A STUDY ON LOWER DEG-CENTRIC GRAPHS

Timmy Tomy Thalavayalil and Sudev Naduvath

MSC 2010 Classifications: Primary 33C20; Secondary 33C65.

Keywords and phrases: Distance, eccentricity, deg-centric graphs, lower deg-centric graphs, D-completable.

The authors would like to thank the reviewers and editor for their constructive comments and valuable suggestions that improved the quality of our paper.

Corresponding Author: Timmy Tomy Thalavayalil

Abstract The lower deg-centric graph of a simple, connected graph G, denoted by G_{ld} , is a graph constructed from G such that $V(G_{ld}) = V(G)$ and $E(G_{ld}) = \{v_i v_j : d_G(v_i, v_j) < deg_G(v_i)\}$. For a connected graph G of order n, the lower deg-centric graph $G_{ld} \cong K_n$ if and only if $deg_G(v_i) > e_G(v_i)$, for all $v_i \in V(G)$. In this paper, the concepts of lower deg-centric graphs and iterated lower deg-centrication of a graph are introduced and discussed.

1 Introduction

For a basic terminology of graph theory, we refer to [8]. For further topics on graph classes, (see[9, 11]. A graph is assumed to be a simple, connected, and undirected graph throughout this paper. The number of edges of a graph G is denoted by $\varepsilon(G)$. Recall that the distance between two distinct vertices v_i and v_j of G, denoted by $d_G(v_i, v_j)$, is the length of the shortest path joining them. The eccentricity of a vertex $v_i \in V(G)$, denoted by $e(v_i)$, is the farthest distance from v_i to some vertex of G. Vertices at a distance $e(v_i)$ from v_i are called the eccentric vertices of v_i . An eccentric graph of a graph G, denoted by G_e , is obtained from the same set of vertices as G with two vertices v_i and v_j being adjacent in G_e if and only if v_j is an eccentric vertex of v_i is an eccentric vertex of v_j (see[1, 2]). The iterated eccentric graph of G, denoted by G_{e^k} , is defined in (see[3]) as the derived graph obtained by taking the eccentric graph successively k-times; that is, $G_{e^k} = ((Ge)e \dots)e$, (k-times).

Similarly, a particular type of newly derived graphs based on the vertex degrees and distances in graphs called deg-centric graphs, have been introduced in (see[4]) as follows, The degree centric graph or deg-centric graph of G is the graph G_d with $V(G_d) = V(G)$ and $E(G_d) =$ $\{v_i v_j : d_G(v_i, v_j) \le deg_G(v_i)\}$ (see[4]). Let G be a graph and G_d be the deg-centric graph of G. Then, the successive iteration deg-centric graph of G, denoted by G_{d^k} , is the derived graph obtained by taking the deg-centric graph successively k times; that is, $G_{d^k} = ((G_d)_{d...})_d$, (k-times). This process is known as deg-centrication process (see[4]). The exact degree centric graph or exact deg-centric graph of a graph G, denoted by G_{ed} , is the graph with $V(G_{ed}) =$ V(G) and $E(G_{ed}) = \{v_i v_j : d_G(v_i, v_j) = deg_G(v_i)\}$. This graph transformation is called exact deg-centrication (see[5]). Let G be a graph and G_{ed} be the exact deg-centric graph of G. Then the iterated exact deg-centric graph of G, denoted by G_{ed^k} , is defined as the graph obtained by applying exact deg-centric graph of K-times; That is, $G_{ed^k} = ((G_{ed})_{ed...})_{ed}$, (k-times) (see[5]).

The upper degree centric graph or upper deg-centric graph of a graph G (assumed to be simple and connected) and denoted by G_{ud} , is the graph with $V(G_{ud}) = V(G)$ and $E(G_{ud}) =$ $\{v_i v_j : d_G(v_i, v_j) \ge deg_G(v_i)\}$. This graph transformation is called upper deg-centrication (see[7]). Let G be a graph and G_{ud} be the upper deg-centric graph of G. Then the iterated upper deg-centric graph of G, denoted by G_{ud^k} , is defined as the graph obtained by applying upper deg-centrication successively k-times; That is, $G_{ud^k} = ((G_{ud})_{ud}...)_{ud}$, (k-times) (see[7]). The coarse degree centric graph or coarse deg-centric graph of a graph G, denoted by G_{cd} , is the graph with $V(G_{cd}) = V(G)$ and $E(G_{cd}) = \{v_i v_j : d_G(v_i, v_j) > deg_G(v_i)\}$. Then the iterated coarse deg-centric graph of G, denoted by G_{cd^k} , is defined as the graph obtained by applying coarse deg-centrication successively k-times; That is, $G_{cd^k} = ((G_{cd})_{cd}...)_{cd}$, (k-times) (see[6].

Motivated by the above-mentioned studies, in this paper, we introduce a new transformed graph called the lower deg-centric graph and investigate the properties and structural characteristics of this type of transformed graph concerned.

2 Lower Deg-centric Graphs

Definition 2.1. The *lower degree centric graph* or *lower deg-centric graph* of a graph G, denoted by G_{ld} , is the graph with $V(G_{ld}) = V(G)$ and $E(G_{ld}) = \{v_i v_j : d_G(v_i, v_j) < deg_G(v_i)\}$. This graph transformation is called *lower deg-centrication* of the graph. Note that this process is independent of the choice of v_i or v_j in the above sets.

