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Abstract In this paper, we examine the graph G characterized by its n vertices and m edges,
specifically focusing on its spectral properties by analyzing its Laplacian and Seidel Laplacian
matrices. The Laplacian eigenvalues are denoted by µ1, µ2, . . . , µn, and the Seidel Laplacian
eigenvalues are given as σ1, σ2, . . . , σn. Our primary objective is to determine the upper and
lower bounds of the Laplacian energy for sunlet and ladder graphs and to conduct a comparative
analysis with their Seidel Laplacian energy counterparts. This investigation aims to deepen
the understanding of how the structural attributes of these specific graph types influence their
spectral properties.

1 Introduction

In this paper, we delve into the concept of the variants of the graph energy, initially proposed by
Ivan Gutman et al. in 1978 [6]. While the comprehensive study of graph energy based on the ad-
jacency matrix spectrum only gained momentum approximately 25 years after its introduction,
the research landscape has since broadened significantly. A plethora of alternative graph en-
ergy measures have emerged, leveraging matrices other than the adjacency matrix, such as color
energy, common-neighborhood energy, detour energy, domination energy, edge energy, Harary
energy, Kirchhoff energy, matching energy, Laplacian energy, Seidel Laplacian energy, vertex
energy, and α-distance energy [6]. Our focus in this article is specifically on Laplacian energy
and Seidel Laplacian energy.

Laplacian eigenvalues are notably important in calculating centrality measures, facilitating
network diffusion, and enhancing network synchronization. The Seidel matrix and its associated
energy calculations have also been extensively investigated. Utilizing specific graph structures
such as the sunlet graph and the ladder graph employed in electronics and wireless communi-
cation illustrates their applicability in understanding graph invariants and their functionality as
examples of corona and cartesian products, respectively. The novelty of this work is to explore
previously unexamined areas of these energy variants and establish comparative bounds.

The organization of the article is structured as follows: Section two revisits the essential
definitions and core concepts required for our analysis; section three details the examination
of Seidel Laplacian energy across a range of general graphs; section four articulates a general
theorem regarding the bounds of Laplacian energy for graphs; the final section compares the
outcomes associated with the two energy variants for the graphs under consideration.

Literature Review

Graph energy is a concept with broad applications across several scientific fields including chem-
istry of unsaturated conjugated molecules, crystallography, macromolecular theory, and protein
sequence analysis and comparison. The utility of Laplacian energy, in particular, extends to the
field of remote sensing where it is employed to enhance the resolution of satellite images [6].
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In the realm of complex networks, the eigenvalues of the Laplacian matrix are critical to the
analysis of small-world networks, which are often constructed using analytic recursive equations
[9]. Moreover, Laplacian energy has been integrated into methodologies aimed at optimizing
transportation management systems. These systems utilize T-spherical fuzzy graphs to model
decision-making processes under uncertainty, effectively mirroring the preferences of decision
makers[11].

Research on the Laplacian energy of various graph structures, including their variants, contin-
ues to expand. Notable studies have calculated the Seidel Laplacian energies of unitary Cayley
graphs, fuzzy graphs, and non-complete extended p-sum (NEPS) graphs, contributing signifi-
cantly to our understanding of these complex mathematical constructs.

2 Preliminaries

Definition 2.1. [7], [4] “Given a graph G characterized by n vertices and m edges, where
µ1, µ2, . . . , µn represent the eigenvalues of the Laplacian matrix of G, the Laplacian energy
LE(G) is defined as the sum of the absolute values of the differences between each eigenvalue
and the average degree 2m

n .” Specifically, it is given by,

LE(G) =
n∑

i=1

∣∣∣∣µi −
2m
n

∣∣∣∣ .
Definition 2.2. [5] “A graph G of order n and size m possesses a Seidel matrix S(G), which is
defined by the following,

S(G) =


−1 if vertices vi and vj are adjacent,
1 if vertices vi and vj are not adjacent,
0 otherwise.

