
Palestine Journal of Mathematics

Vol 14(Special Issue II)(2025) , 165–173 © Palestine Polytechnic University-PPU 2025

EXPLICITING γTCC NUMBER FOR FRACTAL GRAPH AND
SOME CLASSES OF GRAPHS

S. Kaviya, G. Mahadevan and C. Sivagnanam

MSC 2010 Classifications:05C69.

Keywords and phrases:Triple connected certified omination number, certified domination, triple connected, distance
graph, power graph, Sierpenski gasket.

Abstract A dominating set which is triple connected and certified (TCCD-set) in a graph G
is a dominating set S where, for every vertex v in S, the number of neighbors of v in (V − S)
is either zero or at least k, where k ≥ 2. Furthermore, any three vertices in S are connected by
a path within the subgraph induced by S. The smallest possible size of such a set is known as
Triple conected certified domination number(TCCD-number), denoted as γTCC(G). This study
explores the TCCD number for various types of graphs, such as the Harary graph, Circulant
graph, Hypercube graph, and Sierpinski gasket.

1 Introduction

This article explores various types of graphs, encompassing finite, non-trivial, and simple ones.
Paulraj Joseph et al. originally introduced the concept of triple connected graphs. [1], following
that, the triple connected domination number was introduced [2], and more recently, M. Detlaff
et al. proposed a parameter known as certified domination number [3]. Building upon this prior
research, a new parameter is proposed[4]. γTCC valuse of the strong product of graphs was
generalized in[5], which also provided γTCC values for Cartesian, corona, and lexicographic
products of paths and cycles. Additionally, the γTCC number of power graphs of certain special
graphs has been investigated in [6] and [7]. In the case where G is triple connected, V (G)
constitutes a TCCD-set, thus 3 ≤ γTCC(G) ≤ |V (G)|, then 3 ≤ γTCC(G) ≤ |V (G)| − 2 when
G lacks triple connectivity.

Section 2 presents the precise values of the triple connected certified domination number for
distance graphs. The Harary graph[8]-[9], denoted as Hm,n, is defined as follows: When m is
even, represented as 2r, H2r,n is constructed with vertices labeled from 0 to n − 1. Let i and j
be the vertices that are connected if their indices satisfy the condition i − r ≤ j ≤ i + r (with
addition performed modulo n). If m is odd and n is even, denoted as m = 2r + 1, H2r+1,n is
formed by first drawing H2r,n and then adding edges that link vertex i to vertex i + (n/2) for
1 ≤ i ≤ n/2. For odd values of both m and n, where m = 2r + 1, H2r+1,n is created similarly
to H2r+1,n but with additional edges connecting vertex 0 to the vertices at indices (n− 1)/2 and
(n + 1)/2, and linking vertex i to vertex i + (n + 1)/2 for 1 ≤ i ≤ (n − 1)/2. The hypercube
graph Qn is defined as the Cartesian product of a path of 2 vertices, repeated n times[10]-[11].
The triangular graph Tn is the line graph of Kn [12]. Section 3 deals with determining the γTCC

values for the power graph of the family of cycle graphs, including peacock graphs, butterfly
graphs[13], lollipop graphs[14], and sunlet graphs[15]. Section 4 provides the exact TCCD-
number for the iterated graph, Sierpinski gasket [16], and d, r that is the diameter and radius
also calculated for < S > of the Sierpinski gasket where the maximum degree of the graph is
denoted by ∆.

2 TCCD- number on distance graphs

The results derived from analyzing various distance graphs, such as the Harary graph, hypercube
graph, and triangular graphs, are presented here. These graphs serve as important case stud-
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ies, offering valuable insights into their distinct structural characteristics and distance-related
properties.

Theorem 2.1. For a Harary graph represented as Hm,n, where m ≥ 6, m is even with m
2 = k,

γTCC(Hm,n) =

{
⌊n
k ⌋ − 1 if n = kt or kt+ 1,

⌊n
k ⌋ otherwise.

Proof. Let V (Hm,n) = {vh : 0 ≤ h ≤ n − 1}. Take S1 = {vi : i = kt, 0 ≤ i ≤ n − (m+ 2)},
S2 = {vn−k}. clearly S = S1 ∪ S2 forms a dominating set that is triple connected and certified
Hm,n and hence

γTCC(Hm,n) ≤| S |=

{
⌊n
k ⌋ − 1 if n = kt or kt+ 1,

⌊n
k ⌋ otherwise.