An example of the lower deg-centric graph is given in Figure 1.

Figure 1: A graph G and its lower deg-centric graph.

Observation 2.1. The lower deg-centric graph of a complete graph K_n of order $n \ge 3$ is always isomorphic to the complete graph K_n .

Definition 2.2. Let G be a graph and G_{ld} be the lower deg-centric graph of G. Then, the iterated *lower deg-centric graph* of G, denoted by G_{ld^k} , is defined as the graph obtained by applying *lower deg-centrication* successively k-times; That is,

$$G_{ld^k} = ((G_{ld})_{ld}...)_{ld}, (k\text{-times})_{ld}$$

An example of the lower deg-centrication process of a graph on seven vertices is given in Figure 2.

We say that a graph G is D-completable if, after a finite number of iterated lower degcentrication, the resultant graph is complete. Note that a complete graph is inherently Dcompletable. An example of a D-completable graph is given in Figure 2.

Let $\varphi(G)$ denote the number of iterations required to transform a D-completable graph G to completion. By convention $\varphi(K_n) = 0$, $n \ge 1$ and $\varphi(K_{1,n}) = \infty$, $n \ge 2$.

Proposition 2.3. For a connected graph G of order n, the lower deg-centric graph $G_{ld} \cong K_n$ if and only if $deg_G(v_i) > e_G(v_i)$, for all $v_i \in V(G)$.

Proof. If $G_{ld} \cong K_n$ it implies that vertex $v_i \in V(G)$ contributed n-1 edge in G_{ld} thus, $deg_G(v_i) > e_G(v_i)$, for all $v_i \in V(G)$.

On the other hand, if $deg_G(v_i) > e_G(v_i)$, for all $v_i \in V(G)$, then the result that $G_{ld} \cong K_n$ is a direct consequence of the Definition 2.1.

Proposition 2.4. Consider a D-completable graph G. If $\delta(G) > diam(G)$, then G_{ld} is complete (or $\varphi(G) = 1$).

Figure 2: Example of the lower deg-centrication process of G.

Proof. Consider any vertex v_i for which $deg_G(v_i) = \delta(G)$. Let

$$X(v_i) = \{v_j : d_G(v_i, v_j) < \delta(G), v_i \neq v_j\}.$$

Clearly, if $\delta(G) > diam(G)$ then, following lower deg-centrication in respect of v_i the resultant closed neighbourhood is $N_{G_{ld}}[v_i] = V(G)$. Finally, because $deg_G(v_j) \ge deg_G(v_i) = \delta(G) > diam(G)$ the resultant closed neighbourhood of each $v_j \in V(G) \setminus \{v_i\}$ is given by, $N_{G_d}[v_j] = V(G)$. Hence, G_{ld} is complete.

Proposition 2.5. For a D-completable graph G. Let m = diam(G) then $\varphi(G) \leq \varphi(P_m)$.

Proof. The proof follows similar reasoning as in Proposition 2.4.

Theorem 2.6. For two *D*-completable graphs *G* and *H* each of order *n* and $\varepsilon(G) < \varepsilon(H)$ it follows that, $\varphi(G) \ge \varphi(H)$.

Proof. Let graphs G and H each of order n and let the number of edges in graph G be less than the number of edges in graph H. which means the total degree of graph G is less than the graph H. Since,

$$\sum_{v_i \in V(G)} \deg_G(v_i) < \sum_{u_j \in V(H)} \deg_H(u_j)$$

it implies that the number of new edges yielded through lower deg-centrication denoted by, $\gamma(G_{ld})$ and $\gamma(H_{ld})$ have the relation $\gamma(G_{ld}) < \gamma(H_{ld})$. Also,

$$\sum_{v_i \in V(G_{ld})} deg_{G_{ld}}(v_i) < \sum_{u_j \in V(H_{ld})} deg_{H_{ld}}(u_j).$$

By iterative argument as above it implies that a greater or equal number of iterations are required for *G* to complete compared to the number of iterations required for *H* to complete. Hence, $\varphi(G) \ge \varphi(H)$.

Theorem 2.7. Any *D*-completable graph $G \neq K_1$ and which has at least two pendant vertices has $\varphi(G) \geq 2$.

Proof. Assume G has at least two pendant vertices from the vertex set $v_1, v_2, v_3, \ldots, v_k$. Let X be the set of pendant vertices. At best on the 1st iteration the induced subgraph $\langle V(G) \setminus X \rangle$ can be complete. However, then G_{ld} is a split graph. Which means, split graph is one in which the vertices of the graph can be partitioned into a clique and an independent vertex set. Therefore, $\varphi(G) \ge 2$.

3 Lower Deg-centrication of Certain Graph Classes

This section will address bistar graphs, path graphs (or paths) and certain interesting graphs. For convenience, a path P_n is depicted on a horizontal line, and the vertices are labelled from left to right as $v_1, v_2, v_3, \ldots, v_n$.

Proposition 3.1. For $n \geq 3$, the lower deg-centric graph of a path graph P_n is isomorphic to P_n .