The eigenvalues σ1, σ2, σ3, . . . , σn are the Seidel eigenvalues of G, and they are ordered such
that σ1 ≥ σ2 ≥ σ3 ≥ . . . ≥ σn. The collection of these eigenvalues is known as the Seidel
spectrum of G. The Seidel Laplacian matrix, SL(G), is defined as SL(G) = DS(G) − S(G),
where DS(G) = diag(n− 1− 2d1, n− 1− 2d2, . . . , n− 1− 2dn) and S(G) is the Seidel matrix.
The degree of vertex vi is denoted di.” The Seidel Laplacian energy SLE(G) is defined as,

SLE(G) =
n∑

i=1

∣∣∣∣σi −
n(n− 1)− 4m

n

∣∣∣∣ .
Definition 2.1. [2] “A simple graph in which each pair of distinct vertices is joined by an edge
is called a complete graph Kn.”

Definition 2.3. [2] “A complete bipartite graph Km,n is a simple bipartite graph that includes
two disjoint vertex sets X and Y . Each vertex in set X is connected to every vertex in set Y by
an edge.”

Definition 2.4. [3] “The star graph K1,n is defined as a tree consisting of n+ 1 vertices, where
one central vertex exhibits a degree n being connected to all other vertices and the remaining n
vertices exhibiting a degree 1, joined only to the central vertex.”

Definition 2.5. [1] “The n-sunlet graph is created by augmenting a cycle graph Cn, which com-
prises n vertices, with n additional pendant edges. Each pendant edge extends from one of the
vertices of the cycle, resulting in a total of 2n vertices.”

Definition 2.6. [1] “The ladder graph Ln for n ≥ 2 is the Cartesian product of the path graphs
Pn and P2, resulting in a graph that includes 2n vertices and 3n− 2 edges.”

Definition 2.2. [10] “A critical point occurs when a function’s derivative is zero or undefined.
The function’s value at a critical point is known as the critical value.”



234 Teresa Arockiamary S and Virgin Christilda E

Theorem 2.7. [5] “SLE(G) ≤

√
n

(
n(n− 1) + 4Z1(G)− 16m2

n

)
where Z1(G) is the first

Zagreb Index.”

Theorem 2.8. [7] “LE(G) ≤ 2m
n +

√
(n− 1)

[
2M − (2n

m )2
]

where M = m+1
2

n∑
i=1

(
di − 2m

n

)2
.”

3 Seidel Laplacian energy of graphs

This section comprises of the computation of SLE(G) of a few graphs. The LE(G) of complete,
complete bipartite, star, friendship graphs are computed in [3]

Theorem 3.1. The Seidel Laplacian energy of a complete graph Kn is 2(n− 1).

Proof. A complete graph Kn consists of n vertices and m =

(
n

2

)
edges. The Seidel Laplacian

matrix for Kn is given by:
n− 1 − 2d1 1 1 · · · 1

1 n− 1 − 2d2 1 · · · 1
...

...
. . .

... 1
1 1 · · · 1 n− 1 − 2dn


where each diagonal entry is n − 1 − 2di and each off-diagonal entry is 1, due to every pair of
distinct vertices being adjacent. Therefore, the Seidel Laplacian spectrum for a complete graph
is: {0,−n} with multiplicities 1 and n− 1 respectively.

SLE(G) =
n∑

i=1

|σi + (n− 1)| = |0 + (n− 1)|+ (n− 1)| − n+ (n− 1)|.

This simplifies to 2(n− 1), as asserted.

Theorem 3.2. The Seidel Laplacian energy of a complete bipartite graph Km,n is 1
m+n

[
|−2n2−

2m2 +m+ n|+ |n2 +m2 − 2mn−m− n|+min{n− 1,m− 1}| − |n−m|(n+m)− [n2 +
m2 −m− n]|+max{n− 1,m− 1}

∣∣|n−m|(n+m)− [n2 +m2 −m− n]
∣∣]

Proof. Consider a complete bipartite graph Km,n consisting of m + n vertices and mn edges.
The Seidel Laplacian energy spectrum for Km,n is represented as:{

−(n+m) 0 −|n−m| |n−m|
1 1 min{n− 1,m− 1} max{n− 1,m− 1}

}

SLE(G) =
m+n∑
i=1

∣∣∣∣σi −
(n+m)(n+m− 1)− 4mn

m+ n

∣∣∣∣
Let r = n2 +m2 − 2mn−m− n

n+m .

