D-NEIGHBOURLY IRREGULAR GRAPHS (D-NI graphs)

X.Arul Selvaraj, M. Elakkiya and J.Arockia Aruldoss

MSC 2010 Classifications: 05C78.

Keywords and phrases: Regular Graph, Irregular Graph, Neighbourly Irregular Graph, D-Neighbourly Irregular Graph $(G_{DNI} = (V, X)).$

Abstract In this work, we are constructing a D-Neighbourly Irregular Graphs (G_{DNI}) . Where D-Degree sequence. This is a new dimension of constructing Neighbourly Irregular Graphs. Also we have derived some theorems and its proofs.

1 Introduction

By Neighbourly Irregular Graphs (G_{DNI}) it means a graph in which each pair of adjacent vertices have distinct degrees by S.K Ayyasamy [4]. Aruldoss [2] et all found a positive method to construct a Neighbourly Irregular graph using the molecular Structures and named Neighbourly Irregular Chemical graphs (G_{NIC}) . Also Aruldoss et all converted this (G_{NIC}) to Neighbourly Irregular Fuzzy Chemical graphs (G_{NIFC}) .

Here, we are deriving Neighbourly Irregular Graphs apart from the known chemical graphs, namely G_D or (G_{DNI}) (D–Neighbourly Irregular Graphs). Also some properties

2 PRELEMINARIES

Definition 2.1. [4, 8]

A graph G = (X,E) is called regular, if each vertex have positive same degree

i.e) $\delta(G) = \Delta(G) = r$, where $\delta(G)$ and $\Delta(G)$ are the minimum and maximum degrees of the vertices.

Definition 2.2. [4]

A graph is neighbourly irregular (G_{NI}) if any 2 adjacent vertices have different degrees. i.e) $d(v_i) \neq d(v_{i+1})$.

Figure 1. NI graph

Definition 2.3. [8]

Any graph G=(X,E) is called to be highly irregular (HI) if every vertex is neighbor vertex to the vertices of different degrees.

Figure 2. H.I graphs

3 D-NEIGHBOURING IRREGULAR GRAPHS (G_{DNI})

Definition 3.1. Any connected graph G=(V,X) is D-Neighbourly Irregular (G_{DNI}) , then the degree of any two vertices must be $d(v_i) = n - 1$, and $d(v_j) = n - 2$, satisfying the following conditions,

(i) |V| = n; $n \ge 3$ except, n=4.

(ii) For the partition (or) realization of $p = (d_1, d_2, ..., d_n)$, where d_1 and d_2 or $d(v_1)$ and $d(v_2)$ must be $d(v_1) = n - 1$ and $d(v_2) = n - 2$, It is denoted as $(G_{DNI}) = (V,X)$.

This degree sequence of vertices is done for the proceeding vertices only.

Note:

- 1. Any G_{DNI} graphs need not be highly irregular.
- 2. G_{DNI} must be connected.
- 3. The degree of any two vertices must be (n-1, n-2)
- 4. This step is may be continued up to for $\frac{n}{2}$ vertices only.

Second partition of G_{DNI}

Any connected G_{DNI} , graph can be derived to second partition, if the degree of any two vertices are $d(v_i) = n - 2$ and $d(v_j) = n - 3$.

Note: In the above partition $P = (d_1, d_2, ..., d_n)$,

 $P-m = (d_1-1, d_2-1, ..., d_{m1}-1, d_m-1, ..., d_n)$ where $2 < m \ge n$ is also G_{DNI} and it is denoted by G_{DNI}^m . The value of m is chosen in such a way the resultant graph should not have isolated vertex.

Example 3.2. Here we have given some G_{D-NI} graphs,

1. If |V|=3, then P=(2,1,1) and $G_{DNI}=(3,2)$.

Figure 3.

2. If |V|=5, then P=(4,3,2,2,1) and $G_{DNI} = (V,X)=(5,6)$.

And the second partition of G_{DNI} is P-2 =(3,2,1,1,1) also G_{DNI}^2 = (5,4).

Figure 5.

3. If |V|=6, then P=(5,4,3,2,2,2) and $G_{D-NI} = (V,X)=(6,9)$.

And the second partition of G_{DNI} is $G_{DNI}^2 = (6,7)$, P-2 = (4,3,2,2,2,1).

Note: G_{DNI} graphs are need not be highly irregular. Some more G_{DNI} graphs, 1. If n=9, then P = (8,7,6,5,4,3,3,2,2)

Figure 8.

2. If n=10, then P = (9,8,5,5,4,3,2,2,2).

Figure 9.