Proof. Consider a path graph P_n , on a horizontal line with the vertices labelled from left to right as $v_1, v_2, v_3, \ldots, v_n$. Then, the internal vertices $v_2, v_3, v_4, \ldots, v_{n-1}$ have degree two. In view of Definition 2.1, these vertices form an edge to all adjacent vertices in $(P_n)_{ld}$. Both the pendant vertices v_1 and v_n have a degree one. By Definition 2.1, both vertices do not form any edges in $(P_n)_{ld}$, which implies that $(P_n)_{ld} \cong P_n$.

Observation 3.1. For a path P_n , $n \ge 3$, $\varphi(P_n) = \infty$.

Proposition 3.2. The lower deg-centric graph of a cycle C_n is isomorphic to C_n .

Proof. Consider a cycle graph C_n , the vertices $v_1, v_2, v_3, \ldots v_n$ have degree two. In view of Definition 2.1, these vertices form an edge to all adjacent vertices in $(C_n)_{ld}$. Which implies that $(C_n)_{ld} \cong C_n$.

Observation 3.2. For a cycle C_n , $n \ge 3$, $\varphi(C_n) = \infty$.

A star graph, denoted by $k_{1,n}$, $n \ge 0$, is obtained by attaching n pendant vertices to a central vertex v_0 . Note that, In view of Definition 2.1, the lower deg-centric graph of a star graph $k_{1,n}$, $n \ge 0$, is always isomorphic to the star graph. That is $\varphi(K_{1,n}) = \infty$, $n \ge 2$.

A non-trivial bistar graph, denoted by $S_{a,b}$, is a graph obtained by joining the centers of two non-trivial star graphs $K_{1,a}$, $a \ge 1$ and $K_{1,b}$, $b \ge 1$ with the edge v_0u_0 .

Proposition 3.3. For a bistar graph $S_{a,b}$, a, b > 1, $\varepsilon((S_{a,b})_{ld}) = 2a + 2b + 1$.

Proof. Consider a bistar graph $S_{a,b}$, a, b > 1. Let the pendant vertices of $K_{1,a}$ be the set $X = \{v_1, v_2, \ldots, v_a\}$ and let the pendant vertices of $K_{1,b}$ be the set $Y = \{u_1, u_2, \ldots, u_b\}$. Finally, let $W = \{v_0, u_0\}$ be center vertices. By Definition 2.1, it follows that both v_0, u_0 are adjacent with all other a + b + 1 vertices. Elements of sets X and Y are pendant vertices, then by Definition 2.1, no edges incident from these pendant vertices, which implies a + b pendant vertices with degree two in $(S_{a,b})_{ld}$. Therefore,

$$\varepsilon((S_{a,b})_{ld}) = \frac{2(a+b+1)+2(a+b)}{2}$$

= $2a+2b+1.$

Proposition 3.4. *For* $S_{a,b}$, a = 1 *and* b > 1, $\varepsilon((S_{a,b})_{ld}) = b + 3$.

Proof. Consider a bistar graph $S_{a,b}$, a = 1 and b > 1. Then $S_{1,b}$, is obtained by joining the centers of two non-trivial star graphs $k_{1,1}$ and $k_{1,b}$, b > 1 with the edge v_0u_0 . Let u_0, v_0 be the center vertices of $k_{1,1}$ and $k_{1,b}$ respectively. In view of Definition 2.1, it follows that $deg(v_0) = b+2$ and $deg(u_0) = 2$ in $(S_{a,b})_{ld}$. All b pendant vertices have degree one, and the pendant vertex of star graphs $k_{1,1}$ have degree two in $(S_{a,b})_{ld}$. Therefore, after summation and simplification, it follows that,

$$\varepsilon((S_{a,b})_{ld}) = b + 3.$$

Proposition 3.5. For a bistar graph $S_{a,b}$, $a, b \ge 1$, $\varphi(S_{a,b}) = \infty$.

Proof. Consider a bistar graph $S_{a,b}$, $a, b \ge 1$. if a, b = 1 then $(S_{1,1})_{ld} \cong P_4$. By Observation 3.1, $\varphi(S_{1,1}) = \infty$. If a, b > 1, then by Proposition 3.3, all the a + b pendant vertices have degree two in $(S_{a,b})_{ld}$. In view of Definition2.2, $(S_{a,b})_{ld} \cong (S_{a,b})_{ld^k}$. Therefore, $\varphi(S_{a,b}) = \infty$.

A wheel graph, denoted by $W_{1,n}$, $n \ge 3$, is obtained by taking a cycle C_n , $n \ge 3$ (the rim with rim-vertices) and adding the central vertex v_0 with spokes namely, edges v_0v_i , $1 \le i \le n$.

Proposition 3.6. The lower deg-centric graph of a wheel graph $W_{1,n}$, $n \ge 3$ is always isomorphic to the complete graph K_{n+1} . That is, $\varphi(W_{1,n}) = 1$.

Proof. For a wheel graph $W_{1,n}$, $n \ge 3$, note that, $deg(v_i) > e(v_i)$ in wheel graph, for all $v_i \in V(W_{1,n})$. In view of Definition 2.1, $(W_{1,n})_{ld}$ is isomorphic to K_{n+1} .

A helm graph, denoted by $H_{1,n,i}$, $n \ge 3$, is a graph obtained from a wheel graph $W_{1,n}$ by attaching a pendant vertex u_i to the correspondingrim vertex v_i .

