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Abstract In a locale L, if I represents an ideal, which is closed under arbitrary join, we
construct a complete lattice M = {Ka; a ∈ L} of ideals of L with the property I ⊆ Ka for
all a ∈ L. M induces a frame congruence RI on L and RI determines a sublocale S of L.The
topological properties such as subfit, fit, S′

2, regularity, normal and compactness of the sublocale
S of L thus constructed can be obtained using the class of core elements of L with respect to I.
On the other hand, via a sublocale S attached to a locale L, an ideal IS which is closed under
arbitrary join can be obtained. We prove that the sublocale constucted using the congruence RIS

as above is embeddable in the given sublocale S.

1 Introduction

Since 1914, it has been understood that a set with a lattice of open subsets is a topological space.
Marshall Stone was one of the first person to investigate the connection that exists between lat-
tice to topology. In his work “The point of pointless topology ”[5],Johnstone described pointless
topology as “the complete lattice" that fulfils “infinite distributive law". The majority of topo-
logical concepts have now been researched against a localic context. Theory of frames is the
opposite of the idea of theory of locales. Studies in localic settings are topological, while those
utilising frame theory are more algebraic.
In the framework of point free topology, given an ideal I in a locale L, we construct a collection
{Ka; a ∈ L} of ideals of L with the property I ⊆ Ka for all a ∈ L. It is demonstrated that for
any a ∈ L, the ideals Ka are prime if the ideal I is so. We have shown that if the ideal I is closed
under arbitrary join, then there arises a “complete join semilattice homomorphism" from the lo-
cale L to the complete lattice M = ({Ka; a ∈ L},⊇) and M induces a frame congruence RI on
L. This congruence determines a sublocale of L. The topological properties such as subfit, fit,
S′

2, regularity, normal and compactness of the sublocale S of L thus constructed can be obtained
using the class of core elements of L with respect to I.
Conversely given a sublocale S associated with a locale L, an ideal IS which is closed under
arbitrary join is obtained. It is proved that the sublocale constucted using the congruence RIS is
embeddable in the given sublocale S.
The concept of core element with respect to an ideal I is introduced. It is shown that the collec-
tion Ç of core elements is a congruence class with respect to RI .
Sublocales of a locale are traditionally presented in terms of sublocale homomorphism, frame
congruence and nucleus. In [6] Pultr and Picardo have shown that there exist a one-one corre-
spondence between sublocales of a locale L and nuclei in L. The work in this paper discuss a
method of construction of a sublocales using ideals of a locale L.

2 Preliminaries

“A frame (or a locale) is a complete lattice L satisfying the infinite distributivity law a ∧
∨

B =∨
{a ∧ b; b ∈ B} for all a∈ L and B⊆ L [6]. Given the frames L, M, a frame homomorphism

is a map h : L → M preserving all finite meets (including the top 1) and all joins (including
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the bottom 0). The category of frames is denoted by Frm. The opposite category of Frm is the
category Loc of locales."

Example 2.1. i. “The lattice Ω(X) of open subsets of topological space (X,Ω(X))."
ii. “The Boolean algebra B of all open subsets U of real line R such that U = int(cl(U))."

Definition 2.2. [4] “A lattice A is said to be a Heyting algebra if for each pair of elements (a,b)
in A, there exist an element a → b such that c ≤ (a → b) if and only if c ∧ a ≤ b."

Example 2.3. Every Boolean algebra is a Heyting algebra, with p → q given by ¬p ∨ q.

Definition 2.4. [4] “A subset I of a locale L is said to be an ideal if
i)I is a sub-join-semilattice of L; that is 0∈ I and a ∈ I, b ∈ I implies a ∨ b ∈ I ;and
ii)I is a lower set;that is a ∈ I and b ≤ a imply b ∈ I ."

“If a ∈ L,the set ↓ (a) = {x ∈ L;x ≤ a} is an ideal of L. ↓ (a) is the smallest ideal containing
a and is called the principal ideal generated by a. A proper ideal I is prime if x ∧ y ∈ I implies
that either x ∈ I or y ∈ I ."

Definition 2.5. [6] “A subset F of locale L is said to be a filter if
i)F is a sub-meet-semilattice of L; that is 1∈ F and a ∈ F , b ∈ F implies a ∧ b ∈ F .
ii)F is an upper set; that is a ∈ F and a ≤ b imply b ∈ F ."

Definition 2.6. [6] “A filter F is proper if F ̸= L,that is if 0 /∈ F ."

Definition 2.7. [6] “A proper filter F in a locale L is prime if a1 ∨ a2 ∈ F implies that a1 ∈ F or
a2 ∈ F ."

Definition 2.8. [6] “A proper filter F in a locale L is a completely prime filter if for any J and
ai ∈ L, i ∈ J ,

∨
ai ∈ F ⇒ ∃i ∈ J such that ai ∈ F ."

“Completely prime filters are denoted by c.p filters."

