect the configurations of XG. Hence, we assume that M and N do not
consist of any zero rows or zero columns. Let P and Q be the sequences (patterns) generated
by matrices M and N respectively. If they agree on diagonal corner points, then we say P is a
complementary pattern of Q and vice versa. See [9, 12] for details.

In 1961, Wang proposed the concept of Wang tiles and investigated their characteristics. He
questioned the possibility of covering a plane with a set of tiles according to a predetermined
rule. He established that for any finite set of Wang tiles, if it is possible to tile the entire plane,
then there is at least one periodic tiling of the plane [23]. However, the claim was proven to be
false by Robert Berger in 1966. He showed that there exist sets of Wang tiles that can tile the
entire plane in an aperiodic manner [1]. Consequently, two questions emerged: one regarding
tiling a plane with specific tiles adhering to a prescribed tiling rule, and the other about the possi-
bility of tiling the plane in a periodic manner. In 1967, Robinson utilized translation, reflection,
and rotations of seven square tiles with notched edges to establish that the resulting 52 tiles can
tile the entire plane in an aperiodic manner. Later, he discovered six polygonal tiles (a total of
32 tiles subjected to translation, reflection, and rotations) that can tile the plane aperiodically
[17]. In multidimensional shift spaces, the determination of whether a local admissible block is
globally admissible is undecidable. This uncertainty impedes the exploration of the underlying
topological properties of a shift space. In [19], the authors characterized a multidimensional shift
of finite type using an infinite matrix. In [16], the author established that on locally finite groups,
every sofic shift is an SFT, every SFT is strongly irreducible, and every SFT is entropy minimal
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with a unique measure of maximal entropy. In [15], the author presented a criterion for establish-
ing an upper bound on entropy perturbation. In [2], the author studied stable algebra of matrices
in the context of symbolic dynamics, examining square matrices over a semiring S and their
invariance under shift equivalence and strong shift equivalence. They also investigated module
theory, algebraic K-theory, and contrasted problems in characterizing spectra of nonnegative real
matrices, alongside a review of key developments in shift equivalence and automorphism groups.

In [20], the authors gave an algorithmic approach to address the non-emptiness problem for
multidimensional shift spaces. In [9], the authors discussed the non-emptiness problem and
the existence of periodic points for a 2-dimensional shift space generated by the graph G =
(H,V ). The authors proved that if (HV )kl ̸= 0 ⇔ (V H)kl ̸= 0 holds for all k, l ∈ V (XG),
then XG ̸= ∅ and has a non-empty set of periodic points. In [13], the authors established the
transitivity and weak mixing behavior of the 2-dimensional shift space XG under the conditions
(HV )kl ̸= 0 ⇔ (V H)kl ̸= 0 and (HV T )kl ̸= 0 ⇔ (V TH)kl ̸= 0 for all k, l ∈ V (XG). In [7],
the authors established several notions of transitivity for 2-dimensional Dot systems. In [11],
the author investigated the dynamical structure of 2-dimensional SFT through graph products
of reduced complexity. In [10], the authors showed that if (HV )kl ̸= 0 ⇔ (V H)kl ̸= 0 holds
for all k, l ∈ V (XG), then (r, s)-directional mixing (for rs > 0) can be studied through the
matrix HrV s. However, in the absence of imposed conditions on adjacency matrices, the study
of (r, s)-mixing notions (for rs > 0) through HrV s is not guaranteed. In this paper, we provide
sufficient conditions for non-emptiness, the existence of periodic points, (1, 1)-transitivity, and
(1, 1)-weak mixing of the shift space XG through a pair of matrices M and N , where both
matrices are indexed with valid E-pairs. In the process, we relate (1, 1)-weak mixing with (r, s)-
weak mixing (under imposed conditions on M and N ), and we discuss directional transitivity
and directional weak mixing of the shift space XG.

2 Results

We first investigate the relation between the algebraic structure of matrices M and N . Sub-
sequently, we examine the structure of the shift space XG using matrices M and N . In this
paper, we proceed under the assumption that both M and N do not contain any rows or columns
consisting entirely of zeros.

Proposition 2.1. M is an irreducible matrix if and only if N is an irreducible matrix.

Proof. Let M be an irreducible matrix and I = a2 a3
a1

, J = b2 b3
b1

be any given indices of matrix

N . Since the matrix N does not consist of any zero row (or column), let P =

a4 a5

a2 a3

a0 a1

a−1

and Q =

b4 b5

b2 b3

b0 b1

b−1

be the patterns of N containing I and J respectively. If P ∗ =

a4

a2 a3

a0 a1

and Q∗ =
b4

b2 b3

b0 b1

are the patterns obtained by removing the first and last

symbols in patterns P and Q respectively, then it can be seen that P ∗ and Q∗ are generated
by M . As M is an irreducible matrix, the patterns P ∗ and Q∗ can be joined by a path of M .
Consequently, indices I and J can be joined through a path of N , and hence, N is an irreducible
matrix.