Proposition 3.7. For a helm graph $H_{1,n,i}$, $n \ge 3$, the size of $(H_{1,n,i})_{ld}$ is $\frac{3(n^2+n)}{2}$.

Proof. For a helm graph $H_{1,n,i}$, $n \ge 3$, clearly, the helm graph is of the order 2n + 1. Let $V(H_{1,n,i}) = \{v_0, v_1, v_2, \dots, v_n, \underbrace{u_1, u_2, \dots, u_n}_{l \ge 1}\}$. Since $deg(v_0) = deg(v_i) = n > e(v_0) = 2$, in

pendant vertices

 $H_{1,n}$. Then by Definition 2.1, 2n edge incident at v_0 and v_i in $(H_{1,n})_{ld}$. However, since all u_i are pendant vertices, by Definition 2.1, no edge incident at u_i in $(H_{1,n})_{ld}$. Then we have

$$\varepsilon((H_{1,n})_{ld}) = \frac{\sum_{w_i \in V((H_{1,n})_{ld})} deg(w_i)}{2}$$

= $\frac{2n(n+1) + n(n+1)}{2}$
= $\frac{3(n^2 + n)}{2}$.

Proposition 3.8. For a helm graph $H_{1,n}$, $n \ge 3$. It follows that $\varphi(H_{1,n}) = 2$.

Proof. Let the vertices of the wheel be $v_0, v_1, v_2, \ldots, v_n$. Let the numerically corresponding pendant vertices be u_1, u_2, \ldots, u_n . It is easy to verify that after the first deg-centrication iteration, the induced subgraph $\langle V(W_n) \rangle \cong K_{n+1}$. Furthermore, all edges $u_i v_j$, $1 \le i \le n$, $0 \le j \le n$ exist. Since $\delta((H_{1,n})_{ld}) \ge 4$ and $diam((H_{1,n})_{ld}) = 2$, the result follows by Proposition 2.3, Proposition 3.7 and Definition 2.2, which implies, $\varphi(H_{1,n}) = 2$.

An illustration of proposition 3.7 is given in Figure 3.

A closed helm graph, denoted by $CH_{1,n}$, $n \ge 3$, is the graph obtained from a helm graph $H_{1,n}$ by joining the pendant vertices, in order, forming a cycle, called the outer rim.

Proposition 3.9. *For a closed helm graph* $CH_{1,n}$, $n \ge 3$, $(i)\varphi(CH_{1,n}) = 1$, for n < 6. (*ii*) $\varphi(CH_{1,n}) = 2$, for $n \ge 6$.

Proof. Consider a closed helm graph $CH_{1,n}$ $n \ge 3$. The closed helm graph is clearly of the order 2n + 1. Let $V(CH_{1,n}) = v_0, v_1, v_2, \dots, v_n, u_1, u_2, \dots, u_n$.

(i) For all $CH_{1,n}$, n < 6, $\delta(CH_{1,n}) = 3$. For n = 3, 4, 5. In view of Definition 2.1 and Proposition 2.3, the lower deg-centric graph of a closed helm graph $CH_{1,n}$ of order n < 6, is the complete graph. Finally, $\varphi(CH_{1,n}) = 1$.

(ii) For $n \ge 6$ we have $\delta(CH_{1,n}) = 3$ and $diam(CH_{1,n}) = 4$. Thus, $\varphi(CH_{1,n}) > 1$. By Definition 2.2 and Proposition 2.3, $\varphi(CH_{1,n}) = 2$. Therefore, the result.

Figure 3: Lower deg-centric graph of $H_{1,4}$.

A djembe graph, denoted by $D_{1,n}$, is obtained by joining the vertices $u'_i s$; $1 \le i \le n$ of a closed helm graph $CH_{1,n}$ to its central vertex v_0 .

Proposition 3.10. *The lower deg-centric graph of a djembe graph* $D_{1,n}$, $n \ge 3$, *is* D*-completable* ($\varphi = 1$).

Proof. For a djembe graph $D_{1,n}$, $n \ge 3$, clearly, the djembe graph is of the order 2n + 1. Let $V(D_{1,n}) = v_0, v_1, v_2, \ldots, v_n, u_1, u_2, \ldots, u_n$. Since $deg(v_0) = 2n > e(v_0) = 1$ and $deg(v_i) = deg_G(u_i) = 4 > e(v_0) = 1$ in $D_{1,n}$, by Definition 2.1, 2n edge incident at all 2n + 1 vertices in $(D_{1,n})_{ld}$. That is, $(D_{1,n})_{ld} \cong K_{2n+1}$.

If the edge v_1v_3 joins vertices v_1 and v_3 , then the subdivision of v_1v_3 replaces v_1v_3 by a new vertex v_2 and two new edges v_1v_2 and v_2v_3 . A gear graph, denoted by G_n , $n \ge 3$, is a graph obtained by applying subdivision to each edge of the rim of a wheel graph $W_{1,n}$.

Proposition 3.11. For a gear graph G_n , $n \ge 3$, the size of $(G_n)_{ld}$ is $\frac{n^2+7n}{2}$.