Example 2.9. “U(x)={V ∈ Ω(X);x ∈ V } is a completely prime filter in the locale Ω(X)."

“For a ∈ L, set Σa = {F ⊆ L;F ̸= ϕ, F is c.p filters ; a ∈ F}.Thus Σ0 = ϕ
,Σ∨

ai
=
⋃

Σai
Σa∧b = Σa ∩ Σb and Σ1 = {all c.p filters}."

Definition 2.10. [6] “The spectrum of a locale is defined as follows.
Sp(L)=({all c.p filters}, {Σa : a ∈ L}). Then Sp(L)is a topological space with the
topology Ω(Sp(L)) = {Σa : a ∈ L}."

Definition 2.11. [6] “A nucleus in a locale L is a mapping v : L → L such that
1.a ≤ v(a),
2.a ≤ b ⇒ v(a) ≤ v(b)
3.v(v(a)) = v(a) and
4.v(a ∧ b) = v(a) ∧ v(b)."

Definition 2.12. [6] “A subset S ⊆ L is a sublocale of L if
1. S is closed under all meets
2. for every s ∈ S and every x ∈ L,x → s ∈ S."

Example 2.13. “Let L be a locale. For each a ∈ L, the closed sublocales are given by c(a) =
{x ∈ L : a ≤ x} and open sublocales are given by o(a) = {a → x : x ∈ L}."

Proposition 2.14. [6] “Let L be a locale. A subset S ⊆ L is a sublocale if and only if it is a
locale in the induced order and the embedding map j : S ⊆ L is a localic map."

“Sublocales of a locale L have alternate representations.
1.Sublocales of a locale L are represented as onto frame homomorphism g : L → M , a sublocale
homomorphism. The translation between sublocale homomorphism to sublocales and vice versa
is as follows.
h 7→ h∗[M ] for an onto h : L → M and h∗ is its right adjoint, and S 7→ j∗S : L → S for
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jS : S ⊆ L.
2.Sublocales of a locale can also be represented using frame congruence. A sublocale homo-
morphism g : L → M induces a frame congruence Eg = {(x, y) : g(x) = g(y)} and a frame
congruence gives rise to a sublocale homomorphism x 7→ Ex : L → L/E, where L/E denotes
the quotient frame defined by the congruence E, and Ex denotes the E-class.
3. Sublocales of a locale can also be represented using nucleus. The translation between nuclei
and frame congruence resp. sublocale homomorphism is straight forward:
v 7→ Ev = {(x, y) : v(x) = v(y)},
E 7→ vE = (x 7→

∨
Ex) : L → L;

v 7→ vh = v restricted to L → v[L],
h 7→ vh = (x 7→ h∗h(x)) : L → L

We can relate sublocales and nuclei directly. For a sublocale S ⊆ L, set vS(a) = j∗S(a) =∧
{s ∈ S : a ≤ s} and for a nucleus v : L → L, set Sv = v[L]."

Proposition 2.15. [6] “The formula S 7→ vS and v 7→ Sv constitute a one-one correspondence
between subloales of L and nuclei."

Definition 2.16. [6] “An element p ̸= 1 in a lattice L is said to be meet irreducible if for any
a, b ∈ L,a ∧ b ≤ p implies that either a ≤ p or b ≤ p."

Example 2.17. In a chain, all elements except the top one are meet-irreducible.

As in classical topology, the point free topology have seperation axioms. Subfit and fit corre-
spond to T1 axiom of classical topology.

Definition 2.18. [6] “A locale L is said to be subfit if for a, b ∈ L, a ≰ b, then ∃c ∈ L, such that
a ∨ c = 1 and b ∨ c ̸= 1."

Example 2.19. [6] Every T1 space is subfit

Definition 2.20. [6] “A locale L is said to be fit if for a, b ∈ L, a ≰ b, then ∃c ∈ L, such that
a ∨ c = 1 and c → b ≰ b."

Definition 2.21. [6] “In a locale L, for a, b ∈ L, we say that a is rather below b, denoted by a ≺ b,
if there exist c ∈ L such that a ∧ c = 0 and c ∨ b = 1."

Example 2.22. [6] In the locale Ω(X), V ≺ U , if there exist an open set W such that V ∩W = ϕ
and W ∪ U = X

Definition 2.23. [6] “A locale L is said to be regular if a =
∨
{x : x ≺ a} for every a ∈ L."

Example 2.24. [6] If (X,Ω(X)), is a regular topological space, then Ω(X) is a regular locale.

Definition 2.25. [6] “A locale L is said to have S
′

2 property if for any a, b ∈ L, if a ∨ b = 1 with
a ̸= 1 and b ̸= 1, then there exist u, v ∈ L with u ∧ v = 0, v ≰ a, u ≰ b."

Definition 2.26. [6] “A locale L is called normal if it satisfies the condition:
If a ∨ b = 1, then there exist u, v ∈ L such that a ∨ v = 1, u ∨ b = 1, u ∧ v = 0."