Similarly, it can be shown that if N is an irreducible matrix, then M is also an irreducible
matrix.

Remark 2.2. The Proposition 2.1 states that if M (or N ) is an irreducible matrix, then N (or M )
is also an irreducible matrix. The proof uses the fact that removal of first and last symbols from
the finite sequences generated by M (or N ) yields finite sequences of N (or M ). It may be noted
that a similar result to Proposition 2.1 holds when M is a primitive matrix. Further, if M (or N )
is a permutation matrix, then N (or M ) is also a permutation matrix. The proof is established
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by considering the fact that as M is a permutation matrix, fixing an index of M at the origin
uniquely determines the rest of the indices in the sequences of M . Since the removal of first and
last symbols in finite sequences of M yields finite sequences generated by N , every index of N
has a unique incoming and outgoing entry. Thus, the subsequent corollaries are established.

Corollary 2.3. M is a primitive matrix if and only if N is a primitive matrix.

Proof. The proof is substantiated by the arguments presented in the Remark 2.2.

Corollary 2.4. M is a permutation matrix if and only if N is a permutation matrix. Further, M
is an irreducible, permutation matrix if and only if N is an irreducible, permutation matrix.

Proof. The proof is substantiated by the arguments presented in the Remark 2.2.

Remark 2.5. The above corollary establishes that if M is an irreducible, permutation matrix,
then N is also an irreducible, permutation matrix. It can be noted that if M and N are irreducible,
permutation matrices, then two matrices have same size (or equivalently, generate 1-dimensional
periodic points of same periods). The proof follows from the fact that an irreducible, permutation
matrix corresponds to single periodic orbits (as 1-dimensional) and finite sequences of N (or M )
can be visualized as truncation of finite sequences of M (or N ). Therefore, M generates single
periodic orbits of period m if and only if N generates single periodic orbits of period m.

It is worth mentioning that the matrices M and N always have the same size. This follows
from the observation that every sequence of M (or N ) can be interpreted as a sequence of N
(or M ) by simply removing the first and last symbols. Hence, the number of indices in M and
N (which contribute in generation of one-dimensional bi-infinite sequences of M and N ) are
always equal. Furthermore, it can be noted that there might exist some SFT, where M and N
initially do not appear to have the same size. However, by removing zero rows and columns (as
it is assumed that M and N are void of any zero row or zero column throughout the paper), they
can be reduced to matrices of the same size. We now provide an example to illustrate this claim.

Example 2.6. Let XG be a SFT, where the generating matrices of graph G = (H,V ) are

H =


1 2 3

1 0 1 1
2 1 0 0
3 0 1 1

 V =


1 2 3

1 1 0 1
2 0 0 1
3 1 1 0


Then,

HV =


1 2 3

1 1 1 1
2 1 0 1
3 1 1 1

 VH =


1 2 3

1 0 2 2
2 0 1 1
3 1 1 1


It may be noted that there exist vertices k, l which do not satisfy the condition (HV )kl ̸= 0 ⇐⇒
(V H)kl ̸= 0. As such vertices do not contribute towards the generation of valid configurations,
setting such entries to 0 yields the following updated matrices:

HV =


1 2 3

1 0 1 1
2 0 0 1
3 1 1 1

 VH =


1 2 3

1 0 2 2
2 0 0 1
3 1 1 1


Next, categorize triangular patterns (which can be extended to valid 1 × 1 square patterns) as

A1 = { 2
1 3,

3
1 2,

3
2 1,

1
3 3,

2
3 3,

3
3 2}, A2 = {1 2

1 , 3 2
1 , 1 3

1 , 3 3
1 , 3 3

2 , 2 1
3 , 1 2

3 , 1 3
3 }
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The corresponding matrices M and N with index set as A1, A2 respectively, are given as

M =



2
1 3

3
1 2

3
2 1

1
3 3

2
3 3

3
3 2

2
1 3 0 0 1 0 0 0

3
1 2 0 0 0 1 1 0

3
2 1 0 0 0 1 1 1

1
3 3 1 1 0 0 0 0

2
3 3 0 0 1 0 0 0

3
3 2 0 0 0 1 1 0



N =



1 2
1

3 2
1

1 3
1

3 3
1

3 3
2

2 1
3

1 2
3

1 3
3

1 2
1 0 0 0 0 1 0 0 0
3 2
1 0 0 0 0 1 0 0 0
1 3
1 0 0 0 0 0 1 0 0
3 3
1 0 0 0 0 0 1 1 1
3 3
2 0 0 0 0 0 1 1 1
2 1
3 0 1 0 1 0 0 0 0
1 2
3 0 0 0 0 1 0 0 0
1 3
3 0 0 0 0 0 1 0 0