Proof. For a gear graph G_n , $n \ge 3$, clearly, the gear graph is of the order 2n + 1. Let $V(G_n) = v_0, v_1, v_2, \ldots, v_n, u_1, u_2, \ldots, u_n$. Since $deg(v_0) = n > e(v_0) = 2$ in G_n , by Definition 2.1, 2n edge incident at v_0 in $(G_n)_{ld}$. Vertices v_i are adjacent to the center vertex v_0 However, since $deg(v_i) = 3$ in G_n , by Definition 2.1, n + 2 edge incident at v_i in $(G_n)_{ld}$. Since $deg(u_i) = 2$, in G_n , by Definition 2.1, distance one edge incident at u_i that is of degree three in $(G_n)_{ld}$. Then we have,

$$\varepsilon((G_n)_{ld}) = \frac{\sum\limits_{w_i \in V((G_n)_{ld})} deg(w_i)}{2}$$
$$= \frac{2n + n(n+2) + 3n}{2}$$
$$= \frac{n^2 + 7n}{2}.$$

Proposition 3.12. For a gear graph G_n , $n \ge 3$, $\varphi(G_n) = 2$.

Proof. For a gear graph G_n , $n \ge 3$. Clearly, the gear graph is of the order 2n + 1. Let $V(G_n) = v_0, v_1, v_2, \ldots, v_n, u_1, u_2, \ldots, u_n$. By Proposition 3.11, the size of $(G_n)_{ld}$ is $\frac{n^2+7n}{2}$. Then apply Definition 2.2, in $(G_n)_{ld}$. That is, $\varphi(G_n) = 2$.

A double wheel DW_n is obtained by taking two copies of a wheel $W_{1,n}$, $n \ge 3$, and merging the two central vertices.

	-	-	
_			

Proposition 3.13. *The lower deg-centric graph of a double wheel graph* DW_n , $n \ge 3$ *is always isomorphic to the complete graph* K_{2n+1} , *that is* $\varphi = 1$.

Proof. For a double wheel graph DW_n , $n \ge 3$, clearly, the double wheel graph is of the order 2n + 1. Let $V(DW_n) = v_0, v_1, v_2, \ldots, v_n, u_1, u_2, \ldots, u_n$. Since $deg(v_0) = 2n > e(v_0) = 1$ and $deg(v_i) = deg_G(u_i) = 3 > e(v_0) = 1$ in DW_n , by Definition 2.1, 2n edge incident from all 2n + 1 vertices in $(DW_n)_{ld}$. That is, $(DW_n)_{ld} \cong K_{2n+1}$.

A flower graph, $F_{1,n}$, $n \ge 3$, is a graph obtained from a helm graph $H_{1,n}$, by joining each of its pendant vertices u_i 's to its central vertex v_0 .

Proposition 3.14. For a flower graph $F_{1,n,}$, $n \ge 3$, $\varepsilon(F_{1,n,})_{ld} = \frac{3(n^2+n)}{2}$.

Proof. Consider a flower graph $F_{1,n,i}$, $n \ge 3$. Clearly, the flower graph is of the order 2n + 1. Let $V(F_{1,n,i}) = v_0, v_1, v_2, \ldots, v_n, u_1, u_2, \ldots, u_n$. Since $deg(v_0) = 2n > deg(v_i) = n > e(v_0) = 2$ in $F_{1,n,i}$, by Definition 2.1, 2n edge incident at v_0 and v_i in $(F_{1,n,i})_{ld}$. However, since $deg(u_i) = 2$ in $F_{1,n,i}$, by Definition 2.1, distance one edge incident at u_i in lower deg-centric graph. Finally,

$$\varepsilon((F_{1,n})_{ld}) = \frac{\sum_{w_i \in V((F_{1,n})_{ld})} deg(w_i)}{2}$$

= $\frac{2n(n+1) + n(n+1)}{2}$
= $\frac{3(n^2 + n)}{2}$.

Proposition 3.15. For a flower graph $F_{1,n}$, $n \ge 3$, $\varphi(F_{1,n}) = 2$.

Proof. Consider a flower graph $F_{1,n,n}$, $n \ge 3$, clearly, the flower graph is of the order 2n + 1. Let $V(F_{1,n,n}) = v_0, v_1, v_2, \ldots, v_n, u_1, u_2, \ldots, u_n$. By Proposition 3.14, the size of $(F_{1,n})_{ld}$ is $\frac{3(n^2+n)}{2}$. In view of Definition 2.2, in $(F_{1,n})_{ld}$. That is, $\varphi(F_{1,n}) = 2$.

The sunflower graph, denoted by $SF_{1,n}$, $n \ge 3$ is obtained from the wheel $W_{1,n}$ by attaching n vertices u_i , $1 \le i \le n$ such that each u_i is adjacent to v_i and v_{i+1} and count the suffix is taken modulo n.

Proposition 3.16. For be a sunflower graph $SF_{1,n,i}$, $n \ge 3$, $\varepsilon((SF_{1,n,i})_{ld}) = \frac{3(n^2+n)}{2}$.