Definition 2.27. [6] “A cover of a locale L is a subset A ⊆ L such that
∨

A = 1. A subcover of
a cover A is a subset B ⊆ A such that

∨
B = 1. A locale is said to be compact if each cover has

a finite subcover."

Example 2.28. [6] Every finite distributive lattice is a compact locale

Definition 2.29. [6] “Let C be a category and A,B ∈ Obj(C). A morphism f : A → B is
epimorphism if f ◦ g = f ◦ h implies g = h for all morphisms g, h : B → C."
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3 Sublocales from ideals of a locale

Definition 3.1. Let I represent any ideal at locale L. Let Ka = {x ∈ L : a ∧ x ∈ I} be defined
for each a ∈ L.

Proposition 3.2. Consider the locale L and the ideal I within it. Then Ka represents an ideal in
L for each a ∈ L.

Proof. As 0 = 0 ∧ a ∈ I , 0 ∈ Ka. Hence Ka is non empty. Assume that Ka contains x, y. It
follows that a ∧ x, a ∧ y ∈ I . As is closed under finite join, a ∧ (x ∨ y) = (a ∧ x) ∨ (a ∧ y) ∈ I .
Therefore x ∨ y ∈ Ka. Consequently Ka is a subjoin semilattice of L. Assume that z ∈ L has
the property that z ≤ x. Since x ∈ Ka, a∧ x ∈ I . z ≤ x implies z ∧ a ≤ x∧ a. Since I is a lower
set, z ∧ a ∈ I . Hence z ∈ Ka. Thus Ka is a lower set.

Example 3.3. (i) Let us consider the following locale L and the ideal I = {1, 2}. K3 = K6 =

{1, 2, 4}, K4 = {1, 2, 3, 6}, K2 = K1 = L and K12 = I .

(ii) Consider a “frame homomorphism f : L → L." For every b ∈ L, (f)b = {x ∈ L : Σf(x) ⊆
Σb} represent “ideals" in L. Consequently, ⟨a⟩f = {x ∈ L : a ∧ x ∈ (f)b} = {x ∈ L :
Σf(a∧x) ⊆ Σb} are ideals in L for all a ∈ L.

Definition 3.4. “An element a /∈ I in L is called partially prime to the ideal I if for any x ∈ L,
a ∧ x ∈ I implies x ∈ I ."

Example 3.5. Consider a totally ordered set L and assume that a ≤ b in L. Then b is partially
prime to the ideal ↓ a.

Proposition 3.6. When the ideal I is a prime in L, the ideals Ka are prime for all a ∈ L. If a ∈ L
is partially prime to I and Ka is prime, then I is prime.

Proof. Assume that x∧ y ∈ Ka and that I represents a prime ideal . So a∧ (x∧ y) ∈ I . Because
I is prime,either a∧x ∈ I , or y ∈ I . If a∧x ∈ I, then x ∈ Ka. If y ∈ I , then a∧y ∈ I and hence
y ∈ Ka. Conversely let a be partially prime to I and Ka be prime ideal in L. If x ∧ y ∈ I , then
we have a∧ (x∧ y) ∈ I . Hence x∧ y ∈ Ka. Since Ka is prime, x or y is in Ka . Fromwhich we
can deduce that I is prime.

Proposition 3.7. Assume that L is a locale and I is an ideal within it.

(i) For a ≤ b in L, Kb ⊆ Ka

(ii) I ⊆ Ka for every a ∈ L

(iii) Ka = L when and only when a ∈ I .

(iv) K1 = I .

Proof. (i) For a ≤ b, x ∈ Kb implies b∧x ∈ I . As ideal possesses lower set property, b∧x ∈ I
implies that a ∧ x ∈ I . Hence x ∈ Kb implies x ∈ Ka. Thus Kb ⊆ Ka.

(ii) Let x ∈ I . As ideal possesses lower set property, a ∧ x ∈ I for all a ∈ L. Thus x ∈ Ka for
all a ∈ L. Hence I ⊆ Ka for every a ∈ L.
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(iii) If Ka = L, then the top element 1 is in Ka = L. Thus a = a ∧ 1 ∈ I . Hence Ka = L
implies a ∈ I . Conversely assume a ∈ I . Then for every x ∈ L, a ∧ x ∈ I . Hence x ∈ Ka

for all x in L. Thus Ka = L.

(iv) K1 = {z ∈ L : z ∧ 1 ∈ I} = {z ∈ L : z ∈ I} = I .

Proposition 3.8. Assume that L is a locale and I is an ideal within it. Suppose that a and b are
any two elements of L, then

(i) Ka ∩Kb = Ka∨b

(ii) Ka ∪Kb ⊆ Ka∧b. If a ∧ b is partially prime to I,then Ka ∪Kb = Ka∧b.

Proof. (i) x ∈ Ka ∩Kb when and only when a ∧ x ∈ I and b ∧ x ∈ I
when and only when x ∧ (a ∨ b) = (x ∧ a) ∨ (x ∧ b) ∈ I
when and only when x ∈ Ka∨b.

