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Abstract Let ¢ be a normalized univalent function defined on the open unit disc D with
positive real part whose image domain is starlike with respect to 1 and symmetric about the
real axis. A normalized analytic function f is said to be Ma- Minda starlike if zf'(2)/f(z) is
subordinate to the function ¢. For normalized Janowski starlike functions f; defined on the unit
disc D and «; > 0, we investigate the inclusion and the radii constants of Ma-Minda starlikeness
of normalised analytic function g defined as g(z) = 2 Hle (fi/2)™.

1 Introduction

Let D denote the open unit disc in the complex plane C. The class A consists of all analytic
functions f : D — C normalized by the conditions f(0) = 0 and f’(0) = 1. Let S denote a
subclass of A consisting of univalent (one-to-one) functions. A function f € A is said to be
starlike if the image of the unit disc ID is a starlike domain with respect to the origin. Similarly,
f € Ais convex if f(ID) is a convex set. The subclasses of .4 consisting of starlike and convex
functions are denoted as ST and CV respectively. An analytic function p : D — C of the
form p(z) = 1+ > 7, p,z"™ is a Carathéodory function if p(0) = 1 and R(p(z)) > 0 for
every z € D and is denoted by P. Analytically, we say that a function is starlike if and only if
zf'(z)/f(z) € P and convex if and only if 1 + (2f"(z)/f'(z)) € P. Alexander’s theorem [3]
gives a very useful correspondence between the classes ST and CV, for f € A, f € CV if and
only if zf" € ST. Let B be the class of all analytic functions that maps unit disc D onto itself
with w(0) = 0 and |w(z)| < 1. The function w is widely known as schwarz function. Let f and
g be two analytic functions defined on the unit disc. The function f is said to be subordinate to g,
represented as f < g, if there exists an analytic function w € B such that f(z) = g(w(z)). When
the superordinate function g is univalent (one-to-one), then f < g if and only if f(0) = ¢(0)
and f(D) C g(D). Let ¢ : D — C be an univalent function with a positive real part normalized
by the conditions ¢(0) = 1 and ¢'(0) > 0, such that the image domain ¢ (D) is starlike with
respect to 1 and is symmetric about the real axis. For such function ¢, using subordination Ma
and Minda [14] defined subclasses ST'(¢) and C'V () by

P O
ST () := {fEA. 8 =< o( )} (1.1)
and 70
CV(p) := {fEA: 1+ ) -<go(z)}. (1.2)

For different choices of ¢ these classes reduce to various subclasses of starlike and convex func-
tions, respectively. For —1 < B < A < 1, when ¢(z) = (1 + Az)/(1 + Bz), the classes ST(p)
and C'V () are denoted as ST[A, B] and CV[A, B], as given in [8] and are called as class of
Janowski starlike functions, and the class of Janowski convex functions, respectively.

For—-1< B<A<landp(z)=1+4c,2"+---,n €N, we say that p € P,[A, B] if

(2) < 1+ Az
piz 14+ Bz’

(z € D).
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The functions p € P,,[A, B] satisfy the following lemma:
Lemma 1.1. /18] If p € P, [A, B], then

1 — ABr™"

(A— B)r™
’p(z) T 1 — B2p2n

=1 = B2yp2n

(2] € r < 1).

The class ST ,,[A, B] consists of functions f € A such that zf'(z)/f(z) € P,[A, B]. Our
present study, deals with the class S7,[A, B] defined as follows:

k
ST[A,B] = {g eA:g(z)= z};[l ( . ) . [i € STwlA Bl,a; > O} :

Let F and G be two subclasses of A, the largest number R € (0, 1] such that for 0 < r < R,
f(rz)/r € F for every f € G is known as the F- radius of the class G and it is denoted as
R#(G). Radius problems are being explored extensively in recent times [1, 9, 12, 13, 15, 19]. In
order to obtain the radius, we find the largest positive number R less than 1 such that the image
of the disc D : {z € C : |z| < R} under the mapping zg¢'(z)/g(z) for g in the class defined, lies
inside the image of the corresponding superordinate functions. We compute the ST () radius
for functions in the class ST5[A, B| for various subclasses of A such as starlike functions of
order 3, exponential function, cardiod, lune and so on. The radii obtained are sharp.

