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Abstract In this paper, we develop Supply chain vendor inventory model for fixed life time
product to estimate coordination and non coordination stages with linear and fixed back order
cost. The vendor analysis fixed and linear back order cost, which leads to improved efficiency of
saving percentage, reduced costs, and increased customer satisfaction. We discuss the significant
investment of time and resources to establish the effective partnerships. This model develops
coordination stage more benefit for both buyer and vendor. The model includes a numerical
example for illustration purposes.

1 Introduction

Buyer-vendor coordination and non-coordination are two contrasting approaches that are often
employed in supply chain management to manage relationships between buyers and vendors.
Buyer-vendor coordination refers to the collaborative efforts between buyers and vendors to im-
prove supply chain efficiency and achieve mutual benefits. This approach involves information
sharing, joint planning, and coordination of activities such as production, inventory manage-
ment, and transportation. Coordination is often facilitated through the use of technology, such as
electronic data interchange (EDI), which allows for the seamless sharing of information between
buyers and vendors. In contrast, non-coordination refers to a more traditional approach where
buyers and vendors operate independently without any significant collaboration or information
sharing. In this approach, each party is primarily concerned with its own interests and aims to
optimize its individual performance. When choices are made by each party independently of
the other, without taking the supply chain as a whole into account, non-coordination can lead to
inefficiencies including overproduction, stock-outs, and delays.

Both coordination and non-coordination approaches have their advantages and disadvan-
tages.While coordination can result in higher productivity, lower expenses, and happier cus-
tomers, building and maintaining successful partnerships takes a substantial time and resource
commitment. Non-coordination may be simpler and more cost-effective in the short term, but
it can lead to inefficiencies and missed opportunities in the long run. Furthermore, the choice
between coordination and non-coordination may also depend on the specific industry and market
conditions. For example, in industries with high levels of product customization, such as fash-
ion or technology, coordination may be necessary to ensure timely delivery of unique products.
In contrast, in industries with standardized products, such as consumer packaged goods, non-
coordination may be more feasible as vendors can easily replace one another. It is important to
note that while coordination may offer benefits, it requires a significant investment of time and re-
sources to establish and maintain effective partnerships. The type of connection between buyers
and vendors may also affect the amount of cooperation needed. For example, a closer coordi-
nation may be necessary for critical components, while less coordination may be required for
less critical products. In conclusion, buyer-vendor coordination and non-coordination are two
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contrasting approaches to supply chain management that have their advantages and disadvan-
tages.The decision between these strategies may be influenced by a number of variables, includ-
ing as the product’s nature, the market, the industry, and the degree of trust that exists between
buyers and sellers. Effective coordination can improve supply chain efficiency and achieve mu-
tual benefits, but it requires significant investment and ongoing maintenance. Non-coordination
may be simpler and more cost-effective in the short term but can lead to inefficiencies and missed
opportunities in the long run.

2 Literature Review

Inventory model is a numerical model that facilitates business in deciding the ideal level of in-
ventories. In this trade world, deterioration is a characteristic procedure of all wares. In the
event of product loss, degradation could be extremely noticeable.A supply chain with a single
vendor and numerous retailers was the subject of a model of inventory analysis by Esmaeili, M.,
& Nasrabadi, M. [5]. This terminology offers a vendor-buyer coordination method in the face
of inflation and trade credit deteriorating products. Deterioration of objects is a typical issue in
daily life. Deterioration usually means that the products are getting worse. Many researchers on
different average inventory models carry out research and hold debates on deteriorating products
with variable demand patterns.

S. P. Aggarwal et al [20] considered the deteriorating products by introducing delay credit
period.Time-dependent degrading rate was applied by P. Muniappan et al. [14] to analyse an
EOQ model for deteriorating products. In their analysis they used different credit payment op-
tions which resulted in the benefit of both buyer and vendor. B. Sarkar et al. [1] established an
enhanced inventory model when vendors where facing partial backlogging. For model formula-
tion time varying deterioration and stock-dependent demand where considered. Price-sensitive
demands for perishable goods were covered by Shib Sankar Sana [19]. The optimum production
inventory model with degrading products was established by K.S. Swaminathan et al. [6]; the
manufacturer benefited from this model, which produced inventory at the lowest possible cost.