Let us consider the presence of a TCCD-set D of Hm,n with a cardinality of no more than d

=

{
⌊n
k ⌋ − 2 if n = kt or kt+ 1,

⌊n
k ⌋ − 1 otherwise.

Therefore, the induced subgraph < D > lacks triple con-

nectivity, implying that γTCC(Hm,n) ≥ d+ 1 =

{
⌊n
k ⌋ − 1 if n = kt or kt+ 1,

⌊n
k ⌋ otherwise.

Accordingly, the conclusion follows..

Theorem 2.2. For a Harary graph represented as Hm,n, where m ≥ 9, m is odd with m
2 = k,

⌊m
2 ⌋ = p,

γTCC(Hm,n) =


⌊n
k ⌋ − 1 if n = 2pt or 2pt+ 1 or 2pt+ 2,

⌊n
p ⌋ if n = 2pt+ 4 or . . . or 2pt+ p− 1,

⌊n
k ⌋ − 1 otherwise.

Proof. Let V (Hm,n) = {v0, v1, v2, . . . , vn−1}. Take S1 = {vi : i = pt, 0 ≤ i ≤ [⌊n+1
2 ⌋ − (p +

2)]}, S2 = {v⌊n+1
2 ⌋}, S3 = {vi : i = ⌊n+1

2 ⌋+ l, l = pt, l ≥ p, ⌊n+1
2 ⌋ ≤ i ≤ n− p− 2}.

Clearly S = S1 ∪ S2 ∪ S3 forms a dominating set that is triple connected and certified (Hm,n)
and hence

γTCC(Hm,n) ≤| S |=


⌊n
k ⌋ − 1 if n = 2pt or 2pt+ 1 or 2pt+ 2,

⌊n
p ⌋ if n = 2pt+ 4 or . . . or 2pt+ p− 1,

⌊n
k ⌋ − 1 otherwise.

Let us consider the presence of a TCCD-set D of Hm,n with a cardinality of no more than d =
⌊n
k ⌋ − 2 if n = 2pt or 2pt+ 1 or 2pt+ 2,

⌊n
p ⌋ − 1 if n = 2pt+ 4 or . . . or 2pt+ p− 1,

⌊n
k ⌋ − 2 otherwise.

Therefore, the induced subgraph < D >

lacks triple connectivity, implying that γTCC(Hm,n) ≥ d+ 1

=


⌊n
k ⌋ − 1 if n = 2pt or 2pt+ 1 or 2pt+ 2,

⌊n
p ⌋ if n = 2pt+ 4 or . . . or 2pt+ p− 1,

⌊n
k ⌋ − 1 otherwise.

Accordingly, the conclusion follows..

Theorem 2.3. For a Hypercube graph represented as Qn, where n ≥ 4, γTCC(Qn) = 2n−3 +
2n−2.

Proof. Let V (Qn) = {u1, u2, . . . , u2n}, | V (Qn) |= 2n and for n ≥ 3.
Let S1 = {vi,1 : i = 8t+2 or 8t+7}, S2 = {vi,2 : i = 4t or 4t+1, 4 ≤ i ≤ r−1}, S3 = {vi,2 :
i = 2, 3}. Clearly S = S1 ∪ S2 ∪ S3 forms a dominating set that is triple connected and certified
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Qn and hence γTCC(Qn) ≤| S |= 2n−3 + 2n−2. Let us consider the presence of a TCCD-set
D of Qn with a cardinality of no more than d = 2n−3 + 2n−2 − 1. Therefore, the induced
subgraph < D > lacks triple connectivity, implying that γTCC(Qn) ≥ d+ 1 = 2n−3 + 2n−2.
Accordingly, the conclusion follows..

Example 2.4.

b bb b bb b b bb bb bb bb b bb bb bb b b

b b b b b bb bb bb bb bb bb bb b bb bb b

bcbc

bcbc bc bcbcbc bcbc
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bcbc bcbc
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bc bcbc

bc

Figure 1. Hypercube graph Q5

Illustration: Here the set of lightened vertices denote the TCCD set of Q5.