2 S8T,[C, D] RADIUS FOR FUNCTIONS IN THE CLASS ST [A, B]

A function f € A satisfying R(zf'(2)/f(z) > ) for z € D, where 0 < § < 1 is said to
be starlike of order 8 and the class of all such functions is denoted as ST(3). The following
theorem gives the radius of Janowski starlikeness of functions in the class ST, [A, B] and, in
particular, the S7 () radius of the functions in the class ST [A, B|, which implies that the class
STS[A, B] is a subclass of starlike functions.

Theorem 2.1. Let o := Y5 v, ; > 0. Let -1 < B<0and B < A< 1. Let =1 < D <0
and D < C < 1. For the class ST, [A, B], the inclusion ST, [A, B] C ST,[C, D] holds if

|Da(A - B) — B(C - D)| < (C—D)—«a(A-B).

When the inclusion fails, the ST ,,|C, D] radius is given by

1/n
R B C-D
STaleD] = \ (A= B) + |B(C — D) — Da(A - B)| '

Proof. Let g € ST [A, B]. Then there will be functions f; € ST ,[A, B], satisfying

o =11 (*)"

A computation shows that

zg’(;) - Zai + Zai (fo%l> . 2.1
By Lemma 1.1 we have

2f'(z) 1 — ABr?"

f(z) 1 — B%p2n

(A- B)r
S 12— B2p2n

Using the above inequality and (2.1), we get
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_ k . _ 2| .2n
(o) D [SheBU-B B s s
g(2) 1 — B2p2n = 1 — B2p2n = '
Since o := Zle «;, the above disc can be rewritten as
zg'(z) 1-[aB(A—-B)+ B*|r™" al(A— B)r"
g(2) 1 — B2y 1 — B2y (el <r<1) (2.2)
The centre and radius are given by
1 — [aB(A - B) + B?| r™® a(A— B)rm
cla,r) = D and d(a,r) = 1 (2.3)
The diametric end points of the disc (2.2) are
1 —(B+a(A-B))r"
cla,r) —d(a,r) = e (2.4)
and 1 B A—B))r"
(ar) +d(a,r) = LT B A= B)r" 2.5)

1+ Brm
Let —1 < D < 0and D < C < 1. The disc for the class ST ,,[C, D] is given by

zf'(z) 1-CD| _(C-D)

) T | ST, (l2] < 1). (2.6)
The centre and radius for the disc (2.6) are given by
1-CD (C—-D)
a = ﬁ and b= ﬁ, (27)
and the diametric end points of the disc (2.6) are
1-C 14+C
a_b—ﬁ and a“‘b—m (28)

To establish ST, [A, B] C ST,,[C, D], it is sufficient to show that
{w: |Jw—cla, ] <d(a, )} S {w: |w—a(1)] <b(1)}
if and only if |a — ¢(«, 1)| < b — d(«, 1) which is equivalent to the inequalities
cla, 1) +d(a, 1) <a+bd 2.9

and
a—b<c(a,1)—d(a,1). (2.10)

To prove the inclusion ST7,[A, B] C ST ,[C, D] by considering the following three cases:
Case (i): Let B = —1 and D = —1. Using the diametric end points (2.4) at » = 1 and (2.8),
it can be seen that the image of the function g € ST7,[A, B] lies in the half plane

{w:m(w)>2‘°‘(21+‘4)}

(2.11)
and also the image of the function f € ST ,,[C, D] lies in the half plane

{w:?R(w) > 1_20} (2.12)
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Since the condition (1 — C')/2 < (2 — a(A + 1))/2 holds is equivalent to the inequality (2.10),
therefore the half plane given in (2.11) is contained in the half plane given by (2.12).
Case (ii): Let B # —1 and D = —1. The function g € ST 5[4, B] maps to a disc

zg'(2) 1 [«B(A — B) + B?] - (A — B)

9(2) - B Ss—74—pg (A<D (2.13)

From (2.12) and (2.13), since (1 - C)/2 < (1 — (B+«a(A— B)))/(1 — B) holds and equivalent
to the inequality (2.10), which proves the inclusion in this case.
Case(iii): When B # —1 and D # —1, we see that the inequality (2.9), becomes

1+C 1-(aB(A-B)+B*)+a(A—B) 1+B+a(A-DB)
1+D 7~ 1- B2 N 1+ B ’

which reduces to
Da(A—B)—B(C—-D)<(C—-D)—a(A-B). (2.14)

Similarly, the inequality (2.10) becomes

1-c_ l—(aB(A-B)+B*)—a(A-—B) 1-B-a(A-B)
1-D 7~ 1- B2 B 1-B ’

that reduces to
—Da(A—-B)+ B(C—-D)<(C—-D)—a(A-B). (2.15)

Therefore, by (2.14) and (2.15), the inclusion ST [A, B] C ST »[C, D] holds if and only if
|Da(A - B) — B(C — D)| < (C - D) —a(A - B).