It can be observed that the first and third columns of the matrix N are zero. By removing the
corresponding indices 1 2

1 and 1 3
1 (as such indices do not contribute in valid configuration of

SFT), we obtain a 6 × 6 matrix. Furthermore, the matrix M and the updated matrix N are both
of size 6 × 6. Thus, even if M and N initially had distinct sizes, they can be reduced to matrices
of the same size through this process. This property will be utilized in the subsequent sections
of this paper to extend a local pattern into a valid configuration of the SFT.

We now discuss the structure of a matrix that is not an irreducible matrix but generates a 1-
dimensional transitive shift space. We say a matrix P is semi-irreducible if it contains precisely
two irreducible, permutation sub-matrices P1, P2 such that for any i ∈ P1, j ∈ P2, the path
connecting these indices is unique (which traverses through all the indices of P \ (P1 ∪P2)). We
now provide an example of a semi-irreducible matrix:

Example 2.7. The matrix P is given by:

P =



1 2 3 4 5 6
1 0 1 0 0 0 0
2 1 0 1 0 0 0
3 0 0 0 1 0 0
4 0 0 0 0 1 0
5 0 0 0 0 0 1
6 0 0 0 0 1 0


Then, it can be seen that P is not an irreducible matrix (and hence XP is not doubly transitive),
but XP is a 1-dimensional transitive shift space. Further, it can be seen that matrix P has only
two irreducible, permutation sub-matrices P1, P2, where

P1 =

( 1 2
1 0 1
2 1 0

)
P2 =

( 5 6
5 0 1
6 1 0

)
It is evident that any indices k ∈ P1 and l ∈ P2 can be connected by a unique path (which
contains all the indices of P \ (P1 ∪ P2)). Consequently, P is a semi-irreducible matrix.

Remark 2.8. The above discussion provides the characterization of a matrix that generates a
1-dimensional transitive (not doubly transitive) shift space. It can be noted that if M is a semi-
irreducible matrix, then N is also a semi-irreducible matrix and vice versa. The proof relies on
the observation that every finite sequence of M generates a finite sequence of N (and vice versa),
thereby the sequences of M and N behave alike. We establish the result as following corollary.
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Corollary 2.9. M is a semi-irreducible matrix if and only if N is a semi-irreducible matrix.

Proof. The proof is substantiated by the arguments presented in the Remark 2.8

Remark 2.10. The above discussion provides the relationship between the structure of matrices
M and N . For any 2-dimensional shift space XG, the condition MIJ ̸= 0 does not ensure
that the corresponding pattern contributes to the generation of a valid configuration for XG.
Consequently, if there exist indices I , J of M such that the pattern corresponding to MIJ cannot
be extended to a valid 2×2 square, then we set MIJ = 0. If the matrices M and N are processed
in this manner, we refer to these updated matrices as M and N respectively.

Proposition 2.11. Let G = (H,V ) be a graph and XG be corresponding SFT. If the shift space
XG has unique E-pairs, then the non-emptiness problem for XG is decidable. Further, if XG ̸= ∅,
then XG is doubly (1, 1)-transitive if and only if M is an irreducible matrix.

Proof. Let the 2-dimensional shift space XG has unique E-pairs and M, N be the updated
matrices. If M and N are zero matrices, then XG = ∅; otherwise, every pattern of M (or N) has
its unique complementary pattern of N (or M). Let z be a finite pattern generated by M and z′ be
its complementary pattern of N, then (z, z′) generates a valid pattern P ∈ B(XG). It can be seen
that iteratively using finite sequences of M and N, P can be extended to a valid square pattern
of XG and then to a valid configuration. Thus, the SFT XG is non-empty and consequently, it is
decidable whether XG ̸= ∅ or not.

Next, consider that XG is doubly (1, 1)-transitive shift space, and let I and J be any given
indices of M. Let x, y be configurations where patterns I , J appear at the origin and U , V
be the corresponding 1

n -neighborhoods of configurations x, y respectively. Then, doubly (1, 1)-
transitivity of XG ensures the existence of k ∈ N such that σ(k,k)(U) ∩ V ̸= ∅ and equivalently,
Mp

IJ > 0 for some p ∈ N. Hence, M is an irreducible matrix and the proof of the forward part
is complete.

Conversely, let M be an irreducible matrix, then it can be seen that N is also an irreducible
matrix. As the 2-dimensional shift space XG has unique E-pairs, every finite pattern of M (or
N) can be uniquely extended to a valid square pattern of XG. Let U and V be 1

n -neighborhoods

of configurations x, y ∈ XG respectively, and xn =

x−n,n . . . xn,n

...
...

