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Abstract The lower deg-centric graph of a simple, connected graph G, denoted by Gld, is
a graph constructed from G such that V (Gld) = V (G) and E(Gld) = {vivj : dG(vi, vj) <
degG(vi)}. For a connected graph G of order n, the lower deg-centric graph Gld

∼= Kn if and
only if degG(vi) > eG(vi), for all vi ∈ V (G). In this paper, the concepts of lower deg-centric
graphs and iterated lower deg-centrication of a graph are introduced and discussed.

1 Introduction

For a basic terminology of graph theory, we refer to [8]. For further topics on graph classes,
(see[9, 11]. A graph is assumed to be a simple, connected, and undirected graph throughout this
paper. The number of edges of a graph G is denoted by ε(G). Recall that the distance between
two distinct vertices vi and vj of G, denoted by dG(vi, vj), is the length of the shortest path
joining them. The eccentricity of a vertex vi ∈ V (G), denoted by e(vi), is the farthest distance
from vi to some vertex of G. Vertices at a distance e(vi) from vi are called the eccentric vertices
of vi. An eccentric graph of a graph G, denoted by Ge, is obtained from the same set of vertices
as G with two vertices vi and vj being adjacent in Ge if and only if vj is an eccentric vertex of vi
or vi is an eccentric vertex of vj (see[1, 2]). The iterated eccentric graph of G, denoted by Gek ,
is defined in (see[3]) as the derived graph obtained by taking the eccentric graph successively
k-times; that is, Gek= ((Ge)e . . .)e, (k-times).

Similarly, a particular type of newly derived graphs based on the vertex degrees and distances
in graphs called deg-centric graphs, have been introduced in (see[4]) as follows, The degree
centric graph or deg-centric graph of G is the graph Gd with V (Gd) = V (G) and E(Gd) =
{vivj : dG(vi, vj) ≤ degG(vi)} (see[4]). Let G be a graph and Gd be the deg-centric graph
of G. Then, the successive iteration deg-centric graph of G, denoted by Gdk , is the derived
graph obtained by taking the deg-centric graph successively k times; that is, Gdk= ((Gd)d...)d,
(k-times). This process is known as deg-centrication process (see[4]). The exact degree centric
graph or exact deg-centric graph of a graph G, denoted by Ged, is the graph with V (Ged) =
V (G) and E(Ged) = {vivj : dG(vi, vj) = degG(vi)}. This graph transformation is called exact
deg-centrication (see[5]). Let G be a graph and Ged be the exact deg-centric graph of G. Then
the iterated exact deg-centric graph of G, denoted by Gedk , is defined as the graph obtained by
applying exact deg-centrication successively k-times; That is, Gedk= ((Ged)ed...)ed, (k-times)
(see[5]).

The upper degree centric graph or upper deg-centric graph of a graph G (assumed to be
simple and connected) and denoted by Gud, is the graph with V (Gud) = V (G) and E(Gud) =
{vivj : dG(vi, vj) ≥ degG(vi)}. This graph transformation is called upper deg-centrication
(see[7]). Let G be a graph and Gud be the upper deg-centric graph of G. Then the iterated
upper deg-centric graph of G, denoted by Gudk , is defined as the graph obtained by applying
upper deg-centrication successively k-times; That is,Gudk= ((Gud)ud...)ud, (k-times) (see[7]).
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The coarse degree centric graph or coarse deg-centric graph of a graph G, denoted by Gcd,
is the graph with V (Gcd) = V (G) and E(Gcd) = {vivj : dG(vi, vj) > degG(vi)}. Then the
iterated coarse deg-centric graph of G, denoted by Gcdk , is defined as the graph obtained by
applying coarse deg-centrication successively k-times; That is, Gcdk= ((Gcd)cd...)cd, (k-times)
(see[6].

Motivated by the above-mentioned studies, in this paper, we introduce a new transformed
graph called the lower deg-centric graph and investigate the properties and structural charac-
teristics of this type of transformed graph concerned.