Case (iv): When B = —1 and D # —1, we see that for any function g € ST [A, B| has its
the image lying in the half plane given in (2.11) and image of the function f € ST ,[C, D] lies
in the disc (2.6). Clearly, inclusion is not possible.

When either of the following conditions occur, we find the ST, [C, D] radius for the class
STo[A, B]:

i) B=-1,D=—1and (1-0C)/ 2—a(A+1))/2

(i) B#—-1,D=—1and (1 -C)/ 1-(B4+a(A—-B)))/(1-B)

(iii) B# —1,D # —l and |Da(A — B) — B(C — D)| > (C — D) — a(A — B)
(iv) B=—1land D # —1.

Let g € ST, [A, B]. Then, by (2.2) we have g(D,) € {w : |w — ¢(,7)| < d(a,7)}. For
r < R = RsT,[c,p)» We need to show that,

o~ o~

2>
2>

fw: w = cla,r)] < d(a,r)} € {w: |w — a < b}

where a and b are given by (2.7) and ¢(«,r) and d(«, r) are given by (2.3). This containment
holds if and only if |a — c(a, 7)| < b — d(«, ) or equivalently, if

clayr) +d(a,r) <a+bd (2.16)
and

a—b<c(a,r)—d(a,r). (2.17)
The inequality (2.16), becomes

1+C 1— (aB(A—B)+ B*)r™ +a(A—B)r" 1+ (B+a(A—B))r"

1+D 7 1 — B%p2n 1+ Brn

Solving the above inequality for r, we get
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Similarly, the inequality (2.17), becomes
1-C < 1—(aB(A—B)+ B*)r* —a(A—B)r" 1—(B+a(A— B))r"

1-D ~ 1 — B%y2n 1 — Brn ’

and solving for r gives

l/n
< C-D
r < = p3.
a(A—B)1-D)+B(C-D) r3
The required radius is the min[p,, p3] which is given by

. C—-D v
" \a(A-B)+|B(C - D) - Da(A - B)| '

To prove the sharpness of R , we first consider the function f; from the class ST ,,[A, B] defined
A—B
B

by fi(z) = z(1 4+ Bz") %5 . Then, we find the corresponding function j € ST%[A, B] given by

a(A—B)

g(2) = z(1+ B2") (2.18)
satisfying
~/ _ n
iz (2) _1+(B+a(A-B)) ' (2.19)
g(z) 1 + Bz»
When B(C' — D) — Da(A — B) < 0, we have R = p,. Then for z = py, (2.19) gives
2§'(z) 1+ (B+a(A-B))(p)" 14+C
e I+ (o) (1D
which proves the sharpness for p;.
When B(C' — D) — Da(A — B) > 0, we have R = p3. For z = —p3, (2.19) gives
29'(2) _ 1+ (B+a(A-B))(=p)" _1-C
i(2) [+ B(—p)" - D
which proves the sharpness for p;3. O

In particular, when C' = 1—2/ and D = —1, Theorem 2.1 reduces to the following Corollary.

Corollary 2.2. Let o > 0and 0 < < 1. Let —1 < B < 0and B < A < 1. For the class
STo[A, B], the ST ,,(B) radius is given by

. - /n
R, (s) = min (1. (a(A - Bl) +€3(1 - 5))1 )

When n = 1, Corollary 2.2 reduces to a Corollary of [7, Corollary 2.9, p.707].