Definition 3.3. Tree width of G_{DNI} graphs:

The tree width of a G_{DNI} graph is a tree. i) $t_{\omega}(G_{DNI}) \iff (G_{DNI})$ is a forest. ii) $t_{\omega}(G_{DNI}) = 2 \iff (G_{DNI})$ is a sub graph of series parallel graphs. iii) $t_{\omega}(K_n) = n - 1$.

Definition 3.4. Subdivision graph of (G_{DNI})

A graph G_{DNI} is a subdivision graph $S(G_{DNI})$ by introducing a new vertex.

Proposition 3.5. Let G_{DNI} be a DNI graph. The subdivision graph $S(G_{DNI})$ need not be a Neighbourly Irregular graph (G_{NI}) .

Proof. G_{DNI} need not be a G_{NI} as some of the vertices of G_{DNI} graph has the possibility of having degree 2 [2].

Note: For n=5; $S(G_{DNI})$ is NI.

Proposition 3.6. Let G(V,X) be a DNI graph. The SD graph $S(G_{DNI})$ is NI iff G_{DNI} has no vertex of deg 2.

 $\begin{array}{l} \textit{Proof. If } G_{DNI} \text{ has no vertex of deg 2,} \\ \text{i.e) } d_{G_D}(u) \neq 2; \forall u \in V \\ \implies d_{G_D}(u) = d_{S(G_D)}(u) \\ \text{Since in } G_{DNI}, \text{ every edge uv is inserted a new vertex w between u and v} \\ \text{Such that } d_{S(G_D)}(w) = 2 \\ \text{Then } d_{\left(S(G_D)(u)\right)} \neq d_{\left(S(G_D)(w)\right)}. \\ \text{This hold for both adjacent pair of w}. \\ \text{Hence is } S(G_D) \text{ is } G_{NI}. \\ \text{On the other hand,} \\ \text{If } G_{DNI} \text{ has at least one vertex of degree 2, then evidently } S(G_{DNI}) \text{ is } G_{NI}. \end{array}$

Example 3.7.

1. Let us consider the graph for G_{DNI} for |V|=6, where P = (5,4,2,2,2,1) then $S_{GD}(v_1) = 2 + 4 + 2 + 2 + 1 = 11$ $S_{GD}(v_2) = 5 + 2 + 2 + 2 = 11$ $S_{GD}(v_3) = 4 + 5 = 9$ $S_{GD}(v_4) = 5$ $S_{GD}(v_5) = 5 + 4 = 9$ $S_{GD}(v_6) = 5 + 4 = 9$ 2. if n=8, then P=(7,6,4,4,3,2,2,2)

Figure 10. (G_{DNI}) graph

 $S_D(v_1) = 25; S_D(v_2) = 23$ $S_D(v_3) = 23; S_D(v_4) = 21$ $S_D(v_5) = 18; S_D(v_6) = 16$ $S_D(v_7) = 13; S_D(v_8) = 13$ Here, since the graph has a vertex of degree 2, then the support of G_{DNI} is not NI.

Definition 3.8. The line graph $L(G_{DNI})$ of G_{DNI} is that, where the edges are changes to vertices and vertices are the lines of G_{DNI} , and two vertices of $L(G_{DNI})$ are neighbours iff respective lines are adjacent in G_{DNI} . Here $d_{L(G_D)}(e) = d_{G_D}(u) + d_{G_D}(v) - 2$.

Example 3.9. For n=5;

Figure 11. G_{DNI} graph

Figure 12. $L(G_D)$

Here, $d(e_1) = d(v_1) + d(v_5) - 2$ 4 = 4 + 2 - 2 = 4Similarly we can verify for other edges.

Note: For the DNI graphs its line graph $L(G_D)$ cannot be G_{NI} .

Definition 3.10. Neighborhood of a vertex (N(u))

In G_D , N(u) represents the set of vertices, are neighbouring to u.

Ex:For n=5, $N(w_1) = 4$; $N(w_2) = 3$; $N(w_3) = 2$; $N(w_4) = 1$; $N(w_5) = 2$

Lemma 3.11. If u is a vertex with max deg of a G_{DNI} graph, then N(u) has at least two vertices with equal degree.

Proof. Let the D-Neighbourly irregular graph (G_D) has n vertices such that, $V(G) = v_1, v_2, ..., v_n$

i.e) |V| = n

In the construction process of D-Neighbourly irregular graph, we know that, among the n-vertices, n-1 vertices get degree 1 at first stage. And finally among n-2 vertices two vertices namely v_i and v_j get degrees n-1 and n-2.

i.e) (n-2)-2 = n-4.

Step 1:

Among n vertices, v_i gets, n-1 degree. Other n-1 vertices of degree 1.