Proof. For a sun flower graph $SF_{1,n,i}$, $n \ge 3$, the sunflower graph is of the order 2n + 1. Let $V(SF_{1,n,i}) = v_0, v_1, v_2, \ldots, v_n, u_1, u_2, \ldots, u_n$. Since $deg(v_0) = n > e(v_0) = 2$ and $deg(v_i) = n + 1 > e(v_i) = 2$ in $SF_{1,n}$. Then by Definition 2.1, 2n edge incident at v_0 and v_i in $(SF_{1,n,i})_{ld}$. However, since $deg(u_i) = 2 SF_{1,n,i}$, by Definition 2.1, distance one edges forms from u_i in $(SF_{1,n,i})_{ld}$. Finally,

$$\varepsilon((SF_{1,n,})_{ld}) = \frac{\sum_{w_i \in V((SF_{1,n,})_{ld})} deg(w_i)}{2}$$

= $\frac{2n(n+1) + n(n+1)}{2}$
= $\frac{3(n^2 + n)}{2}$.

Proposition 3.17. For a sun flower graph $SF_{1,n}$, $n \ge 3$, $\varphi(SF_{1,n}) = 2$.

Proof. For a sun flower graph $SF_{1,n,n}$, $n \ge 3$, the sunflower graph is of the order 2n + 1. Let $V(SF_{1,n,n}) = v_0, v_1, v_2, \ldots, v_n, u_1, u_2, \ldots, u_n$. By Proposition 3.16, the size of $(SF_{1,n})_{ld}$ is $\frac{3(n^2+n)}{2}$. In view of Definition 2.2, in $(SF_{1,n})_{ld}$. That is, $\varphi(SF_{1,n}) = 2$.

Figure 4: Lower deg-centric graph of $SF_{1,4}$.

An illustration of proposition 3.16 is given in Figure 4.

A closed sunflower graph $CSF_{1,n}$ is obtained by adding the edge u_iu_{i+1} of the sunflower graph. In view of Definition 2.1, the lower deg-centric graph of a closed sunflower graph $CSF_{1,n}$, $n \ge 3$ is the complete graph K_{2n+1} .

Proposition 3.18. Let $G \cong CSF_{1,n}$ be a closed sunflower graph with $n \ge 3$. Then, G_{ld} is complete (or $\varphi(G) = 1$).

Proof. Consider a closed sun flower graph $CSF_{1,n,i}$, $n \ge 3$. The closed sunflower graph is of the order 2n + 1. Let $V(CSF_{1,n,i}) = v_0, v_1, v_2, \ldots, v_n, u_1, u_2, \ldots, u_n$. By Proposition 2.3, G_{ld} is complete.

A blossom graph, denoted by $Bl_{1,n}$, is obtained by making each u_i adjacent to the central vertex of the closed sunflower graph. In view of Definition 2.1 and Proposition 2.3, the lower degcentric graph of a blossom graph Bl_n , $n \ge 3$, is complete which implies $\varepsilon((Bl_n)_{ld}) = \varepsilon(K_{2n+1})$. That is, $\varphi(Bl_n) = 1$.

Proposition 3.19. For a complete bipartite graph $K_{2,b}$, $b \ge 3$. Then,

$$\varepsilon((K_{2,b})_{ld}) = \varepsilon(K_{2,b}) + 1.$$

Proof. For a complete bipartite graph $K_{2,b}$, b > 2, clearly, $K_{2,b}$ is a graph whose vertex set can be partitioned into two independent sets X, |X| = 2 and Y, |Y| = b. Let $X = v_1, v_2$, and $Y = u_{1,2}, \ldots, v_b$. In view of Definition 2.1, construct $(K_{2,b})_{ld}$ as follows: since $deg(u_i) = 2$ in $K_{2,b}$ and all pairs of vertices u_i, v_j and have $d_i(K_{2,b})(u_i, v_j) = 1$ set Y yields an edge with v_1 and v_2 that is complete bipartite graph $K_{2,b}$. Clearly, v_1 and v_2 have degree b, which are adjacent. Hence, $\varepsilon((K_{2,b})_{ld}) = \varepsilon(K_{2,b}) + 1$.

Observation 3.3. For a complete bipartite graph $K_{a,b}$, $a, b \ge 3$. Then $(K_{a,b})_{ld}$ is complete which implies $\varepsilon((K_{a,b})_{ld}) = K_{a+b}$.

A tree denoted by T_n , $n \ge 1$ is a connected acyclic graph. It is known that a tree T_n has n-1 edges. In views of Definition 2.2, the lower deg-centric graph of a tree T_n , $n \ge 3$ and $\Delta(T_n) \ge 3$, then, $(T_n)_{ld^k}$ is complete.

Observation 3.4. If $n \ge 3$ and $\Delta(T_n) \ge 3$, then lower deg-centric graph of tree is *D*-completable.

A sunlet graph, denoted by Sl_n , $n \ge 3$, is a graph obtained by attaching a pendant vertex to every vertex of a cycle graph c_n , $n \ge 3$. In other words, a sunlet graph on 2n vertices is obtained by taking the corona product $C_n \circ K_1$. **Proposition 3.20.** For a sunlet graph Sl_n , $n \ge 3$,

$$\varepsilon((Sl_n)_{ld}) = \begin{cases} \frac{n(2n+2)}{2} & \text{if } n = 3\\ \frac{n(2n+1)}{2} & \text{if } n = 4\\ \frac{7n+3n}{2} & \text{if } n = 5, 6, 7, \dots \end{cases}$$

Proof. Consider a sunlet graph Sl_n , $n \ge 3$. The sunlet graph is of the order 2n. Let $V(Sl_n) = \{v_1, v_2, \ldots, v_n, u_1, u_2, \ldots, u_n\}$.

pendant vertices

(i) For Sl_3 , $deg(v_i) = 3 > e(v_i) = 2$ in Sl_n , as per Definition 2.1, then all v_i vertices are adjacent with other 2n - 1 vertices in lower deg-centric graph. However, since all u_i are pendant vertices, by Definition 2.1, there is no edge incident at u_i . Then number of edges equals $\frac{(3\times5)+(3\times3)}{2} = 12$. Then we have, $\varepsilon((Sl_3)_{ld}) = \frac{n(2n+2)}{2} = \frac{3(2\times3+2)}{2} = 12$.