SLE(G) = |−(n+m)−r|+|−r|+min{m−1, n−1} |−|n−m| − r|+max{m−1, n−1} ||n−m| − r|

This formula calculates the total Seidel Laplacian energy by evaluating the absolute differences
between the eigenvalues and the specific value r.

Corollary 3.3. If n = m in Km,n, the Seidel Laplacian energy is 4n− 2.
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Proof. Consider the graph Kn,n whose spectrum is characterized by the Seidel Laplacian eigen-
values as {

−(2n) 0
1 2n− 1

}
.

From Theorem 3.2, we compute the average vertex degree r adjusted by the total number of
vertices, given by

r =
−2n
2n

= −1.

Using this value,
SLE(G) = | − (2n) + 1|+ (2n− 1) = 4n− 2.

Therefore, when n = m in Km,n, SLE(G) simplifies to 4n−2, thereby confirming the assertion.

Corollary 3.4. The Seidel Laplacian energy of a star graph K1,n is (6n− 2)(n− 1)
1 + n

.

Proof. Consider the Seidel Laplacian spectrum of the star graph K1,n, which consists of{
−(n+ 1) 0 (n− 1)

1 1 n− 1

}
From Theorem 3.2, the average vertex degree adjusted by the total number of vertices, r, is
calculated as

r =
n(n− 3)

1 + n

SLE(G) =
1

1 + n
[6n2 − 8n+ 2]

Upon simplification, this expression can be factored and rewritten as

SLE(G) =
(6n− 2)(n− 1)

1 + n

Thus, for the star graph K1,n, the Seidel Laplacian energy is exactly (6n− 2)(n− 1)
1 + n

, as as-
serted.

4 Laplacian energy bounds in sunlet and ladder graphs

In this section, we have obtained the lower and upper bound of simple connected and finite
graphs. We know that 2

√
M ≤ LE(G) ≤ 2M is one of the bounds of LE(G) where M =

m+ 1
2

n∑
i=1

(di − 2m
n )2 [7].

Theorem 4.1. If G is a simple, connected, and finite (n,m) graph, then 2
√
M ≤ M, ∀M ≥ 4

and M ≤ LE(G),∀M .

Proof. To demonstrate M ≤ LE(G), assume that:
n∑

i=1

∣∣∣∣µi −
2m
n

∣∣∣∣ < M.

Since 0 is a Laplacian eigenvalue of G, we have

n

∣∣∣∣0 − 2m
n

∣∣∣∣ < M,

which implies 2m < M. Moreover, considering the following inequality:

2m < m+
1
2

n∑
i=1

(
di −

2m
n

)2

,

We analyze specific cases for di.
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• Case 1: When G = Kn and di = 2m
n , for n ≥ 1, this results in 2m < m, which is a

contradiction.

• Case 2: For a simple, connected graph where each di is at least one (assuming n > 1):

2m < m+
1
2

n∑
i=1

(
1 − 2m

n

)2

.

This inequality is examined further in subcases:

– Subcase 1: If m = n, this suggests 2m < 3m
2 , a contradiction.

– Subcase 2: If n > m:

2m < −m+
n

2
+

2m2

n
.

Substituting the maximum value of m,

2(n− 1) < (n− 1) +
n

2
,

n

2
− 1 < 0,

leads to a contradiction for n ≥ 2.

– Subcase 3: If m > n, considering

2m < −n+
m

2
+

2m2

n
.

Substituting the maximum value for n, results in a contradiction, affirming 2m < M .

Hence M ≤ LE(G) and the equality holds for K1 since M = 0
To prove: 2

√
M ≤ M

Consider (2
√
M)2 ≤ M2 then we have M(M − 4) ≥ 0.

The critical points are M = 0 and M = 4. The areas that these points define must be tested.