2 Lower Deg-centric Graphs

Definition 2.1. The lower degree centric graph or lower deg-centric graph of a graph G, denoted
by Gld, is the graph with V (Gld) = V (G) and E(Gld) = {vivj : dG(vi, vj) < degG(vi)}. This
graph transformation is called lower deg-centrication of the graph. Note that this process is
independent of the choice of vi or vj in the above sets.

An example of the lower deg-centric graph is given in Figure 1.

v2 v3 v4 v5

v7v6

v1

(a) G

v2 v3 v4 v5

v7v6

v1

(b) Gld

Figure 1: A graph G and its lower deg-centric graph.

Observation 2.1. The lower deg-centric graph of a complete graph Kn of order n ≥ 3 is always
isomorphic to the complete graph Kn.

Definition 2.2. Let G be a graph and Gld be the lower deg-centric graph of G. Then, the iterated
lower deg-centric graph of G, denoted by Gldk , is defined as the graph obtained by applying
lower deg-centrication successively k-times; That is,

Gldk= ((Gld)ld...)ld, (k-times).

An example of the lower deg-centrication process of a graph on seven vertices is given in
Figure 2.

We say that a graph G is D-completable if, after a finite number of iterated lower deg-
centrication, the resultant graph is complete. Note that a complete graph is inherently D-
completable. An example of a D-completable graph is given in Figure 2.

Let φ(G) denote the number of iterations required to transform a D-completable graph G to
completion. By convention φ(Kn) = 0, n ≥ 1 and φ(K1,n) = ∞, n ≥ 2.

Proposition 2.3. For a connected graph G of order n, the lower deg-centric graph Gld
∼= Kn if

and only if degG(vi) > eG(vi), for all vi ∈ V (G).

Proof. If Gld
∼= Kn it implies that vertex vi ∈ V (G) contributed n − 1 edge in Gld thus,

degG(vi) > eG(vi), for all vi ∈ V (G).
On the other hand, if degG(vi) > eG(vi), for all vi ∈ V (G), then the result that Gld

∼= Kn is a
direct consequence of the Definition 2.1.

Proposition 2.4. Consider a D-completable graph G. If δ(G) > diam(G), then Gld is complete
(or φ(G) = 1).
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Figure 2: Example of the lower deg-centrication process of G.

Proof. Consider any vertex vi for which degG(vi) = δ(G). Let

X(vi) = {vj : dG(vi, vj) < δ(G), vi ̸= vj}.

Clearly, if δ(G) > diam(G) then, following lower deg-centrication in respect of vi the re-
sultant closed neighbourhood is NGld

[vi] = V (G). Finally, because degG(vj) ≥ degG(vi) =
δ(G) > diam(G) the resultant closed neighbourhood of each vj ∈ V (G)\{vi} is given by,
NGd

[vj ] = V (G). Hence, Gld is complete.

Proposition 2.5. For a D-completable graph G. Let m = diam(G) then φ(G) ≤ φ(Pm).

Proof. The proof follows similar reasoning as in Proposition 2.4.

Theorem 2.6. For two D-completable graphs G and H each of order n and ε(G) < ε(H) it
follows that, φ(G) ≥ φ(H).

Proof. Let graphs G and H each of order n and let the number of edges in graph G be less than
the number of edges in graph H . which means the total degree of graph G is less than the graph
H . Since, ∑

vi∈V (G)

degG(vi) <
∑

uj∈V (H)

degH(uj)

it implies that the number of new edges yielded through lower deg-centrication denoted by,
γ(Gld) and γ(Hld) have the relation γ(Gld) < γ(Hld). Also,∑

vi∈V (Gld)

degGld
(vi) <

∑
uj∈V (Hld)

degHld
(uj).

By iterative argument as above it implies that a greater or equal number of iterations are required
for G to complete compared to the number of iterations required for H to complete. Hence,
φ(G) ≥ φ(H).
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Theorem 2.7. Any D-completable graph G ̸= K1 and which has at least two pendant vertices
has φ(G) ≥ 2.

Proof. Assume G has at least two pendant vertices from the vertex set v1, v2, v3, . . . , vk. Let X
be the set of pendant vertices. At best on the 1st iteration the induced subgraph ⟨V (G)\X⟩ can
be complete. However, then Gld is a split graph. Which means, split graph is one in which the
vertices of the graph can be partitioned into a clique and an independent vertex set. Therefore,
φ(G) ≥ 2.