...
x−n,−n . . . xn,−n

and yn =

y−n,n . . . yn,n
...

...
...

y−n,−n . . . yn,−n

be the central patterns of U and V respectively. If index I of M ap-

pears in the top right corner of xn and the index J of M appears in the lower left corner of yn,
then the irreducibility of M ensures that I and J can be connected along the (1, 1) direction. It
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can be seen that the resulting pattern P

y−n,n . . . yn,n
...

...
...

y−n,−n . . . yn,−n

...
. . .

...
...

. . .
...

x−n,n . . . xn,n . . .
...

...
...

x−n,−n . . . xn,−n

∈ B(XG)

is valid for shift space XG. Since E-pairs are unique and every sequence of M and N has
its unique complementary sequence, pattern P can be extended to an allowed square pattern and

then to a valid configuration z ∈ XG (if not, then there exists a pattern
x5

y1 x3 x4

x1 x2

which cannot

be extended to an allowed 2 × 2 square pattern; causing a contradiction to updated matrices M
and N). Since the central pattern of z is xn and the central pattern of σ(k,k)(z) is yn (for some
k ∈ N), it can be concluded that σ(k,k)(U)∩V ̸= ∅. Consequently, XG is doubly (1, 1)-transitive.

Remark 2.12. The Proposition 2.11 provides a necessary and sufficient condition for SFT XG

to exhibit doubly (1, 1)-transitivity under imposed conditions. It is worth mentioning that a SFT
can be infinite even if E-pairs are unique (Example 2.33 of [9]). Further, it is evident that XG

is (1, 1)-transitive (but not doubly (1, 1)-transitive) if and only if M is a semi-irreducible. The
proof is established by considering the fact that the indices I, J of M get joined by a unique
path, and the resulting finite sequence of M gets enclosed by a unique sequence (generated by
N ). Hence, any two allowed central blocks get connected by a unique path, and such a pattern
gets extended uniquely to a valid configuration. Moreover, the converse is also ensured by the
uniqueness of diagonal paths. Thus, the subsequent corollary is established.

Corollary 2.13. Let G = (H,V ) be a graph and XG be corresponding SFT, then the shift space
XG is (1, 1)-transitive (but not doubly (1, 1)-transitive) if and only if M is a semi-irreducible
matrix.

Proof. The proof is substantiated by the arguments presented in the Remark 2.12.

We now provide one example of shift space XG , whose dynamics can be examined through
matrices M and N .

Example 2.14. Let XG be a SFT, where the generating matrices of graph G = (H,V ) are

H =


1 2 3 4

1 1 1 0 0
2 0 0 1 1
3 1 0 0 0
4 1 0 0 0

 V =


1 2 3 4

1 0 1 1 1
2 1 0 0 0
3 1 0 0 0
4 1 0 0 0


Then,
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HV =


1 2 3 4

1 1 1 1 1
2 2 0 0 0
3 0 1 1 1
4 0 1 1 1

 V H =


1 2 3 4

1 2 0 1 1
2 1 1 0 0
3 1 1 0 0
4 1 1 0 0


It can be seen that there exist vertices k, l, where the condition (HV )kl ̸= 0 ⇔ (V H)kl ̸= 0
fails, setting such entries as 0 yields updated matrices:

HV =


1 2 3 4

1 1 0 1 1
2 2 0 0 0
3 0 1 0 0
4 0 1 0 0

 V H =


1 2 3 4

1 2 0 1 1
2 1 0 0 0
3 0 1 0 0
4 0 1 0 0


Next, resulting triangular patterns (which can be extended to valid 1 × 1 square patterns) can be
categorized as

A1 = { 3
1 1,

1
1 2,

4
1 1,

1
2 3,

1
2 4,

2
3 1,

2
4 1}, A2 = {2 3

1 , 3 1
1 , 4 1

1 , 2 4
1 , 1 1

2 , 1 2
3 , 1 2

4 }

The corresponding matrices M and N with index set as A1, A2 respectively, are given as

M =



3
1 1

1
1 2

4
1 1

1
2 3

1
2 4

2
3 1

2
4 1

3
1 1 0 0 0 0 0 1 0

1
1 2 1 0 1 0 0 0 0

4
1 1 0 0 0 0 0 0 1

1
2 3 0 1 0 0 0 0 0

1
2 4 0 1 0 0 0 0 0

2
3 1 0 0 0 1 1 0 0

2
4 1 0 0 0 1 1 0 0



N =



2 3
1

3 1
1

4 1
1

2 4
1

1 1
2

1 2
3

1 2
4

2 3
1 0 0 0 0 0 1 0
3 1
1 1 0 0 1 0 0 0
4 1
1 1 0 0 1 0 0 0
2 4
1 0 0 0 0 0 0 1
1 1
2 0 1 1 0 0 0 0
1 2
3 0 0 0 0 1 0 0
1 2
4 0 0 0 0 1 0 0