(i) If M < 0, both M and M − 4 are negative then M(M − 4) is positive. This condition is
omitted since M ≥ 0 and n,m ≥ 0

(ii) If M < 0 < 4, M is positive and M − 4 is negative then M(M − 4) is negative.

(iii) If M > 4, both M and M − 4 are positive then M(M − 4) is positive.

The solution to the inequality 2
√
M ≤ M is M ≥ 4 and M = 0

Theorem 4.2. If G be simple connected and finite (n,m) graph, then LE(G) ≤ 2m ≤ 2M

Proof. We initiate our discussion by articulating LE(G) as follows

LE(G) =
n∑

i=1

∣∣∣∣µi −
2m
n

∣∣∣∣
≤

n∑
i=1

|µi| (equality holds for K1)

≤ 2m

Next, to demonstrate that 2m ≤ 2M , assume the contrary, 2m > 2M

2m > 2m+
n∑

i=1

(
di −

2m
n

)2

This assumption leads us to consider two specific cases:
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• Case 1: If di = 2m
n for complete graphs, we find 2m > 2m, a contradiction.

• Case 2: G is simple, connected and di is atleast 1 for n > 1, we have,

2m > 2m+ n
2

(
1 − 2m

n

)2
, a contradiction

Hence 2m ≤ 2M , and equality holds specifically for complete graphs.

Theorem 4.3. 2
√
M < 3m < LE(G) < 4m < 2M for a sunlet graph Cn ⊙K1

Figure 1. C15 ⊙K1

Proof. The sunlet graph can be described as the corona product Cn ⊙ K1, where Cn is a cycle
consisting of n vertices. Consequently, the sunlet graph comprises 2n vertices, and there are
m = 2n edges in the graph. First, we calculate M as follows,

M = m+
1
2

2n∑
i=1

(di − 2)2

Since half of the vertices have a degree of 3 (vertices from the cycle Cn each connected to an
additional vertex K1) and the other half have a degree of 1 (the vertices of K1 each connected
only to their corresponding vertex on the cycle), the computation simplifies to,

M = 2n+
1
2
[
n · 12 + n · 12]

M = 2n+
n

2
= 3n = 3m

Thus, 2M = 6m. Applying Theorems 4.1 and 4.2 for comparison and bounds, we observe the
following inequalities, 2

√
3m < 3m < LE(G) < 4m < 6m

Theorem 4.4. 2
√
M < 3n− 4

n < LE(G) < 6n− 4 < 2M for a ladder graph Ln

Figure 2. L3

Proof. Consider a graph Ln composed of 2n vertices and m = 3n − 2 edges and we compute
the proof as follows,

M = 3n− 2 +
1
2

2n∑
i=1

(
di −

3n− 2
n

)2
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Given the vertex degree distribution di, we simplify the summation,

M = 3n− 2 +
1

2n2

[
4(−(n+ 2)2 + (2n− 4)(4)

]
This reduces to,

M = 3n− 2 +
1
n2 [2n

2 − 4n]

M = 3n− 4
n

and 2M = 6n− 8
n

With these values, we apply the bounds established by Theorems 4.1 and 4.2,

2

√
3n− 4

n
< 3n− 4

n
< LE(G) < 6n− 4 < 6n− 8

n

5 Comparison of Laplacian energy and Seidel laplacian energy

Theorem 5.1. For a graph G with n vertices, let σi, for i = 1, 2, . . . , n, represent the eigenvalues
of the Seidel Laplacian matrix, and µi, for i = 1, 2, . . . , n, denote the Laplacian eigenvalues.
Then, the difference between the sum of the Seidel Laplacian eigenvalues and the sum of the

Laplacian eigenvalues is given by
n∑

i=1
σi−

n∑
i=1

µi = n2 −n−6m, where m is the number of edges

in G.

Proof.
n∑

i=1

σi −
n∑

i=1

µi = 2m− (n(n− 1)− 4m)

= 2m− n2 + n+ 4m

= n2 − n− 6m

Remark 5.2. If SLE(G) = LE(G) then G is complete and conversely.