3 Lower Deg-centrication of Certain Graph Classes

This section will address bistar graphs, path graphs (or paths) and certain interesting graphs.
For convenience, a path Pn is depicted on a horizontal line, and the vertices are labelled from
left to right as v1, v2, v3,. . . , vn.

Proposition 3.1. For n ≥ 3, the lower deg-centric graph of a path graph Pn is isomorphic to Pn.

Proof. Consider a path graph Pn, on a horizontal line with the vertices labelled from left to right
as v1, v2, v3,. . . , vn. Then, the internal vertices v2, v3, v4, . . . vn−1 have degree two. In view of
Definition 2.1, these vertices form an edge to all adjacent vertices in (Pn)ld. Both the pendant
vertices v1 and vn have a degree one. By Definition 2.1, both vertices do not form any edges in
(Pn)ld, which implies that (Pn)ld ∼= Pn.

Observation 3.1. For a path Pn, n ≥ 3, φ(Pn) = ∞.

Proposition 3.2. The lower deg-centric graph of a cycle Cn is isomorphic to Cn.

Proof. Consider a cycle graph Cn, the vertices v1, v2, v3, . . . vn have degree two. In view of
Definition 2.1, these vertices form an edge to all adjacent vertices in (Cn)ld. Which implies that
(Cn)ld ∼= Cn.

Observation 3.2. For a cycle Cn, n ≥ 3, φ(Cn) = ∞.

A star graph, denoted by k1,n, n ≥ 0, is obtained by attaching n pendant vertices to a central
vertex v0. Note that, In view of Definition 2.1, the lower deg-centric graph of a star graph k1,n,
n ≥ 0, is always isomorphic to the star graph. That is φ(K1,n) = ∞, n ≥ 2.

A non-trivial bistar graph, denoted by Sa,b, is a graph obtained by joining the centers of two
non-trivial star graphs K1,a, a ≥ 1 and K1,b, b ≥ 1 with the edge v0u0.

Proposition 3.3. For a bistar graph Sa,b, a, b > 1, ε((Sa,b)ld) = 2a+ 2b+ 1.

Proof. Consider a bistar graph Sa,b, a, b > 1. Let the pendant vertices of K1,a be the set X =
{v1, v2, . . . , va} and let the pendant vertices of K1,b be the set Y = {u1, u2, . . . , ub}. Finally, let
W = {v0, u0} be center vertices. By Definition 2.1, it follows that both v0, u0 are adjacent with
all other a + b + 1 vertices. Elements of sets X and Y are pendant vertices, then by Definition
2.1, no edges incident from these pendant vertices, which implies a + b pendant vertices with
degree two in (Sa,b)ld. Therefore,

ε((Sa,b)ld) =
2(a+ b+ 1) + 2(a+ b)

2
= 2a+ 2b+ 1.

Proposition 3.4. For Sa,b, a = 1 and b > 1, ε((Sa,b)ld) = b+ 3.

Proof. Consider a bistar graph Sa,b, a = 1 and b > 1. Then S1,b, is obtained by joining the
centers of two non-trivial star graphs k1,1 and k1,b, b > 1 with the edge v0u0. Let u0, v0 be the
center vertices of k1,1 and k1,b respectively. In view of Definition 2.1, it follows that deg(v0) =
b+2 and deg(u0) = 2 in (Sa,b)ld. All b pendant vertices have degree one, and the pendant vertex
of star graphs k1,1 have degree two in (Sa,b)ld. Therefore, after summation and simplification, it
follows that,

ε((Sa,b)ld) = b+ 3.
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Proposition 3.5. For a bistar graph Sa,b, a, b ≥ 1, φ(Sa,b) = ∞.

Proof. Consider a bistar graph Sa,b, a, b ≥ 1. if a, b = 1 then (S1,1)ld ∼= P4. By Observation 3.1,
φ(S1,1) = ∞. If a, b > 1, then by Proposition 3.3, all the a+ b pendant vertices have degree two
in (Sa,b)ld. In view of Definition2.2, (Sa,b)ld ∼= (Sa,b)ldk . Therefore, φ(Sa,b) = ∞.