3 ST .RADIUS FOR FUNCTIONS IN THE CLASS ST [A, B]

Let the function g belong to the class ST%[A, B]. By (2.2), we have g(D,.) C {w : [w—c(a,7)| <
d(a,r)}, where ¢(a, r) and d(a, r) are given in (2.3). For 0 < r < R < 1, we find the largest
positive number R, such that the disc {w : |w — ¢(a, )| < d(a,7)} is contained in (D). To
compute R, we use the inclusion results obtained by various authors, wherein the image of the
unit disc D under the function ¢ contains the largest disc with radius r, centered at a. Since

—2naB(A — B)r*n!
(- BY2meE

d(a,r) =

it can be seen that c¢(«,r) is an increasing function of » when B < 0 and it is a decreasing
function of » when B > 0. Also, for B < 0, we have ¢(«,7) > 1 and when B > 0, ¢(«,7) < 1.
One immediate consequence is that for B < 0, ¢(a,7) = ¢(«,0) = 1. The following theorem
gives the ST . radius for functions in the class ST [A, B] .

Mendiratta et al. [16], introduced the class ST, = ST (p.) = €%, which consists of all
functions f € A such that zf'(z)/f(z) < e* or equivalently |log(zf'(z)/f(2))] < 1.
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Lemma 3.1. [16] For 1/e < a < e, let

1 . 1
_{a_e if ¢<a
Tqg = ote!

S
e—a Iif +§ <a<e.

Then, {w : |lw—a| <r,} C Q. :={w:|logw| < 1} where Q. is the image of the unit disc D
under the exponential function.

Theorem 3.2. Let o > 0, —1 < B < 0and B < A < 1. For the class ST [A, B], the inclusion
STy|A, B] C ST. holds if either

(i))(—aB(A-B))/(1-B*) < (e+e ' =2)/2 and (a(A—B))/(1-B)<(e—1)/e
(or)
(i) (—aB(A—B))/(1-B*) > (e+e ' -2)/2 and (a(A-B))/(1+B)<e—1.

If neither condition (i) nor condition (ii) holds, then the ST . radius is given by

I/n
(wofiems)  F o«(4-B)>2B

el Ifn
(m) if Oé(A_B)<2|B|'

Proof. We first prove the inclusion ST[A, B] C ST . by assuming that the condition (i) holds.
The inequality (—aB(A—B))/(1—B?) < (e+e~1-2)/2is equivalent to c(a, 1) < (e+e_])/2
The inequality d(a, 1) < ¢(e, 1) — 1/e follows from (—a(A — B))/(1 —B) < 1—(1/e). B
(2.13), we get

Rst, =

ZACO NN
9(2) (1)

Therefore, using Lemma 3.1 we see that the disc in (2.13) is contained in Q.. Now assume that
(—aB(A-B))/(1-B?*) > (e+e ' —2)/2and a(A— B)/(1+ B) < e— 1. The first inequality
reduces to c(a, 1) > (e + e‘l)/Z. The condition a(A — B)/(1 + B) < e — 1 is equivalent to the
inequality d(c, 1) < e — ¢(a, 1). Then, by (2.13), we get

<d(a,1) <ela,1) — -

2g'(2) — (e, )| < d(e,1) < e — (e, 1).

Hence, using Lemma 3.1 we see that the disc in (2.13) is contained in Q..

When the inclusion fails, we show that, for 0 < r < R := R, the disc (2.2) is contained
in Q. where c¢(«, r) and d(«, r) given by (2.3).

Case (i): Let (A — B) > 2|B|. The number

_ e+ e ) 1/2n
U= \2aB[(A—B) + (e + e' —2)B?

be the unique root of the equation ¢(a, ) = (e + e~!)/2 and let the number

o= (ea<A - §>_+1<e - 1>B)l/n <!

be the positive root of the equation d(«a, r) = ¢(o,7) — 1/e or

1 1 — (aB(A— B) + B*) r*™" B a(A-B)yr™ 1 —(B+a(A-B))r" = (). G
e 1 — B2y2n 1— Bay2n 1— B SR

For a(A — B) > 2|B|, we observe that p, < p;. We shall now show that R = Rsr. = pa.
For 0 < r < pp < 1, since ¢(a, ) = 1, we have c(a,r) > 1/e. Since c¢(a,r) is an increasing
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function, for r < p;, we have c(a,7) < c¢(a, p1) = (e + e~ ') /2. Note that ¢(a,7) — d(a, ) is a
decreasing function of r, therefore, for 0 < r < py, it follows that

cla,rm) —d(a,r) = cla, pr) —d(a, p2) = 1/e

and hence

1
d(a,r) < c(a,r) — = (3.2)
For 0 < r <R = py, using (2.2) and (3.2) we have,
24'(2) 1
—cla,r)| <cla,r) — —. 3.3)
95 el S efanr) - ¢