Hence Ka ∩Kb = Ka∨b.

(ii) x ∈ Ka ∪Kb implies a ∧ x ∈ I or b ∧ x ∈ I . Then (a ∧ x) ∧ (b ∧ x) = (a ∧ b) ∧ x ∈ I .
Thus x ∈ Ka ∪Kb implies x ∈ Ka∧b. Hence Ka ∪Kb ⊆ Ka∧b.
Let a ∧ b be partially prime to I. x ∈ Ka∧b implies (a ∧ b) ∧ x ∈ I . Since a ∧ b is partially
prime to I, x ∈ I . Hence x ∈ Ka ∪Kb.

Proposition 3.9. Let the ideal I in a locale L be “closed under arbitrary join" and let M =
{Ka; a ∈ L}.According to the partial order inclusion, M is a complete lattice.

Proof. By 3.8, M is meet semilattice on the partial order inclusion. Suppose that arbitrary join
of elements of I is in I and let Kaα ∈ M , α ∈ J , for some index set J.
Then x ∈ ∩Kaα

when and only when x ∈ Kaα
for all α ∈ J

when and only when x ∧ aα ∈ I for all α ∈ J
when and only when

∨
(x ∧ aα) = x ∧

∨
aα ∈ I

when and only when x ∈ K∨aα
.

Hence ∩Kaα
= K∨aα

∈ M . Also K0 = L is the top element. Hence M is complete.

Proposition 3.10. If the ideal I in a locale L is “closed under arbitrary join", then there is
a“ complete join semilattice homomorphism" from the locale L to the complete lattice M =
({Ka; a ∈ L},⊇).

Proof. Order M = {Ka; a ∈ L} as Ka ⪯ Kb if and only if Ka ⊇ Kb. Then we have “Ka∨Kb =
Ka ∩ Kb" and “Ka ∧ Kb = Ka ∪ Kb". With respect to this ordering M is a complete lattice
with bottom element K0 = L and top element K1 = I . Define f : L → M by f(a) = Ka.
f(

∨
aα) = K∨

aα
=

⋂
Kaα

=
∨
f(aα) and f(0) = K0 = L.

Lemma 3.11. Assume that L is alocale and I is an ideal within it having the property that I is
“closed under arbitrary join".Then for any a, b ∈ L and S ⊆ L, we have

(i) Ka = Kb implies Ka∧c = Kb∧c

(ii) Ka = Kb implies Ka∨
∨

S = Kb∨
∨

S .

Proof. (i) Let Ka = Kb. Then x ∈ Ka∧c if and only if a∧ (c∧ x) = (a∧ c)∧ x ∈ I . That is if
and only if c∧ x ∈ Ka = Kb. Thus we have b∧ (c∧ x) = x∧ (b∧ c) ∈ I . Hence x ∈ Ka∧c

if and only if x ∈ Kb∧c.
Therefore Ka = Kb implies Ka∧c = Kb∧c.

(ii) Let Ka = Kb and S ⊆ L.
x ∈ Ka∨

∨
S when and only when x ∧ (a ∨

∨
S) = x ∧

∨
(a ∨ s) =

∨
x ∧ (a ∨ s) ∈ I

when and only when x ∧ (a ∨ s) = (x ∧ a) ∨ (x ∧ s) ∈ I for all s ∈ S
when and only when x ∧ a ∈ I and x ∧ s ∈ I for all s ∈ S
when and only when x ∈ Ka = Kb and x ∧ s ∈ I for all s ∈ S
when and only when x ∧ b ∈ I and x ∧

∨
s =

∨
(x ∧ s) ∈ I

when and only when (x ∧ b) ∨ (x ∧
∨

S) = x ∧ (b ∨
∨
S) ∈ I

when and only when x ∈ Kb∨
∨

S .
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Definition 3.12. Assume that L is a locale and “I is an ideal" within it having the property that
I is closed under arbitrary join. Form a relation RI over L by (a, b) ∈ RI when and only when
Ka = Kb.

The above lemma directly leads to the following proposition.

Proposition 3.13. Assume that L is a locale and “I is an ideal" within it having the property that
I is closed under arbitrary join. The binary relation RI defined on L is a “congruence relation"
on L.

Proof. RI is an “equivalence relation" on L. If (a, b) ∈ RI , by above lemma (a ∧ c, b ∧ c) ∈ RI

and (a ∨
∨
S, b ∨

∨
S) ∈ RI . Hence RI is a congruence relation on L.

Since RI is a congruence on L, by [2],L/RI is a locale with respect to the partial order
[x] ≤ [y] if and only if x ≤ y in L.
In example 3.3 (1), the congruence RI gives [1] = {1, 2}, [3] = {3, 6}, [4] = {4} and [12] =
{12} and the quotient locale L/RI is given below.

Lemma 3.14. Assume that L is a locale and “I is an ideal" within it having the property that I
is closed under arbitrary join. There exist a bijection between the locale L/RI and the complete
lattice M = ({Ka : a ∈ L},⊇).