A wheel graph, denoted by W1,n, n ≥ 3, is obtained by taking a cycle Cn, n ≥ 3 (the rim
with rim-vertices) and adding the central vertex v0 with spokes namely, edges v0vi, 1 ≤ i ≤ n.

Proposition 3.6. The lower deg-centric graph of a wheel graph W1,n, n ≥ 3 is always isomor-
phic to the complete graph Kn+1. That is, φ(W1,n) = 1.

Proof. For a wheel graph W1,n, n ≥ 3, note that, deg(vi) > e(vi) in wheel graph, for all
vi ∈ V (W1,n). In view of Definition 2.1, (W1,n)ld is isomorphic to Kn+1.

A helm graph, denoted by H1,n,, n ≥ 3, is a graph obtained from a wheel graph W1,n by
attaching a pendant vertex ui to the correspondingrim vertex vi.

Proposition 3.7. For a helm graph H1,n,, n ≥ 3, the size of (H1,n,)ld is 3(n2+n)
2 .

Proof. For a helm graph H1,n,, n ≥ 3, clearly, the helm graph is of the order 2n + 1. Let
V (H1,n,) = {v0, v1, v2, . . . , vn, u1, u2, . . . , un︸ ︷︷ ︸

pendant vertices

}. Since deg(v0) = deg(vi) = n > e(v0) = 2, in

H1,n. Then by Definition 2.1, 2n edge incident at v0 and vi in (H1,n)ld. However, since all ui

are pendant vertices, by Definition 2.1, no edge incident at ui in (H1,n)ld. Then we have

ε((H1,n)ld) =

∑
wi∈V ((H1,n)ld)

deg(wi)

2

=
2n(n+ 1) + n(n+ 1)

2

=
3(n2 + n)

2
.

Proposition 3.8. For a helm graph H1,n,, n ≥ 3. It follows that φ(H1,n) = 2.

Proof. Let the vertices of the wheel be v0, v1, v2, . . . , vn. Let the numerically corresponding
pendant vertices be u1, u2, . . . , un. It is easy to verify that after the first deg-centrication iteration,
the induced subgraph ⟨V (Wn⟩ ∼= Kn+1. Furthermore, all edges uivj , 1 ≤ i ≤ n, 0 ≤ j ≤ n
exist. Since δ((H1,n)ld) ≥ 4 and diam((H1,n)ld) = 2, the result follows by Proposition 2.3,
Proposition 3.7 and Definition 2.2, which implies, φ(H1,n) = 2 .

An illustration of proposition 3.7 is given in Figure 3.
A closed helm graph, denoted by CH1,n, n ≥ 3, is the graph obtained from a helm graph

H1,n by joining the pendant vertices, in order, forming a cycle, called the outer rim.

Proposition 3.9. For a closed helm graph CH1,n, n ≥ 3,
(i)φ(CH1,n) = 1, for n < 6.
(ii) φ(CH1,n) = 2, for n ≥ 6.

Proof. Consider a closed helm graph CH1,n n ≥ 3. The closed helm graph is clearly of the
order 2n+ 1. Let V (CH1,n,) = v0, v1, v2, . . . , vn, u1, u2, . . . , un.
(i) For all CH1,n, n < 6, δ(CH1,n) = 3. For n = 3, 4, 5. In view of Definition 2.1 and
Proposition 2.3, the lower deg-centric graph of a closed helm graph CH1,n of order n < 6, is the
complete graph. Finally, φ(CH1,n) = 1.
(ii) For n ≥ 6 we have δ(CH1,n) = 3 and diam(CH1,n) = 4. Thus, φ(CH1,n) > 1. By
Definition 2.2 and Proposition 2.3, φ(CH1,n) = 2. Therefore, the result.
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Figure 3: Lower deg-centric graph of H1,4.

A djembe graph, denoted by D1,n, is obtained by joining the vertices u′
is; 1 ≤ i ≤ n of a

closed helm graph CH1,n to its central vertex v0.

Proposition 3.10. The lower deg-centric graph of a djembe graph D1,n, n ≥ 3, is D-completable
(φ = 1).