Therefore, using the inclusion result in Lemma 3.1, for 1/(e) < a < (e + e~!)/2, the disc
in (3.3) lies inside the region Q. proving that S7 . radius for functions belonging to the class
ST,[A, B] is at least ps.
To prove the sharpness, for functions f; € ST,[A, B], we find the corresponding function
g € STY[A, B] defined (2.18). For z = —p;, (2.19) gives
1
log (e) | =1,

l%<?$»‘:h¥<H%B+MA—MXwﬁv|:

1+ B(=p2)"
which proves the sharpness for p;.
Case (ii): Let «(A — B) < 2|B|. The number

p“:<MA§ernBym<l

be the positive root of the equation d(a, ) = ¢ — ¢(a, ) or

1 — [aB(A - B) + B?] r2 —B)m _ B))m
. [a ( )+ } r n a(A— B)r _ 1+ (B+a(A—B))r (). ()
1 — B2y2n 1 — B2py2n 1+ Brn

Observe that p3 > p;, for a(A — B) < 2|B|. We now show that R = Rsy, = p3. For
0 < r < p3 < 1, it follows that ¢(«, r) < e. Since ¢(«, r) is an increasing function, for r < py,
we have c(a,7) < c¢(a, p1) = (e + e71)/2. Clearly, ¢(,7) + d(a, ) is an increasing function
of r, for 0 < r < p3, we have

clayr) +d(a,r) < cla, p3) +d(a, p3) = e

and hence
d(a,r) < e —c(a,r). (3.5)
For 0 < r <R = p3, using (2.2) and (3.5) we have,
z9'(2)
—cla,r)| < e—cla,r). 3.6)
o o) ()

Therefore, using the inclusion result in Lemma 3.1, for (e + e~ !')/2 < a < e, the disc in (3.6)
lies inside the region Q. proving that ST . radius for functions belonging to the class ST 5[4, B]
is at least ps.

To prove the sharpness, consider the function § € ST [A, B] defined by G(z) = 2(1 +
Bzm)(@(A=B)/nB) For z = ps in (2.19), we have

zg’(2)> (1 + (B+a(A—B))(ps)">

lo = =|lo =|loge| =1,
(%5 1+ B(oo)" e
proving the sharpness for ps.

For 0 < B < 1, if neither condition (i) nor condition (ii) holds, then the R, radius for the
class ST[A, B] is given by

e—1 1/n
Rst. = (ea(AB)+(el)B) ' -
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4 ST ¢ RADIUS FOR FUNCTIONS IN THE CLASS ST, [A, B]

Sharma et al. [20] studied the class ST = ST (¢c), where oo (z) = 1+ (4/3)z + (2/3)2%,
where the boundary of (D) is a cardiod.

Lemma 4.1. [20] For 1/3 < a < 3, let

3—a Iif
Then, {w : |w —a| < 1.} C pc(D) = Q¢, where Q¢ is the region bounded by the cardiod
{x +iy: (922 + 9y* — 182 + 5)> — 16(92* + 9y> — 62 + 1) = 0}.

N N
W Wl

a
a

W W=
NN

Theorem 4.2. Let o« > 0, —1 < B < 0and B < A < 1. For the class ST, |A, B], the inclusion
STo[A, B] C ST ¢ holds if either

())(-aB(A-B))/(1-B*) <2/3 and (a(A-B))/(1-B)<2/3

(or)
(ii)(—aB(A—B))/(1-B*) >2/3 and (a(A—B))/(1+B)<2.

If neither condition (i) nor condition (ii) holds, then the Rst . radius is given by

1/n
(I% if a(A-B)=2|B|
Rs7e(STS[A, B) = (s B”ZB)]/"
<a(A—129)—ZB) if a(A-DB)<2[B|

Proof. To prove the inclusion ST [A, B] C ST ¢, we first assume that condition (i) holds. The
inequality (—aB(A — B))/(1 — B?) < 2/3 is equivalent to c¢(a, 1) < 5/3. The inequality
d(a, 1) < ¢(a, 1) — 1/3 follows from (—a(A — B))/(1 — B) < 2/3. By (2.13), we get

2g'(2) — ¢(a, 1)

< d(aa 1) < C(aa 1) -

[OSAIE

Therefore, using Lemma 4.1 we see that the disc in (2.13) is contained in Q. Next, we assume
that (—aB(A — B))/(1 — B?) > 2/3 and a(A — B)/(1 + B) < 2. The first inequality reduces
to ¢(a, 1) > 5/3. The condition (a(A — B))/(1 + B) < 2 is equivalent to the inequality
d(a,1) <3 —¢(a, 1). Then by (2.13), we get

S c(ay 1)

<d(a,1) <3 —c(a,1).