A production model with decaying products was created by P. Muniappan et al. [15] em-
ploying a two-level trade credit period. Muniappan P et al. [16] developed mathematical model
for computing optimal replenishment polices, it resulted in best accurate ordering period to run
the business in positive manner. M. Ravithammal et al. [10] studied two ware house supply
chain models. This model deals with the manufacturer who consumes first rental warehouse and
then their own warehouses because of space adequacy. For analysis the deteriorating items were
considered as ramp- type demand.

M. Ravithammal et al. [11] analyzed an integrated optimum production inventory system
which develops vendor buyer coordination strategy. The buyer himself reworks or screens the
damaged products. In this case the buyer and vendor both benefited compared with non coor-
dination strategy. M. Ravithammal et al. [12] studied production inventory model by applying
quantity discount provided by the manufacturer to their buyers. It deals buying of more products
compared with regular lot size. Ravithammal. M et al. [13] developed inventory model by using
price discount with various factors like shortages, back ordering and rework.

C.T. Chang et al. [4] discussed EOQ model with inspection errors of the product and using
trade credit policy. S.C. Chen et al. [18] discussed retailer’s minimum ordering policy by using
deteriorating items with fixed lifetime. Sundara rajan. et al. [21] investigation reveals that the
total profit gets maximized when the deficiency are absolutely backlogged. S. Amulu Priya et
al. [17] investigation reveals that Supply chain management, which is focused on chronological
progressin SCM and SC systems. Li. J et al.A supply chain with uncertain demand and de-
pendable suppliers can benefit from the inventory management model put forward by [8]. While
guaranteeing a high degree of customer service, the strategy seeks to reduce the overall cost
of inventories. Wang, Y., et al.[22] developed a mathematical model for inventory control for a
chain of supply with only one provider and several consumers. The model accounts for lead time
variability and demand unpredictability in order to optimise the inventory strategy and maximise
overall supply chain profit. A mathematical model for managing inventory in a supply network
with several vendors and distributors was developed by Li. H. et al. [7]. The model’s goal is to
reduce total inventory costs while ensuring a high standard of customer care while accounting
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for demand fluctuation and lead time uncertainty.

3 Observations and Presumptions

The subsequent observations and presumptions were used in this paper
π−denote the fixed back order cost per unit.
π1−denote the linear back order cost per unit.
TCb(Q,B)−denote the buyer total cost.
TCv(m)−denote the vendor total cost for non coordination.
TCv(n)−denote the vendor total cost for coordination.
Assumption

The demand rate remains consistent and is predetermined for the entire planning period.

4 Fixed and Linear Back orders in an EOQ Model

Case(i): The EOQ approach is ineffective without co-ordination. In the event of no coordination,
the consumer’s overall expenditure is determined as follows:

TCb(Q,B) =
Dk2

Q
+

(Q−B)2h2

2Q
+

π1B
2

2Q
+

πDB

Q
(4.1)

∂TCb(Q,B)
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(
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Q

In order to be ideal ∂TCb(Q,B)
∂Q = 0 and ∂TCb(Q,B)

∂B = 0

Now Q∗
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√
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TC∗
b =

1
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(
√

2Dk2h2π1(h2 + π1)− π2D2) + πDh2)

The buyer’s order quantity is determined when there is no coordination Q0 =
√

2Dk2(h2+π1)−π2D2

h2π1

with the annual cost

TCb =
1

h2 + π1
(
√

2Dk2h2π1(h2 + π1)− π2D2) + πDh2)

The order size of the vendor is mQ0, due to a steady stream of demands at set intervals

t0 =

√
2k2(h2 + π1)− π2D

Dh2π1
.
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.

Without cooperation, the vendor’s total annual cost would be
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In the absence of cooperation, the vendor issue is described as,

min TCv(m) w.r.to {mt0 ≤ L,m ≥ 1, (4.2)

where mt0 ≤ L shows that goods are not past due before the consumer sells them.

Theorem 4.1. If L2 ≥ 2k2(h2+π1)−π2D
Dh2π1

then,

m∗ = min


⌈√

2Dk1

(π1B+πD
h2

)2h1 + π1B2
+

1
4
− 1

2

⌉
,

 L√
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Dh2π1


 (4.3)

where L2 ≥ 2k2(h2+π1)−π2D
Dh2π1

is to verify that m∗ ≥ 1. and ⌈x⌉ is the smallest integer larger than
or equivalent to x.