Proof. For a djembe graph D1,n, n ≥ 3, clearly, the djembe graph is of the order 2n + 1. Let
V (D1,n) = v0, v1, v2, . . . , vn, u1, u2, . . . , un. Since deg(v0) = 2n > e(v0) = 1 and deg(vi) =
degG(ui) = 4 > e(v0) = 1 in D1,n, by Definition 2.1, 2n edge incident at all 2n+ 1 vertices in
(D1,n)ld. That is, (D1,n)ld ∼= K2n+1.

If the edge v1v3 joins vertices v1 and v3, then the subdivision of v1v3 replaces v1v3 by a new
vertex v2 and two new edges v1v2 and v2v3. A gear graph, denoted by Gn, n ≥ 3, is a graph
obtained by applying subdivision to each edge of the rim of a wheel graph W1,n.

Proposition 3.11. For a gear graph Gn, n ≥ 3, the size of (Gn)ld is n2+7n
2 .

Proof. For a gear graph Gn, n ≥ 3, clearly, the gear graph is of the order 2n+ 1. Let V (Gn) =
v0, v1, v2, . . . , vn, u1, u2, . . . , un. Since deg(v0) = n > e(v0) = 2 in Gn, by Definition 2.1, 2n
edge incident at v0 in (Gn)ld. Vertices vi are adjacent to the center vertex v0 However, since
deg(vi) = 3 in Gn, by Definition 2.1, n + 2 edge incident at vi in (Gn)ld. Since deg(ui) = 2,
in Gn, by Definition 2.1, distance one edge incident at ui that is of degree three in (Gn)ld. Then
we have,

ε((Gn)ld) =

∑
wi∈V ((Gn)ld)

deg(wi)

2

=
2n+ n(n+ 2) + 3n

2

=
n2 + 7n

2
.

Proposition 3.12. For a gear graph Gn, n ≥ 3, φ(Gn) = 2.

Proof. For a gear graph Gn, n ≥ 3. Clearly, the gear graph is of the order 2n+ 1. Let V (Gn) =

v0, v1, v2, . . . , vn, u1, u2, . . . , un. By Proposition 3.11, the size of (Gn)ld is n2+7n
2 . Then apply

Definition 2.2, in (Gn)ld. That is, φ(Gn) = 2.

A double wheel DWn is obtained by taking two copies of a wheel W1,n, n ≥ 3, and merging
the two central vertices.
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Proposition 3.13. The lower deg-centric graph of a double wheel graph DWn, n ≥ 3 is always
isomorphic to the complete graph K2n+1, that is φ = 1.

Proof. For a double wheel graph DWn, n ≥ 3, clearly, the double wheel graph is of the order
2n+ 1. Let V (DWn) = v0, v1, v2, . . . , vn, u1, u2, . . . , un. Since deg(v0) = 2n > e(v0) = 1 and
deg(vi) = degG(ui) = 3 > e(v0) = 1 in DWn, by Definition 2.1, 2n edge incident from all
2n+ 1 vertices in (DWn)ld. That is, (DWn)ld ∼= K2n+1.

A flower graph, F1,n, n ≥ 3, is a graph obtained from a helm graph H1,n, by joining each of
its pendant vertices ui’s to its central vertex v0.

Proposition 3.14. For a flower graph F1,n,, n ≥ 3, ε(F1,n,)ld = 3(n2+n)
2 .

Proof. Consider a flower graph F1,n,, n ≥ 3. Clearly, the flower graph is of the order 2n+1. Let
V (F1,n,) = v0, v1, v2, . . . , vn, u1, u2, . . . , un. Since deg(v0) = 2n > deg(vi) = n > e(v0) = 2 in
F1,n,, by Definition 2.1, 2n edge incident at v0 and vi in (F1,n,)ld . However, since deg(ui) = 2
in F1,n,, by Definition 2.1, distance one edge incident at ui in lower deg-centric graph. Finally,

ε((F1,n)ld) =

∑
wi∈V ((F1,n)ld)

deg(wi)

2

=
2n(n+ 1) + n(n+ 1)

2

=
3(n2 + n)

2
.