Proof. SLE(G)− LE(G) = 0

Theorem 5.3. SLE(G)−LE(G) ≤ 2n
√
(2n+ 1)− 2−

√
(4n− 2)(3n− 2) for a sunlet graph

Cn ⊙K1

Proof. Using Theorems 2.7 and 2.8, we have,

SLE(G) ≤
√

2n[2n(2n− 1) + 4(10n)− 16n]

≤
√

4n2(2n+ 11)

LE(G) ≤ 2 +
√
(2n− 1)[6n− 4]

≤ 2 +
√
(4n− 2)(3n− 2)

SLE(G)− LE(G) ≤ 2n
√
(2n+ 1)− 2 −

√
(4n− 2)(3n− 2)

Theorem 5.4. For a ladder graph Ln,

SLE(G)−LE(G) ≤ 2

√
n

[
2n2 − n+ 8 − 16

n

]
−3n− 2

n
−

√
2n− 1

(3n− 2)2

[
38n2 − 48n+ 24 − 32

n

]
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Proof. Using Theorems 2.7 and 2.8, we obtain,

SLE(G) ≤ 2

√
n

[
2n2 − n+ 8 − 16

n

]

LE(G) ≤ 3n− 2
n

+

√
2n− 1

(3n− 2)2

[
38n2 − 48n+ 24 − 32

n

]

6 Application

The Seidel Laplacian matrix, unlike the standard Laplacian matrix, accounts for both adjacency
and non-adjacency interactions, making it ideal for in-depth investigation of fuzzy graphs [8].
Sunlet graphs (corona product) and ladder graphs (cartesian product) are frequently utilized in
networks. Other graphs can also be investigated to examine their characteristics utilizing the
energy idea, which helps comprehend complex networks and different chemical compounds,
including pattern identification and other data safety measures [12]. The Python code for finding
the Seidel laplacian energy of any graph is given below:

import numpy as np

import networkx as nx

def seidel_matrix(G):

n = len(G.nodes)

A = nx.adjacency_matrix(G).toarray()

S = np.ones((n, n)) - 2 * A # S = J - 2A, where J is the all-ones matrix

np.fill_diagonal(S, 0) # Diagonal entries are zero

return S

def seidel_laplacian_matrix(G):

n = len(G.nodes)

degrees = np.array([d for _, d in G.degree()])

D_S = np.diag(n - 1 - 2 * degrees) # Compute D_S

S = seidel_matrix(G)

S_L = D_S - S # Seidel Laplacian matrix

return S_L

def seidel_laplacian_energy(G):

n = len(G.nodes)

m = len(G.edges)

S_L = seidel_laplacian_matrix(G)

eigenvalues = np.linalg.eigvalsh(S_L) # Compute eigenvalues of S_L

mean_value = (n * (n - 1) - 4 * m) / n

SLE = np.sum(np.abs(eigenvalues - mean_value)) # Compute SLE

return SLE

if __name__ == "__main__":

G = nx.complete_graph(3) # Example graph

SLE = seidel_laplacian_energy(G)

print("Seidel Laplacian Energy:", SLE)
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Figure 3. Example of the formulated code

The above code can be used to obtain the Seidel Laplacian energy of any graph.

Figure 4. Seidel Laplacian energy of the Sunlet graph

Figure 5. Output 1: C6 ⊙K1, L6 Figure 6. Output 2: C7 ⊙K1, L7

From the output generated, we infer that LE(G) values of the sunlet graph on 12 vertices and
14 vertices are 18.1553 and 21.18358 whereas the SLE(G) values of the same is found to be
40.3107 and 48.8068 whose difference is large when compared to that of the laplacian energy
obtained. The range difference between the Seidel laplacian energies of the graphs gives a better
understanding than the laplacian energy values.

7 Conclusion remarks

This article obtained the Seidel Laplacian energy of complete, complete bipartite and star graphs.
Although bounds for Laplacian energy existed in the literature, we aimed at attaining an upper
bound less than 2M and a lower bound greater than 2

√
M . The comparison of Laplacian energy

to Seidel Laplacian energy for sunlet and ladder graphs was also examined. A comparative
analysis can be done for other graphs also. Therefore, the significant results of this work make
it fascinating and capable of further research.
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