Theorem 2.5. For a triangular graph represented as Tn, wheren ≥ 5, γTCC(Tn) =
∆(Tn)

2 .

Proof. Let V (Tn) = {v1, v2, . . . , vn(n−1)
2

} and | V (Tn) |= n2−n
2 . Since ∆(Kn) = n− 1 we have

∆(Tn) = 2n − 4. Clearly S = {vi : 1 ≤ i ≤ n − 2} forms a dominating set that is triple
connected and certified Tn and hence γTCC(Tn) ≤| S |= ∆(Tn)

2 . Let us consider the presence of
a TCCD-set D of Tn with a cardinality of no more than d = ∆(Tn)

2 − 1. Therefore, the induced
subgraph < D > lacks triple connectivity, implying that γTCC(Tn) ≥ d+ 1 = ∆(Tn)

2
Accordingly, the conclusion follows.
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Figure 2. Triangular graph T5

Example 2.6. Illustration: Here the set of lightened vertices denote the TCCD set of T5.

3 TCCD number of power graphs on cycle family graphs

In this section, we present the results related to the power graphs of various cycle-based graph
families. These include graphs that are characterized by distinct structural features and relation-
ships between their vertices and edges. Specifically, we explore the power graphs for graphs



168 S. Kaviya, G. Mahadevan and C. Sivagnanam

such as the peacock head graph, the butterfly graph, lollipop graph, and the sunlet graph. The
findings shed light on the underlying patterns and structural characteristics that define the behav-
ior of power graphs for these particular families.
Observation

(i) For a peacock head graph PHm,n, n ≥ 8, then γTCC(PHm,n)2 = ⌊n
2 ⌋ − 1.

(ii) If k ≥ 3, and 5 ≤ n ≤ 3k + 1, then γTCC(PHm,n)k = 3.

Theorem 3.1. For a peacock head graph represented as PHm,n, where n ≥ 3k + 2,k ≥ 3,

γTCC(PHm,n)
k =

{
⌊n
k ⌋ − 1 if n = kt or kt+ 1,

⌊n
k ⌋ otherwise.

Proof. Let V (PHm,n) = {vh : 1 ≤ h ≤ n, uh : 1 ≤ h ≤ m} and E(PHm,n) = {vivi+1 : 1 ≤
i ≤ n− 2, } ∪ {vnvn−1} ∪ {v1uj : 1 ≤ j ≤ m}. Take S1 = {vi : i ≡ 1 (mod k)}. Clearly

S =


S1 − {vn−k−1} if n = kt,

S1 − {vn, vn−k} if n = kt+ 1,
S1 − {vn−i} if n = kt+ (i+ 1) where i = 1, 2, . . . , k − 2.

forms a dominating set that is triple connected and certified (PHm,n)k and hence

γTCC(PHm,n)
k ≤| S |=

{
⌊n
k ⌋ − 1 if n = kt or kt+ 1,

⌊n
k ⌋ otherwise.

Let us consider the presence of a TCCD-set D of (PHm,n)k with a cardinality of no more than

d =

{
⌊n
k ⌋ − 2 if n = kt or kt+ 1,

⌊n
k ⌋ − 1 otherwise.

Therefore, the induced subgraph < D > lacks triple

connectivity, implying that γTCC(PHm,n)k ≥ d+ 1 =

{
⌊n
k ⌋ − 1 if n = kt or kt+ 1,

⌊n
k ⌋ otherwise.

Accordingly, the conclusion follows.

Theorem 3.2. For a Butterfly graph represented as BFm,n, wheren ≥ 2k + 2, k is even,
γTCC(BFm,n)k = 2(⌈n

k ⌉ − 2) + 1.