Proof. Given the narrow convexity of TCv(m) in m, we have,

d2TCv(m)

dm2 =
2Dk1

m3

√
h2π1

2Dk2(h2 + π1)− π2D2 > 0.

Let us assume that m∗
1 represents the ideal value of (4.2), as follows:

m∗
1 = max{min{m/TCv(m) ≤ TCv(m+ 1)}, 1}

m∗
1 = max{min{m/m(m+ 1) ≥ 2Dk1

(Q−B)2h1+π1B2 }, 1}

=

⌈√
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(
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+ 1
4 − 1

2

⌉
≥ 1.

Use t0 =
√

2k2(h2+π1)−π2D
Dh2π1

into the above constraints then there exists the following inequality
holds.
m
√

2k2(h2+π1)−π2D
Dh2π1

≤ L

Consider m∗
2 = L√

2k2(h2+π1)−π2D
Dh2π1

≥ 1 because L2 ≥ 2k2(h2+π1)−π2D
Dh2π1

m∗ = m∗
1 when m∗

1 ≤ m∗
2 ; else, m∗ = m∗

2 In this case, TCv(m) is convex.
Let L2 ≥ 2k2(h2+π1)−π2D

Dh2π1
, then
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Hence we have without any coordination the vendor places D

m∗

(√
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h2π1

) orders in

every regular interval
m∗

(√
2Dk2(h2+π1)−π2D2

h2π1

)
D .

The order size for ventor is m∗
(√

2Dk2(h2+π1)−π2D2

h2π1

)
and the optimum total cost is TCv(m∗).

Case ii. EOQ model with coordination

TCv(n) =
Dk1

nKQ0
+

(n− 1)K(Q−B)2h1

2Q0
+
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2Q0
+
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If there is insufficient coordination, the issue can be expressed as minTCv(n) with the appropri-
ate
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)
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nKt0 ≤ signifies that goods are not distributed before being paid for by purchasers.

Theorem 4.2. If m∗ be the optimum value of the equation (4.2) and also n∗ be the optimum
value of (4.5), then

TCv(n
∗) ≤ TCv(m

∗). (4.6)

Proof.
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KQ0
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)
,

d(k) =
1

p2D

(
Dk2

KQ0
+

K(Q−B)2h2

2Q0
+

π1KB2

2Q0
+

πDB

Q0

− 1
h2 + π1

(√
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On substituting K as 1 in (4.7), we obtain the value of d(1) as 0.

d(1) =
1

p2D

(
1

h2 + π1

(√
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))
− 1
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1
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))
= 0.

If we set K = 1 in (4.5), we get (4.2), which is the specific case of (4.5). Therefore, the inequal-
ity is true.

The following formula determines the ideal purchasing amount for both the seller and the
consumer.

On substituting the value d(K) in (4.4), we obtain

TCv(n) =
Dk1

nKQ0
+

(n− 1)K(Q−B)2h1

2Q0
+
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(4.8)

In K, d(K) is convex since (4.8) is a convex function. Let K∗ be the smallest value of TCv(n).

When
dTCv(n)

dK
= 0 for flawlessness, we obtain
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)
)

(Q0 −B)2((n− 1)h1 + h2) + π1nB2 (4.9)
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Consider

f(n) =
(
−4k2

2h2(h2 + π1)− 2k2h2π
2D
)
n2 +

(
L2π1h1(π1B + πD)2 + L2π2

1h
2
2B

2

−4k1k2h2(h2 + π1) + 2k1h2π
2D
)
n+ L2π1(h2 − h1)(π1B + πD)2. (4.10)

Thus, nKt0 ≤ L is similar to f(n) ≥ 0. Substitute K∗(n) and t0 =

√
2k2(h2 + π1)− π2D

Dh2π1
in

TCv(n), we get

TCv(n) =

√
h2π1
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[
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(
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n
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)
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]
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2
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 (4.11)

This is hence equal to min TCv(n) with respect to{
f(n) ≥ 0,
n ≥ 1.