Step 2:

Again among n vertices, v_2 gets degree n-2 and the remaining n-3 vertices degree 2 and one vertex remains degree 1.

proceeding this way, $\frac{n}{2}th$ vertex gets degree n-3

i.e.) $\deg(v_{n_r}) = n - 3$

i.e.) $\{v_{n_{/2}} + 1, v_{n_{/2}} + 2, ..., v_n\}$ will get the degrees \leq n-3, in which there will be at least two vertices with same degree.

Example 3.12.

1. n is odd,

Figure 13. *G*_{DNI} graph

2. n is even,

Figure 14. G_{DNI} graph

Proposition 3.13. Any *D*-Neighbourly irregular graph (G_{DNI}) , $L(G_{DNI})$ is not Neighborly Irregular graph.

Proof. We suppose that, u is the vertex with max deg in G_{DNI} . By previous lemma, this N(u) has atleast 2 vertices of equal deg. Precisely, for v and w of equal deg.

i.e.) $e_1 = uv$ and $e_2 = uw$ Now,

> $\deg LG_D(e_1) = \deg_{G_D}(u) + \deg_{G_D}(v) - 2$ $= \deg_{G_D}(u) + \deg_{G_D}(w) - 2$ $= \deg_L(G_D)(e_2)$ $C_{D,VL}) is not NL graph$

Hence $L(G_{DNI})$ is not NI graph.

Definition 3.14. In D-Neighbourly irregular graph (G_D) ,

$$|E(x)| = \begin{cases} (n-1) + (n-3) + \dots + 1, & \text{n-even.} \\ (n-1) + (n-3) + \dots + 0, & \text{n-odd.} \end{cases}$$
(3.1)

Note:

In D-Neighbourly Irregular graph (G_D) the maximum distance of a path is $\frac{n}{2}$.

Definition 3.15. [10]

In a graph G_{DNI} , the open neighbourhood is , for any vertex $w \in V$, its adjacent vertices are put in a set and it is said to be open neighbourhood of v, it is denoted by

 $N(w) = \{u \in V/uw \in X(G(V,X))\}$

Definition 3.16. [10]

The closed neighbourhood is, $N[w] = N(w) \cup \{w\}$

Note:

- 2 vertices v and w are neighbours if N[v] = N[w] and d(v) = d(w) is also called as pairable vertices.
- In DNI graph, it is that N[v] = N[w].

Definition 3.17. [2]k-Regular Adjacency :-

For $v \in V$ is said to be k-RA if all the vertices in N(v) has the degree k.

Note: In D-Neighbourly irregular graph only $K_{1,n}$ is k–RA.

4 Support of a D-Neighbourly Irregular Graph :

Definition 4.1. For $v \in V(G_D)$, Support of v is the sum of degrees of its adjacent points.

i.e.) $SP(G_D)(v) = \sum_{u \in N(v)} d(u)$

Example 4.2. If |v| = 6,

 $SP(u_1) = 1, SP(u_2) = 11, SP(u_3) = 5, SP(u_4) = 9, SP(u_5) = 9$

Definition 4.3. Degree of a D-NI graph (G_D) :

In a DNI graph, the degree of graph is $|v_1|$ such that the number of vertices which are of equal degree, with the max no.of vertices.

i.e.) $d(G_D) = \{|v_1|/d(v_i) = d(v_j); \text{ where } v_i, v_j \in V_1 \text{ Here } V_1 \subseteq V$

Definition 4.4. Maximum degree of a D-NI Graph

In a D-NI graph, the max degree of a graph is $|V_{max}|$, such that the no.of vertices which are of same degree with max degree.

 $d_{max}(\bar{G}_D) = \{|V_{max}|/d(v_i) = d(v_j) \forall v_i, v_j \in |V_{max}|$

Facts:

- 1. For a regular graph, $|V_1| = |V|$.
- 2. In a DNI graph, $|V_1| < |V|$.
- 3. For a bipartite graph DNI graph $K_{1,n}$
- $|V_1| = n \text{ and } |V_{max}| = 1$
- 4. For a complete bipartite graph $K_{m,n}$, $|V_1| = |V_{max}|$.

Example 4.5.

Figure 15. *K*_{1,2}

Definition 4.6. Total Support (B - support) of a D - Neighbourly Irregular Graph

In a G_{DNI} graph, for any vertex $u \in V$ the B-support of DNI graph $BS_{DNI}(u)$ is sum of deg(u) and its neighbors.

 $BS_{DNI}(u) = \sum_{u \in N(u)} d(v) + d(u)$

Definition 4.7. Support Neighbourly Irregular Graphs

In a graph G(V,X), for any two neighbouring vertices have distinct supports, then G(V,X) is SNI graph.

Example 4.8.