Proposition 3.15. For a flower graph F1,n, n ≥ 3, φ(F1,n) = 2.

Proof. Consider a flower graph F1,n,, n ≥ 3, clearly, the flower graph is of the order 2n+ 1. Let
V (F1,n,) = v0, v1, v2, . . . , vn, u1, u2, . . . , un. By Proposition 3.14, the size of (F1,n)ld is 3(n2+n)

2 .
In view of Definition 2.2, in (F1,n)ld. That is, φ(F1,n) = 2.

The sunflower graph, denoted by SF1,n, n ≥ 3 is obtained from the wheel W1,n by attaching
n vertices ui, 1 ≤ i ≤ n such that each ui is adjacent to vi and vi+1 and count the suffix is taken
modulo n.

Proposition 3.16. For be a sunflower graph SF1,n,, n ≥ 3, ε((SF1,n,)ld) =
3(n2+n)

2 .

Proof. For a sun flower graph SF1,n,, n ≥ 3, the sunflower graph is of the order 2n + 1. Let
V (SF1,n,) = v0, v1, v2, . . . , vn, u1, u2, . . . , un. Since deg(v0) = n > e(v0) = 2 and deg(vi) =
n+ 1 > e(vi) = 2 in SF1,n. Then by Definition 2.1, 2n edge incident at v0 and vi in (SF1,n,)ld.
However, since deg(ui) = 2 SF1,n,, by Definition 2.1, distance one edges forms from ui in
(SF1,n,)ld. Finally,

ε((SF1,n,)ld) =

∑
wi∈V ((SF1,n,)ld)

deg(wi)

2

=
2n(n+ 1) + n(n+ 1)

2

=
3(n2 + n)

2
.

Proposition 3.17. For a sun flower graph SF1,n, n ≥ 3, φ(SF1,n) = 2.

Proof. For a sun flower graph SF1,n,, n ≥ 3, the sunflower graph is of the order 2n + 1.
Let V (SF1,n,) = v0, v1, v2, . . . , vn, u1, u2, . . . , un. By Proposition 3.16, the size of (SF1,n)ld

is 3(n2+n)
2 . In view of Definition 2.2, in (SF1,n)ld. That is, φ(SF1,n) = 2.
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Figure 4: Lower deg-centric graph of SF1,4.

An illustration of proposition 3.16 is given in Figure 4.
A closed sunflower graph CSF1,n is obtained by adding the edge uiui+1 of the sunflower

graph. In view of Definition 2.1, the lower deg-centric graph of a closed sunflower graph
CSF1,n, n ≥ 3 is the complete graph K2n+1.

Proposition 3.18. Let G ∼= CSF1,n be a closed sunflower graph with n ≥ 3. Then, Gld is
complete (or φ(G) = 1).

Proof. Consider a closed sun flower graph CSF1,n,, n ≥ 3. The closed sunflower graph is of
the order 2n+ 1. Let V (CSF1,n,) = v0, v1, v2, . . . , vn, u1, u2, . . . , un. By Proposition 2.3, Gld is
complete.

A blossom graph, denoted by Bl1,n, is obtained by making each ui adjacent to the central
vertex of the closed sunflower graph. In view of Definition 2.1 and Proposition 2.3, the lower deg-
centric graph of a blossom graph Bln, n ≥ 3, is complete which implies ε((Bln)ld) = ε(K2n+1).
That is, φ(Bln) = 1.

Proposition 3.19. For a complete bipartite graph K2,b, b ≥ 3. Then,

ε((K2,b)ld) = ε(K2,b) + 1.

Proof. For a complete bipartite graph K2,b, b > 2, clearly, K2,b is a graph whose vertex set can
be partitioned into two independent sets X , |X| = 2 and Y , |Y | = b. Let X = v1, v2, and
Y = u1,2 , . . . , vb. In view of Definition 2.1, construct (K2,b)ld as follows: since deg(ui) = 2 in
K2,b and all pairs of vertices ui, vj and have d(K2,b)(ui, vj) = 1 set Y yields an edge with v1 and
v2 that is complete bipartite graph K2,b. Clearly, v1 and v2 have degree b, which are adjacent.
Hence, ε((K2,b)ld) = ε(K2,b) + 1.