(ii) For Sl_4 , by Definition 2.1, all v_i vertices are adjacent with other 2n - 2 vertices. However, since all u_i are pendant vertices, by Definition 2.1, there is no edge incident at u_i . Then number of edges equals $\frac{(4\times 6)+(4\times 3)}{2} = 18$. Finally $\varepsilon((Sl_4)_{ld}) = \frac{n(2n+1)}{2} = \frac{4((2\times 4)+1)}{2} = 18$.

(iii) Consider $n \ge 5$. By Definition 2.1, all v_i vertices are adjacent with seven vertices. However, since all u_i are pendant vertices, no edge incident at u_i in $(Sl_n)_{ld}$. Then, all u_i have degree three. Then we have $\varepsilon((Sl_n)_{ld}) = \frac{7n+3n}{2}$.

An illustration to proposition 3.20 is given in Figure 5.

Figure 5: Lower deg-centric graph of Sl_7 .

An antiprism graph, denoted by A_n , $n \ge 3$ is a graph obtained two cycles C_n and C'_n of order n with vertex sets $V = v_1, v_2, v_3, \ldots, v_n$ and $U = u_1, u_2, u_3, \ldots, u_n$ respectively. Join the vertices $u_i v_i$ and $u_i v_{i+1}$ to form the additional edges.

Proposition 3.21. For an antiprism graph A_n , $n \ge 3$,

$$\varepsilon((A_n)_{ld}) = \begin{cases} \varepsilon(K_{2n}) & \text{if } 3 \le n \le 6\\ 12n & \text{if } n \ge 7. \end{cases}$$

Proof. Consider an antiprism graph A_n , $n \ge 3$. The antiprism graph is of the order 2n. Let $V(A_n) = v_1, v_2, \ldots, v_n, u_1, u_2, \ldots, u_n$.

(i) If $3 \le n \le 6$, $deg(v_i) = deg(u_i) = 4 > e(v_i) = e(u_i)$ in A_n then by Theorem 2.3, $(A_n)_{ld} \cong K_{2n}$. (ii) If $n \ge 7$, $deg(v_i) = deg(u_i) = 4$ in A_n then by Definition 2.1, $deg(v_i) = deg(u_i) = 12$ in $(A_n)_{ld}$. That implies $\varepsilon((A_n)_{ld}) = 12n$.

Proposition 3.22. For an antiprism graph A_n , $n \ge 3$, $(A_n)_{ld^k}$ is complete.

Proof. The result is a direct consequence of Definition 2.2.

Consider a complete graph K_n with the vertex set $V = v_1, v_2, v_3, \ldots, v_n$. Let $U = u_1, u_2, u_3, \ldots, u_n$ be a copy of V(G) such that u_i corresponds to v_i . The sun graph, denoted by S_n , is a graph with vertex set $V \cup U$ and two vertices x and y are adjacent in S_n if $x \sim y$ in K_n and $x = u_i$, $y \in v_i, v_{i+1}$.

Recall that the sequence of pentagonal numbers is generated by:

$$q_n = \frac{3n^2 - n}{2}, n = 0, 1, 2, \dots$$

In expanded form it is:

$1, 5, 12, 22, 35, 51, 70, 92, 117, 145, 176, 210, 247, \ldots$

The relation between the size of the lower deg-centric sun graphs and the pentagon numbers follows immediately as a proposition.

Proposition 3.23. For a sun graph S_n , $n \ge 3$, $\varepsilon((S_n)_{ld}) = q_n$, $n \ge 3$.

Proof. For a sun graph S_n , $n \ge 3$, the sun graph is of the order 2n. Let $V(S_n) = v_1, v_2, \ldots, v_n, u_1, u_2, \ldots, u_n$. Since $deg(v_i) = n + 1 > e(v_i) = 2$ in S_n , by Definition 2.1, 2n - 1 edge incident at v_i in $(S_n)_{ld}$. However, since $deg(u_i) = 2$ in S_n , then by Definition 2.1, distance one edge incident at u_i in the lower deg-centric graph. Then we have

$$\varepsilon((S_n)_{ld}) = \frac{\sum\limits_{w_i \in V((S_n)_{ld})} deg(w_i)}{2}$$
$$= \frac{n(2n-1) + (n)(n)}{2}$$
$$= \frac{3n^2 - n}{2}.$$

A closed sun graph CS_n is the graph obtained from adding the edges u_iu_{i+1} in the sun graph. In view of Definition 2.1, the lower deg-centric graph of a closed sun graph CS_n , $n \ge 3$, is complete which implies $\varepsilon((CS_n)_{ld}) = \varepsilon(K_{2n})$. That is, $\varphi = 1$.