Figure 16. SNI graph

 $\begin{aligned} SP(v_1) &= 5 + 4 + 3 + 3 + 3 + 2 = 20\\ SP(v_2) &= 6 + 3 + 3 + 3 + 2 = 17\\ SP(v_3) &= 6 + 3 + 3 + 3 = 15\\ SP(v_4) &= 6 + 5 + 4 = 15\\ SP(v_5) &= 6 + 5 + 4 = 15\\ SP(v_6) &= 6 + 5 + 3 + 4 = 18\\ SP(v_7) &= 6 + 5 + 3 = 14 \end{aligned}$

Proposition 4.9. All DNI graph can be drawn to SNI graph. It is named as D - Support NI graph.

Proof. Let G be a given DNI graph and if |V| = n then the deg seq of the graph is arranged in such a way that $P = (d_1, d_2, d_3, ..., d_n)$

= (n - 1, n - 2, ... 2 or 1)then support v_i for i = 1 to n is calculated as $SP(v_i) = \sum d(N(v))$ Since D-NI is NI, the degrees of any two adjacent points are different. Let us suppose that DNI is not SNI, Such that $SP(v_i) = SP(v_j)$ for $i \neq j$ i.e.) sum of adjacent vertices of v_i equals the sum of adjacent vertices $SP(v_i) = SP(v_j) = k$ In each vertex v_i and v_j the integer k can be arranged in $d(v_i)$ distinct ways. In that $d(v_1)$ is fixed as n-1. The remaining $d(v_1) - 1$ ways are left. The suppose that v_i^{th} vertex is calculated for D - NI graphs as $SP(v_i) = (n - 1) + \sum_{i=2}^n d(v_i)$ $= d(v_1) + \sum_{i=2}^n d(v_i)$ Since the degrees of adjacent vertices of D – NI can be arranged a descending

Since the degrees of adjacent vertices of D - NI can be arranged a descending order, the support of DNI is also NI.

Г	٦

References

- [1] Akbar Ali, Gary Chartrand, Ping Zhang. "Irregularity in Graphs", Springer Science and Business Media LLC, 2021.
- J. Arockia aruldoss and M. Arunambigai, "construction of Neighbourly Irregular chemical Graph among p-block Elements and its Size", International Journal of Current Advanced Research, Vol.7(1), 2018, 58-61.
- [3] J. Arockia aruldoss and U. Gogulalakshmi "Independent Neighbourhood Number Of Neighbourly Irregular Graphs Among s-Block and p-Block Elements", International Journal of Engineering Research. Vol 14(3), 2019 (special issue), 26-32.
- [4] S.K. Ayyasamy and S. Gnana Bhragsam "Neighbourly Irregular Graph", Indian J. Pure appl. math. Vol 35(3), March 2004, 389-399.
- [5] S.Avadayappan, M.Bhuvaneswari and R.Sinthu, Support Neighbourly Irregular graphs", International Journal of Science Research and Management, Vol.4, no.3, (2016), pp.4009-4014.
- [6] Handbook of Combinatorial Optimization, 2013.
- [7] Lih-Hsing Hsu, Cheng-Kuan Lin. "Graph Theory and Interconnection Networks", CRC Press, 2019.
- [8] A.Nagoor Gani and K.Radha, "On regular fuzzy graphs", Journal of Physical Sciences, 12 (2008), 33-40.
- [9] Raqueline Santos. "Quantum state transfer on the complete bipartite graph", Journal of Physics A: Mathematical and Theoretical, 2022.
- [10] N.R.Santhi Maheswari and C.Sekar, "On (2, k)- regular fuzzy graph and totally (2,k)-regular fuzzy graph", International Journal of Mathematics and Soft Computing, 4(2),(2014) 59-69.
- [11] "On support neighbourly irregular fuzzy graphs", International Journal of Advanced Research in Engineering and Technology(IJARET), volume 11, issue 1, pages 147–154. January 2020.
- [12] H.B. Walikar, S.B. Halkarni, H.S. Ramane, M. Tavakoli, A.R. Ashrafi. "On neighbour irregular graphs", Kragujevac Journal of Mathematics, 2015.
- [13] L.A. Zadeh, "Fuzzy Sets, Information and Control", 8 (1965), 338-353.

Author information

X.Arul Selvaraj, PG and Research Department of Mathematics Periyar Arts College, Cuddalore-607001, Tamil Nadu,, India.

E-mail: xaselvarajmaths@gmail.com

M. Elakkiya, Research Scholar PG and Research Department of Mathematics Periyar Arts College, Cuddalore-607001, Tamil Nadu,, India. E-mail: elakkiyamurugan930gmail.com

J.Arockia Aruldoss, PG and Research Department of Mathematics St.Joseph's College of Arts and Science(Autonomous), Cuddalore-607001, Tamil Nadu,, India. E-mail: arockia@sjctncedu.in