(4.12)

For x ≥ 0, the function
√
x absolutely grows. (4.12) comparable to

min T∼Cv(n) =
h2π1

2k2(h2 + π1)− π2D2

[
2D
(
k1

n
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)
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2]

+2π2D2B2]
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f(n) ≥ 0,
n ≥ 1.

(4.13)

To solve the preceding equation, consider T∼Cv(n) and f(n). Since T∼Cv(n) is convex when
h2 ≥ h1, because

min T∼C
′′

v (n) =
h2π1

2k2(h2 + π1)− π2D2

[
2k1(Q0 −B)2(h2 − h1)

n3

]
> 0

f(n) is strictly concave since,

f
′′
(n) = −2

[
4k2

2h2(h2 + π1)− 2k2h2π
2D
]
< 0.

Case 1. For n ≥ 1, we consider that n∗
1 is the minimum of T∼Cv(n), then

n∗
1 =

{ √
k1(h2−h1)(π1B+πD)2

k2(π1B2h2
2+h1(π1B+πD)2)

+ 1
4 − 1

2 ,
k1(h2−h1)(π1B+πD)2

k2(π1B2h2
2+h1(π1B+πD)2)

≥ 2,

1 otherwise.
(4.14)

Proof. T∼Cv(n∗
1) ≤ min {T∼Cv(n∗

1 − 1), T∼Cv(n∗
1 + 1)} is true if the minimum of T∼Cv(n)

is n∗
1 , n ≥ 1.

T∼Cv(n
∗
1)− T∼Cv(n

∗
1 − 1) =

(
π1B + πD

h2

)2 [
k2h1 −

k1(h2 − h1)
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1(n

∗
1 − 1)

]
+ π1k2B

2 ≤ 0.

We get, (
n∗

1 − 1
2

)2

≤ k1(h2 − h1)(π1B + πD)2

k2(π1B2h2
2 + h1(π1B + πD)2)

+
1
4

(4.15)
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and also by

T∼Cv(n
∗
1)− T∼Cv(n

∗
1 + 1) ≤ 0.

We get (
n∗

1 − 1
2

)2

≥ k1(h2 − h1)(π1B + πD)2

k2(π1B2h2
2 + h1(π1B + πD)2)

+
1
4

(4.16)

Hence

n∗
1 =

√
k1(h2 − h1)(π1B + πD)2

k2(π1B2h2
2 + h1(π1B + πD)2)

+
1
4
− 1

2

when√
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k2(π1B2h2
2 + h1(π1B + πD)2)

+
1
4
− 1

2
≤ n∗

1 ≤

√
k1(h2 − h1)(π1B + πD)2

k2(π1B2h2
2 + h1(π1B + πD)2)

+
1
4
+

1
2
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1 = 1 when

k1(h2 − h1)(π1B + πD)2

k2(π1B2h2
2 + h1(π1B + πD)2)

+
1
4
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Also note that n∗
1 = 1

0 <
k1(h2 − h1)(π1B + πD)2

k2(π1B2h2
2 + h1(π1B + πD)2)

+
1
4
< 2.

Hence (4.14) is true.
Case 2. Let n∗

2(1) and n∗
2(2) be solutions of (4.10), then

if Y 2 + 4XZ < 0 or Y 2 + 4XZ ≥ 0 and n∗
2(1) < 1, implies that f(n) < 0 for n ≥ 1.

If Y 2 + 4XZ ≥ 0 and n∗
2(1) ≥ 1, then n∗

2(2) ≥ 1, f(n) ≥ 0.

For ⌈n∗
2(2)⌉ ≤ n ≤ ⌈n∗

2(1)⌉; If n∗
2(2) < 1 and n∗

2(1) ≥ 1, f(n) ≥ 0 for 1 ≤ n ≤ ⌈n∗
2(1)⌉;

X = −4k2
2h2(h2 + π1)− 2k2h2π

2D,

Y = L2π1h1(π1B + πD)2 + L2π2
1h

2
2B

2 − 4k1k2h2(h2 + π1) + 2k1h2π
2D,

Z = L2π1(h2 − h1)(π1B + πD)2.

Proof. Solving the quadratic equation f(n) = 0, we obtain

n∗
2(1) =

Y +
√
Y 2 + 4XY

2X
,

and

n∗
2(2) =

Y −
√
Y 2 + 4XY

2X
.