Observation 3.3. For a complete bipartite graph Ka,b, a, b ≥ 3. Then (Ka,b)ld is complete which
implies ε((Ka,b)ld) = Ka+b.

A tree denoted by Tn, n ≥ 1 is a connected acyclic graph. It is known that a tree Tn has n−1
edges. In views of Definition 2.2, the lower deg-centric graph of a tree Tn,n ≥ 3 and ∆(Tn) ≥ 3,
then, (Tn)ldk is complete.

Observation 3.4. If n ≥ 3 and ∆(Tn) ≥ 3, then lower deg-centric graph of tree is D−completable.

A sunlet graph , denoted by Sln, n ≥ 3, is a graph obtained by attaching a pendant vertex to
every vertex of a cycle graph cn, n ≥ 3. In other words, a sunlet graph on 2n vertices is obtained
by taking the corona product Cn ◦K1.
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Proposition 3.20. For a sunlet graph Sln, n ≥ 3,

ε((Sln)ld) =


n(2n+2)

2 if n = 3
n(2n+1)

2 if n = 4
7n+3n

2 if n = 5, 6, 7, . . ..

Proof. Consider a sunlet graph Sln, n ≥ 3. The sunlet graph is of the order 2n. Let V (Sln) =
{v1, v2, . . . , vn, u1, u2, . . . , un︸ ︷︷ ︸

pendant vertices

}.

(i) For Sl3, deg(vi) = 3 > e(vi) = 2 in Sln, as per Definition 2.1, then all vi vertices are adjacent
with other 2n−1 vertices in lower deg-centric graph. However, since all ui are pendant vertices,
by Definition 2.1, there is no edge incident at ui. Then number of edges equals (3×5)+(3×3)

2 = 12.
Then we have, ε((Sl3)ld) =

n(2n+2)
2 = 3(2×3+2)

2 = 12.
(ii) For Sl4, by Definition 2.1, all vi vertices are adjacent with other 2n − 2 vertices. However,
since all ui are pendant vertices, by Definition 2.1, there is no edge incident at ui. Then number
of edges equals (4×6)+(4×3)

2 = 18. Finally ε((Sl4)ld) =
n(2n+1)

2 = 4((2×4)+1)
2 = 18.

(iii) Consider n ≥ 5. By Definition 2.1, all vi vertices are adjacent with seven vertices. However,
since all ui are pendant vertices, no edge incident at ui in (Sln)ld. Then, all ui have degree three.
Then we have ε((Sln)ld) =

7n+3n
2 .

An illustration to proposition 3.20 is given in Figure 5.

v1
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v3

v4v5

v6

v7

u1

u2

u3

u4u5

u6

u7

(a) Sl7

v1

v2

v3

v4v5

v6

v7

u1

u2

u3

u4u5

u6

u7

(b) (Sl7)ld

Figure 5: Lower deg-centric graph of Sl7.

An antiprism graph, denoted by An, n ≥ 3 is a graph obtained two cycles Cn and C ′
n of

order n with vertex sets V = v1, v2, v3, . . . , vn and U = u1, u2, u3, . . . , un respectively. Join the
vertices uivi and uivi+1 to form the additional edges.

Proposition 3.21. For an antiprism graph An, n ≥ 3,

ε((An)ld) =

{
ε(K2n) if 3 ≤ n ≤ 6
12n if n ≥ 7.

Proof. Consider an antiprism graph An, n ≥ 3. The antiprism graph is of the order 2n. Let
V (An) = v1, v2, . . . , vn, u1, u2, . . . , un.
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(i)If 3 ≤ n ≤ 6 , deg(vi) = deg(ui) = 4 > e(vi) = e(ui) in An then by Theorem 2.3,
(An)ld ∼= K2n.
(ii) If n ≥ 7, deg(vi) = deg(ui) = 4 in An then by Definition 2.1, deg(vi) = deg(ui) = 12 in
(An)ld. That implies ε((An)ld) = 12n.

Proposition 3.22. For an antiprism graph An, n ≥ 3, (An)ldk is complete.