Proof. The function f : L/RI → M defined by f([a]) = Ka is a bijection.

Lemma 3.15. Assume that L is a locale and “I is a prime ideal" within it. Then Ka = L for all
a ∈ I and Kb = I for every b /∈ I .

Proof. If I is prime, by 3.7, Ka = L for all a ∈ I . Let b /∈ I . Then Kb = {x ∈ L : b ∧ x ∈ I}. If
x ∈ Kb, then b ∧ x ∈ I . As “I is prime" b ∧ x ∈ I implies x ∈ I . Therefore Kb ⊆ I . So Kb = I
for every b /∈ I .

Proposition 3.16. Assume that L is a locale and “I is a prime ideal" within it. Then the locale
L/RI is isomorphic to the two element locale

Proof. By above lemma, if I is prime Ka = K0 for all a ∈ I and Ka = K1 for all a /∈ I . Hence
L/RI = {[0], [1]} which is isomorphic to the locale 2.

Corollary 3.17. Let the locale L be a chain and “I be any ideal" of L. Then the locale L/RI is
isomorphic to the two element locale 2.

Proof. Every ideal of a chain is principal and prime.

Remark 3.18. Given an ideal I that is closed under arbitrary join, we get a congruence and hence
a sublocale of L. To the contrary given a sublocale S, we get the ideal IS , which is closed under
arbitrary join and the sublocale constructed using the congruence L/RIS is embeddable in the
sublocale S of L.

In 3.3(1), the sublocale corresponding to the ideal I = {1, 2} is the closed sublocale c(2) =↑
2.

Lemma 3.19. Assume that c ∈ L is irreducible with respect to meet. Accordingly, I =↓ (c) is a
“prime ideal."
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Proof. Let x∧ y ∈ I . That is x∧ y ≤ c. As c is meet irreducible, either x ≤ c or y ≤ c. So either
x ∈ I or y ∈ I . Therefore “I is prime."

Proposition 3.20. Assume that c ∈ L is irreducible with respect to meet and let I =↓ (c). Let S
be the sublocale corresponding to the ideal I. Then S is closed when and only when c is maximal
element of the locale L.

Proof. Since c is meet-irreducible element of L, by above lemma ideal I is prime.
By 2.15 lemma, Ka = L,∀a ∈ I and Ka = I∀a /∈ I . Then by construction, the corresponding
sublocale S = {c, 1}.

Assume S is closed. Then S =↑ (
∧
S) =↑ (c) = {c, 1}. Thus there exist no element b such

that c ⪇ b ⪇ 1. Hence c is maximal element of the locale L.
Conversely assume c is maximal element of the locale L.Then ↑ c = {c, 1} = S. Hence the

sublocale S is closed.

Proposition 3.21. Suppose that “S is a sublocale" of L and j : S → L be the inclusion. Ac-
cordingly kerj∗S = {x ∈ L : j∗S(x) =

∧
S} represents an ideal of L and kerj∗S is closed under

arbitrary join.

Proof. j∗S(x) =
∧
{s ∈ S : x ≤ s}. So j∗S(0) =

∧
S and hence 0 ∈ kerj∗S . Thus kerj∗S is non

empty.
Assume that x ∈ kerj∗S and y ∈ L have the property that y ≤ x. Then j∗S(y) = j∗S(y ∧ x) =
j∗S(y) ∧ j∗S(x) =

∧
S. Thus y ∈ kerj∗S . Hence kerj∗S is a lower set.

Let xi ∈ kerj∗S for i ∈ I . Then we have j∗S(xi) =
∧

S for all i ∈ I .
Also j∗S(

∨
xi) =

∨
j∗S(xi) =

∨
(
∧
S) =

∧
S. Thus

∨
xi ∈ kerj∗S . Hence kerj∗S is an ideal

which is closed under arbitrary join.

Denote the ideal kerj∗S by IS . Let L/RIS be the corresponding quotient locale.

Proposition 3.22. If
∧
S is irreducible with respect to meet, then IS is prime ideal.

Proof. Let x ∧ y ∈ IS .Then j∗S(x ∧ y) =
∧
S. That is j∗S(x) ∧ j∗S(y) =

∧
S. Since

∧
S is

meet-irreducible element, either j∗S(x) =
∧
S or j∗S(y) =

∧
S. Hence either x ∈ IS or y ∈ IS .

Thus the ideal IS is prime.

Proposition 3.23. A locale L’s “sublocale S is dense in L" when and only when IS , the ideal, is
trivial. T

Proof. Let the sublocale S be dense in L. Then 0 ∈ S and hence
∧

S = 0. Then IS = {x ∈ L :
j∗S(x) =

∧
S = 0}. Since j∗S is a nucleus on L, we have x ≤ j∗S(x) for all x ∈ L. y ∈ IS if and

only if y ≤ j∗S(y) = 0. Hence IS = {0}, the trivial ideal.
Conversely let the ideal IS is trivial. By 3.7, Ka = L when and only when a ∈ I . Since IS is
trivial ideal, Ka = L if and only if a = 0. Thus [0] = {0} and hence 0 ∈ S. As a result, S is a
dense sublocale in L.