Proof. Let V (BFm,n) = {u2, u3, . . . , un, v2, v3, . . . , vn} ∪ {w0, w1, . . . , wm} and E(BFm,n) =
{ujuj+1 : 2 ≤ j ≤ n − 2} ∪ {vivi+1 : 2 ≤ i ≤ n − 2} ∪ {wiw0 : 1 ≤ i ≤ m} ∪ {ujw0 :
j = n − 1, 2} ∪ {viw0 : i = n − 1, 2}. Take S1 = {uj : j = kt + 1, 2 ≤ j ≤ n − (k + 1)},
S2 = {vi : i = kt+1, 2 ≤ i ≤ n−(k+1)}. Claerly S = S1∪S2∪{w0} forms a dominating set that
is triple connected and certified (BFm,n)k and hence γTCC(BFm,n)k ≤| S |= 2(⌈n

k ⌉ − 2) + 1.
Let us consider the presence of a TCCD-set D of (BFm,n)k with a cardinality of no more than
d= 2(⌈n

k ⌉− 2). Therefore, the induced subgraph < D > lacks triple connectivity, implying that
γTCC(BFm,n)k ≥ d+ 1 = 2(⌈n

k ⌉ − 2) + 1.
Accordingly, the conclusion follows.

Theorem 3.3. For a Butterfly graph represented as BFm,n, wheren ≥ 2k + 2, k is odd,

γTCC(BFm,n)
k =

{
2(⌈n

k ⌉ − 2) + 1 if n = 2kt or2kt+ 2 or . . . , or 2kt+ (2k − 2),
2(⌊n

k ⌋ − 2) + 1 if n = 2kt+ (k + 1).

Proof. Let V (BFm,n) = {u2, u3, . . . , un, v2, v3, . . . , vn} ∪ {w0, w1, . . . , wm} and E(BFm,n) =
{uzuz+1 : 2 ≤ z ≤ n − 2} ∪ {vhvh+1 : 2 ≤ h ≤ n − 2} ∪ {whw0 : 1 ≤ h ≤ m} ∪ {uzw0 : z =
n − 1, 2} ∪ {vhw0 : h = n − 1, 2}. Take S1 = {uz : z ≡ 1(mod k), 2 ≤ z ≤ n − (k + 1)},
S2 = {vh : h ≡ 1 (mod k), 2 ≤ h ≤ n − (k + 1)}. Clearly S = S1 ∪ S2 ∪ {w0} forms a
dominating set that is triple connected and certified (BFm,n)k and hence

γTCC(BFm,n)
k ≤| S |=

{
2(⌈n

k ⌉ − 2) + 1 if n = 2kt or2kt+ 2 or . . . , or 2kt+ (2k − 2),
2(⌊n

k ⌋ − 2) + 1 if n = 2kt+ (k + 1).
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Let us consider the presence of a TCCD-set D of (BFm,n)k with a cardinality of no more

than d =

{
2(⌈n

k ⌉ − 2) if n = 2kt or2kt+ 2 or . . . , or 2kt+ (2k − 2),
2(⌊n

k ⌋ − 2) if n = 2kt+ (k + 1),
Therefore, the in-

duced subgraph < D > lacks triple connectivity, implying that γTCC(BFm,n)k ≥ d + 1

=

{
2(⌈n

k ⌉ − 2) + 1 if n = 2kt or2kt+ 2 or . . . , or 2kt+ (2k − 2),
2(⌊n

k ⌋ − 2) + 1 if n = 2kt+ (k + 1).

Accordingly, the conclusion follows.

Theorem 3.4. For a lollipop graph represented as Ln,m, where m ≥ 3k + 1,

γTCC(Ln,m)k =

{
m
k − 1 if m = kt,

⌊m
k ⌋ otherwise.

Proof. Let V (Ln,m) = {uh : 2 ≤ h ≤ n, vz : 2 ≤ z ≤ m} and E(Ln,m) = {uhuz : 2 ≤ h ≤
n− 1, h+ 1 ≤ z ≤ n} ∪ {vhvh+1 : 2 ≤ h ≤ m− 1} ∪ {uzw0 : 2 ≤ z ≤ n} ∪ {v2w0}.
Take S1 = {vh : h = kt}. Clearly

S =

{
S1 − {vm} if m = kt,

S1 if m = kt+ 1 or kt+ 2 or . . . or kt+ (k − 1).

forms a dominating set that is triple connected and certified (Ln,m)k and hence

γTCC(Ln,m)k ≤| S |=

{
m
k − 1 if m = kt,

⌊m
k ⌋ otherwise.

Let us consider the presence of a TCCD-set D of (Ln,m)k with a cardinality of no more than d

=

{
m
k − 2 if m = kt,

⌊m
k ⌋ − 1 otherwise.