Proof. The result is a direct consequence of Definition 2.2.

Consider a complete graph Kn with the vertex set V = v1, v2, v3, . . . , vn. Let U = u1, u2, u3, . . . , un

be a copy of V (G) such that ui corresponds to vi. The sun graph, denoted by Sn, is a graph with
vertex set V ∪ U and two vertices x and y are adjacent in Sn if x ∼ y in Kn and x = ui,
y ∈ vi, vi+1 .

Recall that the sequence of pentagonal numbers is generated by:

qn = 3n2−n
2 , n = 0, 1, 2, . . ..

In expanded form it is:

1, 5, 12, 22, 35, 51, 70, 92, 117, 145, 176, 210, 247, . . .

The relation between the size of the lower deg-centric sun graphs and the pentagon numbers
follows immediately as a proposition.

Proposition 3.23. For a sun graph Sn, n ≥ 3, ε((Sn)ld) = qn, n ≥ 3.

Proof. For a sun graph Sn, n ≥ 3, the sun graph is of the order 2n. Let V (Sn) = v1, v2, . . . , vn, u1, u2, . . . , un.
Since deg(vi) = n+1 > e(vi) = 2 in Sn, by Definition 2.1, 2n−1 edge incident at vi in (Sn)ld.
However, since deg(ui) = 2 in Sn, then by Definition 2.1, distance one edge incident at ui in the
lower deg-centric graph. Then we have

ε((Sn)ld) =

∑
wi∈V ((Sn)ld)

deg(wi)

2

=
n(2n− 1) + (n)(n)

2

=
3n2 − n

2
.

A closed sun graph CSn is the graph obtained from adding the edges uiui+1 in the sun
graph. In view of Definition 2.1, the lower deg-centric graph of a closed sun graph CSn, n ≥ 3,
is complete which implies ε((CSn)ld) = ε(K2n). That is, φ = 1.

The ladder graph, Ln, n ≥ 1 is obtained by taking two copies of a path Pn with respective
vertices say, v1, v2, v3, . . . , vn and u1, u2, u3, . . . , un and adding the edges viui, 1 ≤ i ≤ n. Note
that Ln

∼= Pn2K2 where 2 denotes the Cartesian product.

Proposition 3.24. For a ladder G = Ln, n ≥ 1 it follows that:

ε(L1ld
) = 0,

ε(L2ld
) = 4,

ε(L3ld
) = 11,

ε(L4ld
) = 20,

ε(Gld) = ε(Hld) + 7 where H = Ln−1 and n ≥ 5.

Proof. By applying Definition 2.1, it easily follows that ε(L1ld
) = 0, ε(L2ld

) = 4, ε(L3ld
) = 11

and ε(L4ld
) = 20. Now, besides the claimed result, it is valid that for any n ≥ 5 and H = Ln−1

the size of Hld, that is, ε(Hld) can be determined by applying Definition 2.1. Consider H = Ln−1
and assume that both Hld and ε(Hld) has been determined. Now consider the extension from
H to G = Ln. Some subgraph (or altered graph) of Hld is a subgraph of Gld. Note that in
G the degree of respectively vn−1, un−1 has increased to 3. Therefore, in Gld the seven edges
vnun, vnvn−1, vnun−1, vnvn−2, unvn−1, unun−2 and unun−1 added to Hld. Hence,
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ε(Gld) = ε(Hld) + 7.

Finally, since an initial value, that is, ε(L4ld
) = 20, is known, the result for n ≥ 5 follows

through mathematical induction.

A friendship graph, denoted by Fn, n ≥ 1, is obtained by joining n copies of the complete
graph K3 with a common vertex. Note that, In view of Definition 2.1, the lower deg-centric
graph of a friendship graph Fn, n ≥ 1, is always isomorphic to the friendship graph Fn. Which
implies, φ(Fn) = ∞.

4 Conclusion

The graph transformation called lower deg-centrication has been introduced. Various exploratory
results have been presented to establish some foundation for further research. As a scope of the
study, the researchers can extend the study on graph theoretical parameters to lower deg-centric
graphs of various classes of graphs and obtain fruitful results.
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