Proposition 3.24. If S is closed sublocale of L, then the ideal IS is principal.

Proof. Consider the closed sublocale S = C(a) =↑ (a) of L. Then the corresponding “nucleus"
j∗S is of the form j∗S(x) = a ∨ x for each x ∈ L. IS = kerj∗S = {x ∈ L : j∗S(x) =

∧
S = a}

= {x ∈ L; a ∨ x = a} = {x ∈ L : x ≤ a} =↓ (a). Thus the ideal IS is principal.

Theorem 3.25. Assume that S is a sublocale of locale L. Then the sublocale constructed using
the congruence RIS is embeddable in S.

Proof. Assume that S is a sublocale of locale L and let L/RIS be the quotient locale constructed
using the congruence RIS in L. Let ϕ : L → L/RIS be the corresponding extremal epimorphism
in Frm. Then ϕ∗(L/RIS ) is the sublocale generated by the congruence RIS . We will show that
the sublocale ϕ∗(L/RIS ) is embeddable in the sublocale S.
Let y ∈ ϕ∗(L/RIS ), then y = ϕ∗([x]) for some x ∈ L. Thus y can be written as y = ϕ∗(ϕ(x)) .
Define h : ϕ∗(L/RIS ) → S by h(y) = j∗S(x). Then the following triangle commutes.

The map h : ϕ∗(L/RIS ) → S is a one -one map. Hence the sublocale ϕ∗(L/RIS ) is embeddable
in the sublocale S.
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4 Core element with respect to an ideal I

Assume that L is a locale and “I be an ideal" within it having the property that arbitrary join of
elements of I is in I. The concept of core element with reference to the ideal I is introduced in
this section.Throughout this section, I is used to denote ideal of a locale L, which is closed under
arbitrary join.

Definition 4.1. With regard to the ideal I, an element a ∈ L is referred to as a core element if
Ka = I . Let Ç represent the collection of core elements of L.

By 3.7,1 ∈Ç. Hence Ç is non empty.

Proposition 4.2. The following is true for any “ideal" I of a locale L.

(i) Concerning RI , Ç is a congruence class.

(ii) “Ç is closed under finite meet and arbitrary join."

(iii) Ç is a filter of L.

(iv) If I is prime, Ç is a “completely prime filter."

Proof. Let Ç be the set of core elements of a locale L.

(i) By 3.7 (iv), 1 ∈Ç. Now we will show that the equivalence class of 1 with respect to RI is
Ç. [1]RI

= {t ∈ L : (1, t) ∈ RI} = {t ∈ L : Kt = K1} = {t ∈ L : Kt = I} = Ç.

(ii) Let x, y ∈ Ç. Then we have, by above part, x, y ∈ [1]RI
so that (1, x) ∈ RI and (1, y) ∈ RI .

Since RI is a congruence, (1, x) ∈ RI implies (1 ∧ y, x ∧ y) ∈ RI . That is (y, x ∧ y) ∈ RI .
Since RI is an equivalence relation, (1, y) ∈ RI , (y, x ∧ y) ∈ RI implies (1, x ∧ y) ∈ RI .
Hence x ∧ y ∈ [1]RI

= Ç. Thus Ç is closed under finite meet.
Now let S = {xi; i ∈ J} ⊆Ç. Then we have (1, xi) ∈ RI for every i ∈ J . Since RI is a
congruence, we have (1 ∨ S, xi ∨ S) = (1,∨S) ∈ RI . Hence ∨S ∈ [1]RI

= Ç. Thus Ç is
closed under arbitrary join.

(iii) By 3.7 (iv), 1 ∈Ç. By above part Ç is closed under finite meet. Now let x ∈Ç and y ∈ L
with the property that x ≤ y. Since x ∈ Ç, we have Kx = I . By 3.7 (i), since x ≤ y,
Ky ⊆ Kx = I . Also by 3.7 (ii), I ⊆ Ky. Hence Ky = I . Thus y ∈Ç. Hence Ç is a filter in
L.

(iv) Let I be prime ideal. Then by 3.15, Ç = {x ∈ L : x /∈ I}.
Let ∨xα ∈ Ç. Then ∨xα /∈ I . Since I is closed under arbitrary join, xα /∈ I for some α.
Hence xα ∈Ç and so Ç is completely prime filter of L.

Theorem 4.3. Consider a locale L and an “ideal I" within it. Then the locale L/RI is a Boolean
algebra when and only when corresponding to each x ∈ L, there exist y ∈ L with x ∧ y ∈ I and
x ∨ y ∈ Ç.