It can be seen that E-pairs are not unique and both M , N are irreducible matrices. Every sequence
of M has its complementary sequence of N and vice versa. Additionally, each sequence of M (or
N ) corresponds to the sequence of N (or M ). Since M is an irreducible matrix (which is not an
irreducible permutation matrix), M generates a 1-dimensional sequence that is not periodic, and
characteristics of M and N ensure that such a sequence can be extended to a valid configuration
of XG. Hence, there exists z ∈ XG such that z is not (1, 1)-periodic, and O(z) (the orbit of z
under shift map) is infinite. Consequently, XG ̸= ∅ and it is not a finite shift space. It is worth
mentioning that every square pattern of size n × n (constructed with help of M and N ) can be
extended to form a valid configuration of XG and every pair of n × n square patterns can be
placed along (1, 1) direction in some valid configuration of XG. Hence, XG is doubly (1, 1)-
transitive. This proves our claim that even if the condition (HV )kl ̸= 0 ⇔ (V H)kl ̸= 0 fails to
hold, the dynamics of SFT XG such as non-emptiness problem, existence of periodic points and
(1, 1) mixing notions can be studied through matrices of triangular patterns.

Proposition 2.15. Let G = (H,V ) be a graph and XG be the corresponding SFT. If M is an
irreducible permutation matrix, then XG is doubly (1, 1)-transitive if and only if E-pairs are
unique.
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Proof. Let XG be a doubly (1, 1)-transitive SFT and M be an irreducible permutation matrix.
Then Corollary 2.4 forces N to be an irreducible permutation matrix. If possible, suppose that
E-pairs are not unique and let I1 = b1 a3

a1
and I2 = b2 a3

a1
be E-partners of I = a3

a1 a2
. As M and

N are irreducible permutation matrices, M and N are of the same order (Remark 2.5). Let M
and N be k × k matrices. Then Mk

RR > 0 ⇐⇒ Nk
SS > 0 holds for every E-pair (R,S). Next,

construct a pattern using a finite sequence corresponding to Mk
II > 0 such that

β a3

a1 a2
...

a9

a7 a8

a5 a6

α a3 a4

a1 a2

∈ B(XG)

It can be seen that if α = b1 is fixed, then β = b1 (as N is an irreducible permutation matrix and
generates single periodic orbits of period k). Consequently, 1×1 squares b1 a3

a1 a2
and b2 a3

a1 a2
cannot

be placed along (1, 1) direction, but this contradicts doubly (1, 1)-transitivity of shift space XG.
Hence, if M is an irreducible permutation matrix and XG has doubly (1, 1)-transitivity, then
E-pairs are unique.

Conversely, let E-pairs be unique and M be an irreducible permutation matrix; then XG has
doubly (1, 1)-transitivity (by Proposition 2.11). Consequently, if M is an irreducible permutation
matrix, then XG has doubly (1, 1)-transitivity if and only if E-pairs are unique.

Proposition 2.16. Let G = (H,V ) be a graph and XG be the corresponding SFT. If MIJ ̸=
0 ⇐⇒ NI1J1 ̸= 0 holds for all E-pairs (I, I1), (J, J1), then the shift space XG has doubly
(1, 1)-transitivity if and only if M is an irreducible matrix.

Proof. Let XG be a doubly (1, 1)-transitive SFT and I = c
a b , J = z

x y be any given indices of
matrix M , which appear at the origin in some valid configurations u, v ∈ XG. Let U and V be
1
n -neighborhoods of u and v respectively. Then, the doubly (1, 1)-transitivity of XG ensures the
existence of k ∈ N such that σ(k,k)(U) ∩ V ̸= ∅. Hence, indices I and J can be placed along the
(1, 1) direction in some valid configuration of XG, and Mp

IJ > 0 for some p ∈ N. Consequently,
M is an irreducible matrix, and the proof of the forward part is complete.

Conversely, let M be an irreducible matrix, and the condition MIJ ̸= 0 ⇐⇒ NI1J1 ̸= 0
holds for all E-pairs (I, I1), (J, J1). Let U, V be 1

n -neighborhoods of the configurations x, y ∈

XG respectively, and let xn =

x−n,n · · · xn,n

...
...

...
x−n,−n · · · xn,−n

, yn =

y−n,n · · · yn,n
...