Taking into account that f(n) is a quadratic expression, the subsequent conclusions are possible.

f(n) < 0 where Y 2 + 4XY < 0 for all n,

n∗
2(1), n

∗
2(2) are all realvalues of f(n) where Y 2 + 4XY ≥ 0.

Given that n ≥ 1,
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f(n) < 0 where n∗
2(1) < 1, for n ≥ 1;

f(n) ≥ 0 where n∗
2(2) ≥ 1, for ⌈n∗

2(2)⌉ ≤ n ≤ ⌈n∗
2(1)⌉;

f(n) ≥ 0 where n∗
2(2) < 1 and n∗

2(1) ≥ 1, for 1 ≤ n ≤ ⌈n∗
2(1)⌉.

Theorem 4.3.

n∗ = n∗
1 if 1 ≤ n∗

1 ≤ ⌈n∗
2(1)⌉,

n∗ = ⌈n∗
2(1)⌉ if n∗

1 > ⌈n∗
2(1)⌉. when h2 ≥ h1n

∗
2(2) ≥ 1.

If the minimum of T∼Cv(n) is denoted by n∗
1 , (n ≥ 1). T∼Cv(n) is a convex function.

Hence if n∗ = n∗
1 , 1 ≤ n∗

1 ≤ ⌈n∗
2(1)⌉ else n∗ = ⌈n∗

2(1)⌉, n
∗
1 > ⌈n∗

2(1)⌉.

Thereby, T∼Cv(n) is decreasing on the interval as n∗
1 > ⌈n∗

2(1)⌉, so n∗ = ⌈n∗
2(1)⌉ .

Theorem 4.4. If h2 ≥ h1, then K∗(n∗) > 1.

Proof.

K∗(n) =

√
2D
(
k1
n + k2

)
(Q0 −B)2 [(n− 1)h1 + h2] + π1nB2

=

√√√√√ 2D
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)(
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h2

)2
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2 + h1(π1B + πD)2)

≥ 2 then n∗ = n∗
1 .
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1 =

⌈√
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1
4
− 1

2

⌉

K∗(n∗) is

⌈√
x+

1
4
− 1

2

⌉
≤

√
x+ 1, then n is diminishing. This is true for x ≥ 0.

To prove K∗

⌈√
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k2(π1B2h2
2 + h1(π1B + πD)2)

+ 1

⌉
> 1.

2Dk1 + 2Dk2

√
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k2(π1B2h2
2 + h1(π1B + πD)2)

+ 2Dk2 >
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)2(
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)
h1

+

(
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√
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k2(π1B2h2
2 + h1(π1B + πD)2)

h1+π1B
2
(

k1(h2 − h1)(π1B + πD)2

k2(π1B2h2
2 + h1(π1B + πD)2)

)
Therefore the above equation holds if k1, k2, h1, h2, B,D, π1, π are all positive and h2 ≥ h1.

(ii) If n∗ = n∗
1 = 1 then

K∗(1) =

√
2Dh2(k1 + k2)

(π1B + πD)2 + π1B2h2

Hence K∗(1) > 1 if k1, k2, h2, B,D, π1, π are all positive.

(ii) If n∗ = ⌈n∗
2(1)⌉, n

∗
1 > ⌈n∗

2(1)⌉ then K∗
(
⌈n∗

2(1)⌉
)
≥ K∗(n∗

1) > 1.

From (i) to (iii), K∗(n) > 1 if h2 ≥ h1.
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5 Numerical Analysis on various decision parameters