Proof. Consider x ∈ L and [x] ∈ L/RI . Then L/RI is a Boolean algebra if and only if there
exist [y] ∈ L/RI such that [x] ∧ [y] = [0], [x] ∨ [y] = [1]. That is if and only if [x ∧ y] = [0],
[x ∨ y] = [1] or Kx∧y = K0 = L and Kx∨y = K1 = Ç. So by 3.7, x ∧ y ∈ I and x ∨ y ∈ Ç.
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Theorem 4.4. Consider a locale L and an “ideal I" within it. If L/RI represents a Boolean
algebra, then RI is the largest congruence relation with congruence class Ç.

Proof. it is obvious that RI is a congruence with Ç serving as the congruence class.With Ç
being the congruence class, let θ represent any other congruence. Assume that (x, y) ∈ θ.
Consequently, (x, y) ∈ θ implies (x ∨ a, y ∨ a) ∈ θ for any a ∈ L. So x ∨ a ∈Ç if and only
if y ∨ a ∈ Ç. That is Kx∨a = I if and only if Ky∨a = I . Then by proposition 3.8, we have
Kx ∩Ka = I if and only if Ky ∩Ka = I .

Since L/RI represents a Boolean algebra, by above theorem, x’, a’∈ L with x∧x′, a∧a′ ∈ I
and Kx∨x′ = I , Ka∨a′ = I . Because x ∧ x′, a ∧ a′ ∈ I , we get x′ ∈ Kx and a′ ∈ Ka. Thus
x′ ∧ a′ ∈ Kx ∩ Ka = Kx∨a = I . x′ ∧ a′ ∈ I , implies a′ ∈ Kx′ . For appropriate y′ ∈ L,
we also obtain a′ ∈ Ky′ . Thus we have a′ ∈ Kx′ if and only if a′ ∈ Ky′ . Thus Kx′ = Ky′ or
(x′, y′) ∈ RI . Hence x′ ∈Ç if and only if y′ ∈ Ç. That is Kx′ = I if and only if Ky′ = I . Hence
Kx∨x′ = Kx when and only when Ky∨y′ = Ky. Thus Kx = I if and only if Ky = I . Hence
Kx = Ky. Thus (x, y) ∈ RI .

Proposition 4.5. The quotient locale L/RI and hence the sublocale S constructed using RI is
subfit when and only when there is c ∈ L witha ∨ c ∈ Ç, b ∨ c /∈ Ç, for any pair of numbers
a, b ∈ L where a ≰ b.

Proof. Assume the quotient locale L/RI is a subfit locale. If a, b ∈ L with a ≰ b, then [a] ≰ [b]
in L/RI . Since L/RI is a subfit, there exist [c] ∈ L/RI such that [a]∨ [c] = [1] and [b]∨ [c] ̸= [1].
Hence by proposition 4.2, a ∨ c ∈ Ç, b ∨ c /∈ Ç.

For converse, let [a], [b] ∈ L/RI with [a] ≰ [b]. Then a, b ∈ L with a ≰ b. By assumption
there exist c ∈ L with a ∨ c ∈ Ç, b ∨ c /∈ Ç. But a ∨ c ∈ Ç if and only if [a ∨ c] = [a] ∨ [c] = [1].
Hence the locale L/RI is a subfit locale.

Since the sublocale S is isomorphic to the quotient locale L/RI , the above result is true
for the sublocale S.

Proposition 4.6. The quotient locale L/RI and hence the sublocale S constructed using RI is
fit when and only when for every a, b ∈ L with a ≰ b, there are c, d ∈ Lsuch that a ∨ c ∈ Ç,
c ∧ d ≤ b, d ≰ b.

Proof. Suppose the quotient locale L/RI is fit.If a, b ∈ L and a ≰ b, then [a] ≰ [b] in L/RI . Then
[a], [b] ∈ L/RI with [a] ≰ [b]. Since L/RI is fit, there exist [c] ∈ L/RI such that [a] ∨ [c] = [1]
and [c] → [b] ≰ [b]. But [a] ∨ [c] = [1] if and only if a ∨ c ∈ Ç. Also [c] → [b] ≰ [b] if and only
if there exist [d] ∈ L/RIsuch [d] ∧ [c] ≤ [b] and [d] ≰ [b]. That is when and only when there is a
d ∈ L with c ∧ d ≤ b, d ≰ b.

Now suppose that [a], [b] ∈ L/RI with [a] ≰ [b]. Consequently, a, b ∈ L with a ≰ b.
By assumption there exist there exist c, d ∈ Lsuch that a ∨ c ∈ Ç, c ∧ d ≤ b, d ≰ b. Then
[c], [d] ∈ L/RI with [a] ∨ [c] = [1] and [c] → [b] ≰ [b]. Hence the quotient locale L/RI is fit.

Since the sublocale S is isomorphic to the quotient locale L/RI , the above result is true
for the sublocale S.

Proposition 4.7. The quotient locale L/RIand hence the sublocale S constructed using RI is
S′

2 when and only when for every a, b ∈ L with a ∨ b ∈ Ç, a, b /∈ Ç, there is u, v ∈ L with
a ≰ u, b ≰ v and u ∧ v ∈ I .