The ladder graph, L_n , $n \ge 1$ is obtained by taking two copies of a path P_n with respective vertices say, $v_1, v_2, v_3, \ldots, v_n$ and $u_1, u_2, u_3, \ldots, u_n$ and adding the edges $v_i u_i$, $1 \le i \le n$. Note that $L_n \cong P_n \Box K_2$ where \Box denotes the Cartesian product.

Proposition 3.24. For a ladder $G = L_n$, $n \ge 1$ it follows that:

$$\begin{split} \varepsilon(L_{1_{ld}}) &= 0,\\ \varepsilon(L_{2_{ld}}) &= 4,\\ \varepsilon(L_{3_{ld}}) &= 11,\\ \varepsilon(L_{4_{ld}}) &= 20,\\ \varepsilon(G_{ld}) &= \varepsilon(H_{ld}) + 7 \text{ where } H = L_{n-1} \text{ and } n \geq 5. \end{split}$$

Proof. By applying Definition 2.1, it easily follows that $\varepsilon(L_{1_{ld}}) = 0$, $\varepsilon(L_{2_{ld}}) = 4$, $\varepsilon(L_{3_{ld}}) = 11$ and $\varepsilon(L_{4_{ld}}) = 20$. Now, besides the claimed result, it is valid that for any $n \ge 5$ and $H = L_{n-1}$ the size of H_{ld} , that is, $\varepsilon(H_{ld})$ can be determined by applying Definition 2.1. Consider $H = L_{n-1}$ and assume that both H_{ld} and $\varepsilon(H_{ld})$ has been determined. Now consider the extension from H to $G = L_n$. Some subgraph (or altered graph) of H_{ld} is a subgraph of G_{ld} . Note that in G the degree of respectively v_{n-1}, u_{n-1} has increased to 3. Therefore, in G_{ld} the seven edges $v_n u_n, v_n v_{n-1}, v_n u_{n-1}, v_n v_{n-2}, u_n v_{n-1}, u_n u_{n-2}$ and $u_n u_{n-1}$ added to H_{ld} . Hence,

$$\varepsilon(G_{ld}) = \varepsilon(H_{ld}) + 7.$$

Finally, since an initial value, that is, $\varepsilon(L_{4_{ld}}) = 20$, is known, the result for $n \ge 5$ follows through mathematical induction.

A friendship graph, denoted by $F_n, n \ge 1$, is obtained by joining n copies of the complete graph K_3 with a common vertex. Note that, In view of Definition 2.1, the lower deg-centric graph of a friendship graph $F_n, n \ge 1$, is always isomorphic to the friendship graph F_n . Which implies, $\varphi(F_n) = \infty$.

4 Conclusion

The graph transformation called lower deg-centrication has been introduced. Various exploratory results have been presented to establish some foundation for further research. As a scope of the study, the researchers can extend the study on graph theoretical parameters to lower deg-centric graphs of various classes of graphs and obtain fruitful results.

References

- [1] J. Akiyama, K. Ando and D. Avis, Eccentric graphs, Discrete Math., 56, 1-6, (1985).
- [2] M.R Raja, T.A Mangam and S. Naduvath, Eccentric completion of a graph, Commun. Comb. Optim., 7, 193–201,(2022).
- [3] M.R Raja, J. Kok, T.A Mangam and S. Naduvath, Cyclic property of iterative eccentrication of a grap. Discrete Math. Algorithm. Appl., 15(07), 2250155, (2022).
- [4] T.T Thalavayalil, J. Kok, and S. Naduvath, A study on deg-centric graphs, Proyecciones.,43(02), 911-926, (2024).
- [5] T.T Thalavayalil, J. Kok, and S. Naduvath, A study on exact deg-centric graphs, J. Interconn. Networks., 2450004 ,(2024).
- [6] T.T Thalavayalil, and S. Naduvath, A study on coarse deg-centric graphs, Gulf. J. Math., 16(2), 171-182,(2024).
- [7] T.T Thalavayalil, J. Kok, and S. Naduvath, A study on upper deg-centric graphs, TWMS J. Appl. Eng. Math., to appear, (2025).
- [8] D.B West, Introduction to graph theory, Prentice Hall of India, New Delhi, (2001).
- [9] A. Brandstädt, V.B Le and J.P Spinrad, Graph classes: a survey, Society for Industrial and Applied Mathematics., (1999).
- [10] S.Naduvath, and M.T Ellumkalayil, On δ (k)-Coloring of Some Cycle-Related Graphs, J. Interconn. Networks., 2350014, (2023).
- [11] S. Naduvath, E. Mphako-Banda, and J. Kok, Chromatic Probability Index Of Certain Cycle Related Graphs, F. East J. of Math. Sciences, **107(2)**, 415–432, (2018).
- [12] S. Naduvath, K.P Chithra, and J. Kok, Certain chromatic sums of some cycle-related graph classes., Discrete Math. Alg. Appl., 8(3), 1650050,(2016).

Author information

Timmy Tomy Thalavayalil, Department of Mathematics, Christ University, Bangalore-560029, India. E-mail: timmy.thalavayalil@res.christuniversity.in

Sudev Naduvath, Department of Mathematics, Christ University, Bangalore-560029, India. E-mail: sudev.nk@christuniversity.in