. . .
...

y−n,−n · · · yn,−n

be the

central patterns of the open sets U and V respectively. If the index I appears in the top right
corner of xn and J appears in the bottom left corner of yn, then the irreducibility of M ensures
that I, J can be connected along the (1, 1) direction (through a pattern P of M ). Clearly, the



128 Prashant Kumar

resulting pattern (obtained by concatenation of patterns xn, P , and yn)

y−n,n . . . yn,n
...

...
...

y−n,−n . . . yn,−n

ak+2 ak+3

ak ak+1
...

a6

a4 a5

a2 a3

x−n,n . . . xn,n a1
...

...
...

x−n,−n . . . xn,−n

is a valid pattern for XG. As the imposed condition on M,N ensures that every sequence of M
(or N ) has its complementary sequence of N (or M ), let Q be the complementary pattern of P .
Then, it is evident that

y−n,n . . . yn,n
...

...
...

α y−n,−n . . . yn,−n

b1 ak+2 ak+3

ak ak+1
... ...

b3 a6

b2 a4 a5

b1 a2 a3

x−n,n . . . xn,n a1
...

...
...

x−n,−n . . . xn,−n

∈ B(XG)

Since MIJ ̸= 0 ⇐⇒ NI1J1 ̸= 0 holds all E-pairs (I, I1), (J, J1); it can be seen that the resulting

pattern
y−n,−n+1 y−n+1,−n+1

α y−n,−n y−n+1,−n

ak+2 ak+3

can be extended to an allowed square pattern of size

2× 2 (for every permissible choice of α such that α y−n,−n
ak+2 ak+3 ∈ B(XG)). Thus, iteratively, such

a pattern can be extended to an allowed square pattern and eventually to a valid configuration
z ∈ XG. Consequently, z ∈ σ(q,q)(U) ∩ V for some q ∈ N (as the central pattern of z is xn and
the central pattern of σ(q,q)(z) is yn). Hence, XG is doubly (1, 1)-transitive.

Remark 2.17. The Proposition 2.16 provides a necessary and sufficient condition for doubly
(1, 1)-transitivity of shift space XG (under imposed conditions on M and N ). The proof uses

the fact that if the patterns of the form
β a5

α a3 a4

a1 a2

get extended to an allowed pattern of size

2 × 2 (for every permissible choice of α, β such that α a3
a1 a2

, β a5
a3 a4

∈ B(XG)), then irreducibility
of M is equivalent to doubly (1, 1)-transitivity of shift space XG. In fact, a shift space may
have doubly (1, 1)-transitivity under a weaker condition. If every pattern generated by M2

IJ >
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0 has its complementary pattern corresponding to N2
I1J1

> 0 (and vice versa) for all E-pairs
(I, I1), (J, J1), then irreducibility of M is equivalent to doubly (1, 1)-transitivity of shift space

XG. The proof relies on the fact that if every pattern of the form

β a7

a5 a6

α a3 a4

a1 a2

gets extended

to an allowed square pattern of size 3 × 3, then a similar approach (used in Proposition 2.16)
yields the desired result. Further, this concept can be generalized for finite sequences of M and
N . Thus, the subsequent corollary is established.

Corollary 2.18. Let G = (H,V ) be a graph and XG be the corresponding SFT. If there exists k ∈
N such that every pattern generated by Mk

IJ > 0 has its complementary pattern corresponding
to Nk

I1J1
> 0 (and vice versa) for all E-pairs (I, I1), (J, J1); then XG is doubly (1, 1)-transitive

if and only if M is an irreducible matrix.

Proof. The proof is substantiated by the arguments presented in the Remark 2.17.

Remark 2.19. The above results establish (1, 1)-transitivity for shift spaces XG under some im-
posed conditions on matrices M and N . It can be seen that it is decidable (in a finite number of
iterations) whether k ∈ N can exist such that every pattern generated by Mk

IJ > 0 has its com-
plementary pattern corresponding to Nk

I1J1
> 0 (and vice versa) for all E-pairs (I, I1), (J, J1).

Further, it can be noted that under imposed conditions on M and N (as described in Proposition
2.16), XG exhibits (1, 1)-weak mixing ⇐⇒ M is a primitive matrix. The proof is estab-
lished by considering the fact that if M is a primitive matrix, then every index I , J of M can
be placed along the (1, 1) direction, and the imposed condition on M and N ensures the ex-
tension of such a pattern to a valid configuration of XG. It can be seen that the result holds
under weaker restrictions on M and N (as described in Corollary 2.18). It is evident that the
condition Mk

IJ ̸= 0 ⇐⇒ Nk
I1J1

̸= 0 for complementary sequences (for every choice of E-pairs
(I, I1), (J, J1)) is a stronger version of imposed conditions on M,N defined in Proposition 2.27
of [9]. Therefore, if earlier imposed conditions hold, then shift space is non-empty and contains
periodic configurations. Thus, the subsequent results are established.