Therefore, the induced subgraph < D > lacks triple connectivity,

implying that γTCC(Ln,m)k ≥ d+ 1 =

{
m
k − 1 if m = kt,

⌊m
k ⌋ otherwise.

Accordingly, the conclusion follows.

Example 3.5.
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Figure 3. Cube of lollipop graph
.

Illustration: Here the set of lightened vertices denote the TCCD set of L3
10,10.

Theorem 3.6. For a Sunlet graph represented as Sn, where n ≥ 3k,

γTCC(Sn) =

{
⌈n
k ⌉ if n = kt,

⌊n
k ⌋ otherwise.
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Proof. Let V (Sn) = {v1v2, . . . , vn, u1, u2, . . . , un} and E(Sn) = {vhvh+1 : 1 ≤ h ≤ n− 1}∪
{vnvn−1} ∪ {vhuh : 1 ≤ h ≤ n}. Take S1 = {vh : h = kt+ 1}. Claerly

S =

{
S1 if n = kt,

S1 − {vn−(h−1)} if n = kt+ h, 1 ≤ h ≤ k − 1.

forms a dominating set that is triple connected and certified (Sn)k and hence

γTCC(Sn)
k ≤| S |=

{
⌈n
k ⌉ if n = kt,

⌊n
k ⌋ otherwise.

Let us consider the presence of a TCCD-set D of (Sn)k with a cardinality of no more than d

=

{
⌈n
k ⌉ − 1 if n = kt,

⌊n
k ⌋ − 1 otherwise.

Therefore, the induced subgraph < D > lacks triple connectivity,

implying that γTCC(Sn)k ≥ d+ 1 =

{
⌈n
k ⌉ if n = kt,

⌊n
k ⌋ otherwise.

Accordingly, the conclusion follows.

Example 3.7.

bb

bb

bb

b

bb

bb

bb

b
bb

bbb

b

b

b

b

bbb

bb

b

b

b

b

bb

b

bb

b

bc

bcbcbc

bc

bc

bcbc

bcbcbc

Figure 4. Square of sunlet graph
.

Illustration: Here the set of lightened vertices denote the TCCD set of S2
12.

4 TCCD number of Sierpinski Gasket

Construction of Sierpinski graph SGn:
Step 1: Starting with acycle C3 = (v1, v2, v3, v1), place v1 at top and v2 in left and v3 in right, let
us denote this graph as SG1.
Step 2: Make three copies of SG1 namely SG1

1, SG2
1 and SG3

1 and assume V (SGi
1) = {vi1, vi2, vi3}

with vi1 placed at top, vi2 placed at left, vi3 placed at right.
Step 3: Merge v2

1 and v1
2 (called a), v2

3 and v3
2 (called b), v3

1 and v1
3 (called c), then we get the

graph SG2.
Step 4: Repeat the steps 1,2,3 to get SGn+1, where n ≥ 2.
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Example 4.1.
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Figure 5.

Illustration: Formation of SG2 from SG1.
Remark 4.1. | V (SGn+1) |=

∑n−1
p=1 3p + 3, n ≥ 2.

Remark 4.2. Let L(SGn) be the number of levels in Sn, then L(SGn) = 2n−2 + 1.
Remark 4.3. Let S be the γTCC-set of SGn. Then

(i) The diameter of the < S > is d(< S >) = γTCC(SGn)− 1.

(ii) The radius of the < S > is r(< S >) = ⌈d(<S>)
2 ⌉.

(iii) d(< S >) = | Sn | −∆(< S >) + 1.

(iv) The periphery of < S > is isomorphic to K̄2.

Example 4.2.
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b

b

bb

L1

L2

L(SG2) = 3

11

21 22

31 32 33

L3

Figure 6. SG2

Illustration: Here the vetices 21, 22, 32 are the TCCD - set and γTCC(SG2) = L(SG2) = 3.

Lemma 4.3. γTCC(SG3) = 7.