h1 h2 π π1 d(K) Q B SPb SPv1 SPv2

5 10 0.03 1.2 0.0018 1363.5 1190.6 16.4538 11.5707 23.1415
5 10 0.04 1.3 0.0019 1313.8 1127.3 15.5082 11.0436 22.0872
5 10 0.05 1.4 0.0020 1269.1 1069.4 14.7079 10.5891 21.1783
5 10 0.06 1.5 0.0021 1228.5 1016.1 14.0240 10.1954 20.3908
5 9 0.05 1.4 0.0020 1277 1057.1 14.2213 10.2354 20.4709
5 10 0.06 1.5 0.0021 1229 1016.1 14.0240 10.1954 20.3908
5 10 0.01 1.0 0.0016 1482.9 1339.0 18.9643 12.9155 25.8309
6 11 0.02 1.1 0.0016 1413.0 1268.1 17.9752 12.4589 24.9178
7 12 0.03 1.2 0.0017 1351.7 1206.1 17.1784 12.0848 24.1696
8 13 0.04 1.3 0.0018 1297.2 1151.3 16.5226 11.7731 23.5462
9 14 0.05 1.4 0.0018 1248.5 1102.5 15.9732 11.5099 23.0197
10 15 0.06 1.5 0.0019 1204.4 1058.6 15.5064 11.2851 22.5702
5 10 0.01 1.0 0.0016 1482.9 1339.0 18.9643 12.9155 25.8309
6 10 0.02 1.1 0.0017 1419.3 1260.7 17.5855 12.1870 24.3740
7 10 0.03 1.2 0.0018 1363.5 1190.6 16.4538 11.5707 23.1415
8 10 0.04 1.3 0.0019 1313.8 1127.3 15.5082 11.0436 22.0872
9 10 0.05 1.4 0.0020 1269.1 1069.4 14.7079 10.5891 21.1783
10 10 0.06 1.5 0.0020 1228.5 1069 14.0240 10.1954 20.3908
5 10 0.01 1.3 0.0019 1318.2 1157.7 17.8470 12.1214 24.2428
5 10 0.01 1.4 0.0020 1275.9 1110.4 17.4659 11.8540 23.7081
5 10 0.01 1.5 0.0021 1238.0 1067.8 17.0824 11.5862 23.1724
5 10 0.01 1.6 0.0022 1203.9 1029.2 16.6971 11.3182 22.6364
5 10 0.02 1.0 0.0016 1481.9 1329.0 17.8805 12.4144 24.8288
5 10 0.03 1.0 0.0015 1480.2 1318.4 16.9452 11.9731 23.9462
5 10 0.04 1.0 0.0015 1477.8 1307.1 16.1348 11.5847 23.1694
5 10 0.05 1.0 0.0015 1474.8 1295.3 15.4306 11.2434 22.4869
5 10 0.02 1.1 0.0017 1419.3 1260.7 17.5855 12.1870 24.3740
5 10 0.03 1.2 0.0018 1363.5 1190.6 16.4538 11.5707 23.1415
5 10 0.04 1.3 0.0019 1313.8 1127.3 15.5082 11.0436 22.0872
5 10 0.05 1.4 0.0020 1269.1 1069.4 14.7079 10.5891 21.1783
5 10 0.06 1.5 0.0021 1228.5 1016.1 14.0240 10.1954 20.3908

Inference:
Holding costs (h1 and h2) play a significant role in any business organization and supply

chain process. In our discussion, we explore scenarios where the buyer’s holding cost is fixed
while the vendor’s holding cost increases. Our analysis shows that in these situations, both the
buyer and the vendor can experience an increase in savings percentage, leading to a win-win
outcome for both parties.

We have analyzed scenarios where both the buyer’s and vendor’s holding costs for the prod-
uct are fixed. In this analysis, we determined the optimum order quantity, backorder costs, and
the resulting savings percentage. Our findings indicate that this approach is more beneficial for
both the buyer and the vendor.

Efficiency of the proposed model:

(i) Effect of Holding Costs: Increasing the values of the holding costs h1 and h2 increases the
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total saving percentage for both the buyer and the vendor. However, the vendor benefits
more than the buyer in this scenario.

(ii) Impact of Linear Backorder Cost: The saving percentage decreases when the linear backo-
rder cost increases, while the holding costs and fixed backorder costs remain constant.

(iii) Effect of Backorder and Holding Costs: The saving percentage decreases when either the
backorder cost or the holding cost for the buyer or vendor increases.

6 Conclusion:

Effective inventory management of vendor-manufactured, buyer-supplied commodities with short
shelf lives requires careful control of backorder costs. In this paper, we have developed fixed and
linear backorders inventory model for vendor with production and without production. Analyt-
ically optimized decisions are arrived for the model. The vendor and the buyer’s respective
saving percentages are always raised by the cooperative strategy. The model handles a variety
of change scenarios, including production increases, holding costs, and both linear and fixed
backorder costs. We proved that system optimization is possible with the decentralized quantity
discount strategy. As a result, over time, both the seller and the customer benefit. The model is
demonstrated with a numerical example.
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