Proof. Suppose the locale L/RI is S′
2. Let a, b ∈ L and a∨ b ∈ Ç, a, b /∈ Ç. Then [a], [b] ∈ L/RI

with [a] ∨ [c] = [1], [a] ̸= [1], [b] ̸= [1]. Since the locale L/RI is S′
2, there are [u], [v] ∈ L/RI

with [a] ≰ [u], [b] ≰ [v], [u] ∧ [v] = [0]. But [u] ∧ [v] = [0] if and only if u ∧ v ∈ I . In a similar
manner we can prove the converse.

Since the sublocale S is isomorphic to the quotient locale L/RI ,the above result is true
for the sublocale S.

Lemma 4.8. “[a] ≺ [b] ∈ L/RI if and only if there exist c ∈ L such that a ∧ c ∈ I and b ∨ c ∈
Ç."

Proof. [a] ≺ [b] ∈ L/RI if and only if there exist [c] ∈ L/RI such that [a] ∧ [c] = [0] and
[b] ∨ [c] = [1]. But [a] ∧ [c] = [0] if and only if a ∧ c ∈ I and [b] ∨ [c] = [1] if and only if b ∨ c ∈
Ç. Hence the result.
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Proposition 4.9. The quotient locale L/RI and hence the sublocale S constructed using RI is
regular if and only if for every a ∈ L there exist xi, bi ∈ L for every i ∈ J , where J is an indexing
set, such that K∨xi = Ka, xi ∧ bi ∈ I and a ∨ bi ∈Ç.

Proof. The quotient locale L/RI is regular when and only when for every [a] ∈ L/RI , there exist
[xi] ∈ L/RI such that [a] = [∨xi] with [xi] ≺ [a]. But [a] = [∨xi] if and only if K∨xi

= Ka.
Also by above lemma, [xi] ≺ [a] if and only if there exist bi ∈ L such that xi ∧ bi ∈ I and
a ∨ bi ∈Ç.

Since the sublocale S is isomorphic to the quotient locale L/RI , the above result is true
for the sublocale S.

Proposition 4.10. The quotient locale L/RI and hence the sublocale S constructed using RI is
normal when and only when for every a, b ∈ L with a∨ b ∈ Ç, there are u, v ∈ L with a∨ v ∈ Ç,
b ∨ u ∈ Ç,u ∧ v ∈ I

Proof. The quotient locale L/RI is normal if and only if for every [a], [b] ∈ L/RI with [a]∨[b] =
[1], there exist [u], [v] ∈ L/RI such that [u] ∧ [v] = [0] and [a] ∨ [v] = [1] = [b] ∨ [u]. But
[u]∧ [v] = [0] if and only u∧ v ∈ I and [a]∨ [v] = [1] = [b]∨ [u] if and only if a∨ v ∈ Ç, b∨u ∈
Ç.

Since the sublocale S is “isomorphic" to the quotient locale L/RI , the above result is
true for the sublocale S.

Definition 4.11. “A filter F in a locale L is said to be weekly completely prime if
∨
aα ∈ F ,

there exist α1, α2, ....αn such that aα1 ∨ aα2 ∨ aα3 ∨ ......... ∨ aαn
∈ F ."

Proposition 4.12. The quotient locale L/RI and hence the sublocale S constructed using RI is
compact when and only when the filter Ç is “weekly completely prime."

Proof. Assume the quotient locale L/RI is compact. Let
∨

aα ∈ Ç. Then [
∨

aα] =
∨
[aα] = [1].

Thus {[aα] : α ∈ J} is a cover for the locale L/RI . Since the locale L/RI is compact, there
exist α1, α2, ....αn ∈ J such that [aα1 ] ∨ [aα2 ] ∨ .... ∨ [aαn

] = [aα1 ∨ aα2 ∨ .... ∨ aαn
] = [1].

Thus aα1 ∨ aα2 ∨ aα3 ∨ ......... ∨ aαn ∈ Ç. Hence the filter Ç is “weekly completely prime". In a
similar manner we can prove the converse.

5 Conclusion

This paper has explored the interplay between frame theory and point-free topology through the
construction of ideals and the use of congruences. We have shown how the ideal I in a locale L
leads to the formation of a collection of prime ideals M = {Ka; a ∈ L} and how this structure
induces a complete join semilattice homomorphism to a complete lattice M . Additionally, we
have demonstrated that the congruence RI determines a sublocale of L, where topological prop-
erties such as regularity, compactness, and normality can be analyzed using the core elements of
L. The paper also establishes a correspondence between sublocales and ideals closed under arbi-
trary join, with the congruence RI playing a central role in embedding sublocales and preserving
topological properties. Furthermore, the core elements expressed as congruence classes within
RI and proved the result that when L/RI forms a Boolean algebra, RI is the largest congruence
relation with the congruence class representing the core elements. This work contributes to the
algebraic and topological understanding of locales and provides insights into the structure of
sublocales via the framework of frame theory.
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