Proof. Let V (SG3) = {v11, v21, v22, v31, v32, v33, v41, v42, v43, v44, v51, v52, v53, v54, v55} and
E(SG3) = {vijv(i+1)j , vijv(i+1)(j+1), v(i+1)jv(i+1)(j+1) : 1 ≤ i ≤ 4, 1 ≤ j ≤ i}−{v32v42, v42v43, v32v43}.
Then S = {v41, v31, v21, v22, v33, v43, v54} forms a dominating set which is triple connected and
certified SG3 and hence γTCC(SG3) ≤| S |= 7. Let X be a dominating set which is triple con-
nected and certified of SG3. Let’s consider the presence of a dominating set D with a cardinality
of no more than 6. Therefore, the induced subgraph < D > lacks triple connectivity, implying
that | X | ≥ 6 + 1 = 7.
Accordingly, the conclusion follows.

Example 4.4.
Illustration: Here A1, A2, A3 are the three copies of SG2
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Figure 7. SG3

Lemma 4.5. γTCC(SG4) = 22.

Proof. Let three copies of SG3 be SGθ
3 , 1 ≤ θ ≤ 3, if vij ∈ V (SG3) then, vθij ∈ SGθ

3
is a vertex corresponding to vij ,1 ≤ θ ≤ 3. The graph SG4 is obtained from SG1

3 ∪ SG2
3 ∪

SG3
3 by merging the vertices v2

11 and v1
51,v3

11 and v1
55, v2

55 and v3
51 and we label these vertices as

a, b, c respectively. A1 = {v21, v22, v31, v33, v41, v43, v54}, A2 = {v22, v31, v32, v41, v52, v53, v54}
and A3 = {v22, v33, v42, v44, v53, v54}, X = {a, c}. It is clear that D = A1 ∪ A2 ∪ A3 ∪ X
forms a dominating set that is triple connected and certified S4 and hence γTCC(SG4) ≤ | D |=
7+7+6+2 = 22. Let X be a dominating set which is triple connected and certified of SG4. Let’s
consider the presence of a dominating set D with a cardinality of no more than 21 Therefore, the
induced subgraph < D > lacks triple connectivity, implying that | X |≥ 21 + 1 = 22.
Accordingly, the conclusion follows.

Theorem 4.6. For n ≥ 4, then γTCC (SGn) = 3n−1 − (
∑1

p=n−3 3p + 2).

Proof. Let three copies of SGn−1 be SG1
n−1, SG

2
n−1 and SG3

n−1. The graph SGn is obtained
from SG1

n−1 ∪ SG2
n−1 ∪ SG3

n−1 by merging the end vertices v(2)11 and v
(1)
L(SGn)1

, v(3)11 and

v
(1)
L(SGn)L(SGn)

, v(2)
L(SGn)L(SGn)

and v
(3)
L(SGn)1

and we label these vertices as a, b, c as given in

lemma 4.2. . Let Ai be the γTCC-set of SGn−1 and it is clear that | Ai |= 3n−1−(
∑1

p=n−3 3p+2)
where 1 ≤ i ≤ 3. Fix B1 where B1 = A1 ∪ {b} and fix B2, where | B2 |=| A2 |= 3n−2 −
(
∑1

p=n−4 3p+2) such that < B1∪B2 > is a path and B1∪B2forms a dominating set that is triple
connected and certified SG1

n−1 ∪ SG2
n−1. Then fix B3, where | B3 |= 3n−2 − (

∑1
p=n−4 3p + 3

with < B1 ∪ B2 ∪ B3 ∪ {c} > is a path. It is clear that D = B1 ∪ B2 ∪ B3 ∪ {c}forms
a dominating set that is triple connected and certified SGn and hence γTCC(SGn) ≤| D |=
3n−1 − (

∑1
p=n−3 3p + 2). Let X be a dominating set which is triple connected and certified

of SGn. Let’s consider the presence of a dominating set D with a cardinality of no more than
3n−1 − (

∑1
p=n−3 3p + 2)− 1 Therefore, the induced subgraph < D > lacks triple connectivity,

implying that | X |≥ 3n−1 − (
∑1

p=n−3 3p + 2)− 1 + 1 = 3n−1 − (
∑1

p=n−3 3p + 2).
Accordingly, the conclusion follows.

5 Conclusion remarks

Throughout this article we have determined the TCCD-number for various graph models such as
distance graphs, power graphs, iterated graphs. In upcoming discussions, this parameter will be
explored in relation to certain graph operations and compare the results to other graph theoretical
parameters.
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