Corollary 2.20. Let G = (H,V ) be a graph and XG be the corresponding SFT. If there exists
k ∈ N such that every pattern generated by Mk

IJ > 0 has its complementary pattern generated
by Nk

I1J1
> 0 (and vice versa) for all E-pairs (I, I1), (J, J1), then XG has (1, 1)-weak mixing if

and only if M is a primitive matrix.

Proof. The proof is substantiated by the arguments presented in the Remark 2.19.

Proposition 2.21. Let G = (H,V ) be a graph and XG be the corresponding SFT. If there exists
k ∈ N such that every pattern generated by Mk

IJ > 0 has its complementary pattern generated
by Nk

I1J1
> 0 (and vice versa) for all E-pairs (I, I1), (J, J1), then XG is non-empty and possesses

periodic points.

Proof. If the imposed conditions on M and N hold, then the non-emptiness of XG holds trivially.
Let XG ̸= ∅, then there exists an index I of M such that Mr

II > 0 for some r ∈ N. Let I1 be
the E-partner of I , then the imposed conditions on M and N ensure the existence of k ∈ N such
that Mk

II ̸= 0 ⇐⇒ Nk
I1I1

̸= 0 holds for complementary patterns. Next, construct a finite (but
sufficiently large) pattern P , which is a concatenation of complementary patterns corresponding
to Mk

II ̸= 0 and Nk
I1I1

̸= 0. Once again, as removal of the first and last symbol from a finite
sequence of N (or M ) yields a finite sequence of M (or N ), repeating this process will generate
a valid pattern Q, where an n × n square pattern is repeating along the (1, 1) direction. As
the square patterns of size n are finite, this process will generate a square pattern R of size n,
which repeats horizontally as well. Let S be the horizontal strip of size m× n, where pattern R
appears at both ends of this strip, then this construction forces S to appear diagonally as well.
Consequently, a configuration z ∈ XG can be constructed, which is horizontally periodic and
(q, q) periodic for some q ∈ N, and the proof is complete.
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Proposition 2.22. Let G = (H,V ) be a graph and XG be the corresponding SFT, and the
condition MIJ ̸= 0 ⇐⇒ NI1J1 ̸= 0 holds for all E-pairs (I, I1), (J, J1). Then, XG has
(1, 1)-weak mixing if and only if XG has (r, s)-weak mixing (rs > 0).

Proof. Let the condition MIJ ̸= 0 ⇐⇒ NI1J1 ̸= 0 hold for all E-pairs (I, I1), (J, J1), and let
XG be a (1, 1)-weak mixing SFT. Let x, y, z, w ∈ XG and U, V, Z,W be 1

n -neighborhoods of
configurations x, y, z, w respectively. Let xn, yn, zn, wn be the central patterns of size (2n+ 1)
of U, V, Z,W respectively. Since XG has (1, 1)-weak mixing, M is a primitive matrix (Corollary
2.20), then ∃ q ∈ N such that Mp > 0 for all p ≥ q and for all indices I, J of M . Let (R,S) be a
point in (r, s) direction such that (R−n) > q and (S−n) > q. Let P be the pattern obtained by
placing the lower-left corner of xn at the origin and placing the lower-left corner of yn at (R,S).
Similarly, let Q be the pattern obtained by placing the lower-left corner of zn at the origin and
placing the lower-left corner of wn. Since yn, wn appear in configurations y, w respectively; the
patterns yn, wn can be extended to y∗n, w

∗
n (downwards) such that the lower-left corner of y∗n, w∗

n

falls on the (1, 1) direction. Let I, J be indices of M appearing at the top right corner of xn, zn
and K,L be indices of M appearing at the lower-left corner of y∗n, w∗

n respectively. Then, the
primitiveness of M ensures that Mu

IK > 0 and Mu
JL > 0 for some u > q. Further, the imposed

condition on M and N ensures that the resulting patterns P and Q can be extended to valid
configurations, say a, b ∈ XG. Finally, note that a ∈ U, b ∈ Z (as the central blocks of a and b
are xn and zn respectively), σc(r,s)(a) ∈ V and σc(r,s)(b) ∈ W (as the central blocks of σc(r,s)(a)
and σc(r,s)(b) are yn and wn respectively), where c ∈ N. Consequently, σc(r,s)(U) ∩ V ̸= ∅ and
σc(r,s)(Z) ∩W ̸= ∅, and XG exhibits (r, s)-weak mixing behavior.

Conversely, let XG have (r, s)-weak mixing (for rs > 0), then for any n pairs of open sets
(Ui, Vi), there exists k ∈ N such that σk(r,s)(Ui) ∩ Vi ̸= ∅ for i = 1, 2, . . . , n. Equivalently, if
the central patterns of Ui and Vi are separated by kr length horizontally and ks length vertically,
then such patterns can be placed along (r, s) direction in valid configurations of shift space
XG. Let Pi be 1 × 1 patterns containing all indices of M and Qi be 1 × m patterns (for some
m ∈ N), then (r, s)-weak mixing ensures that such patterns can be placed along (r, s) direction.
If m was chosen in such a way that patterns Qi (placed at some point (R,S) in the direction
(r, s)) hits (1, 1) direction, then the resulting patterns can be extended to valid configurations of
XG. It can be seen that every index of M interacts with others (along (1, 1) direction) in such
configurations, and there exists p ∈ N such that Mp > 0. Consequently, M is primitive and
Corollary 2.20 ensures that XG has (1, 1)-weak mixing.

Remark 2.23. Proposition 2.22 establishes that (1, 1)-weak mixing of 2-dimensional SFT XG

is equivalent to (r, s) weak mixing (for rs > 0) under the imposed condition. It can be noted
that this result holds under a weaker condition on generating matrices M and N (as described in
Corollary 2.20). Further, for such shift spaces XG, XG has (1, 1)-weak mixing if and only if M
is a primitive matrix (Corollary 2.20). Thus, the subsequent corollary is established.

Corollary 2.24. Let G = (H,V ) be a graph and XG be the corresponding SFT. If there exists k ∈
N such that every pattern generated by Mk

IJ > 0 has its complementary pattern corresponding
to Nk

I1J1
> 0 (and vice versa) for all E-pairs (I, I1), (J, J1); then XG has (r, s) weak mixing (for

rs > 0) if and only if M is a primitive matrix.

Proof. The proof is substantiated by the arguments presented in the Remark 2.23.

Remark 2.25. The above results establish mixing notions (transitivity, doubly transitivity, and
weak mixing) in the (1, 1) direction through matrices M and N . It can be noted that the mix-
ing notions in the (1,−1) direction can be studied through matrices M∗ and N∗ (indexed with
triangular patterns of the form x

y z and a b
c , respectively). It can be seen that if the imposed con-

dition on M∗ and N∗ holds, then (1,−1)-weak mixing and (r, s)-weak mixing (for rs < 0)
are equivalent. Consequently, (r, s)-weak mixing (for rs ̸= 0) can be investigated through the
primitiveness of matrices M and M∗ (under imposed conditions). Additionally, the mixing no-
tions in the direction (r, s) (for rs ̸= 0) can be studied (using matrices indexed with appropriate
triangular patterns of length r and height s) in a manner akin to the mixing notions in the (1, 1)
direction.
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3 Conclusion

This paper explores the topological dynamics of the shift spaces XG, introducing a novel method
to investigate their structural properties. Our approach extends beyond the constraints of condi-
tion (HV )kl ̸= 0 ⇐⇒ (V H)kl ̸= 0 for all k, l ∈ V (G), allowing for a comprehensive analy-
sis. By employing matrices indexed with valid triangular patterns, we have partially addressed
problems such as the non-emptiness problem, the existence of periodic configurations, and vari-
ous mixing notions. In particular, we investigated (1, 1)-mixing notions for 2-dimensional shift
space XG through matrices M and N ; where M and N are indexed with allowed triangular
patterns of the form c

a b and x z
y respectively. We also established the relation between the al-

gebraic structure of matrices M and N . We have demonstrated that adherence to the condition
MIJ ̸= 0 ⇐⇒ NI1J1 ̸= 0 for all E-pairs (I, I1), (J, J1) ensures non-emptiness and the pres-
ence of periodic configurations within the SFT XG. Moreover, we proved that for such SFT,
(1, 1)-weak mixing and (r, s)-weak mixing (for rs > 0) are equivalent.

The findings of this work not only advance the theoretical understanding of multidimensional
shift spaces but also offer potential for diverse real-world applications. For example, this analysis
of periodicity and mixing properties is crucial in coding theory, where such structural dynam-
ics can help to design robust error-correcting codes for data transmission. Further, in the study
of complex networks such as transportation systems and neural networks, the understanding of
mixing properties and periodic behaviors can lead to improved reliability and functionality. Fur-
thermore, in image and signal processing, the principles derived from symbolic dynamics can
enhance pattern recognition and compression algorithms. Similarly, in computational biology,
they can be used to explore multi-dimensional interaction networks, such as protein-protein in-
teractions or gene regulatory systems, improving insights into biological processes. The study of
topological dynamics of shift spaces bridges the symbolic dynamics to the practical challenges
of science, fostering interdisciplinary exploration.
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