Using Lemma 4.1, it can seen that the disc in (2.13) is contained in Q.

When the inclusion fails, we shall show that, for0 < r < R := Rs7, the disc D(c(a, r); d(c, 7))
given in (2.2) is contained in Q¢, where c(a, 7) and d(a, 7) given by (2.3).

Case (i): Let (A — B) > 2|B|. The number

2 1/2n
pr= <3a|B|(A “B)+ 232>
be the unique root of the equation c(a, ) = 5/3 and let the number

2 1/n
= 1
G <3a(A—B) +2B> <

be the positive root of the equation {(r) = 1/3 or d(«,7) = ¢(ev,7) — 1/3.
For a(A — B) > 2|B|, a computation shows that p, < p;. We shall show that R = Rs1. =
p2. Since c¢(a,r) = 1, for 0 < r < pp < 1, we have ¢(a,r) > 1/3. Also, since c(a,r)
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is an increasing function, for r < py, it follows that c(a,7) < c¢(a,p1) = 5/3. Note that
c(a,r) — d(a, 7) is a decreasing function of 7, for 0 < r < pa, it follows that

cla,r) —d(a,r) = cla, p2) — d(a, p2) = 1/3

and hence .
d(a,r) < c(a,r) — 3 “4.1)

Therefore, for 0 < r < R = py, using (2.2) and (4.1), we have

<cla,r) — 5. (4.2)

Therefore, using the inclusion result in Lemma 4.1, for 1/3 < a < 5/3, the disc in (4.2) lies
inside the region Q¢ proving that S7 ¢ radius for functions belonging to the class ST [A, B] is
at least p;.

To prove the sharpness, consider the function § € ST, [A, B] defined by (2.18). For z = —p,
in (2.19), we have

23'(z) 1+ (B+a(A—DB))(—p)"

1
=) I+ B(—p)" 37

Qr

K=Y}

which proves the sharpness for p;.
Case (ii): Let «(A — B) < 2|B|. The number

2 1/n
= <a(A—B) —23) <1

be the positive root of the equation n(r) = 3 or d(a,7) = 3 — ¢(a, 7).

For a(A — B) < 2|Bj, observe that p3 > p;. We shall show that R = Rs7, = p3. For
0 <7 < p3 < 1, it follows that c(a, ) < 3. Since ¢(«, r) is an increasing function, for r < py,
we have c(a,r) < ¢(a, p1) = 5/3. Note that ¢(«, r) + d(a, 7) is an increasing function of r, for
0 < r < p3, it follows that

c(a, T) + d(a7 T) < C(Oé, P3) + d(Oé, ,03) =3
and hence
d(a,r) <3 —c(a,r). 4.3)
Therefore, for 0 < r < R = p3, using (2.2) and (4.3), we have

zg'(2)
9(2)

Therefore, using the inclusion result in Lemma 4.1, for 5/3 < a < 3, the disc in (4.4) lies inside
the region Q¢ proving that ST ¢ radius for functions belonging to the class ST [A, B] is at least
p3-

To prove the sharpness, consider the function § € STS[A, B| defined by (2.18). For z = p3
in (2.19), we have

—c(a,m)| <3 —c(a,r). (4.4)

Zg’(z) . 1+ (B+01(A—B))(p3)7l L
=) 1+ B(ps)" =3=vc(l),

proving the sharpness for ps.
For 0 < B < 1, if neither condition (i) nor condition (ii) holds, then the R s radius for the
class ST [A, B] is given by

) 1/n
RsTe = <3a(AB)+2B) ‘ -
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5 &7 RADIUS FOR FUNCTIONS IN THE CLASS ST, [A, B]

Raina and Sokdl [17] studied the class ST = ST (¢), where ¢(z) = z + V1 4 2% and proved
that f € ST if and only if zf'(2)/f(z) € Q, where Q is the interior of a lune given by Q :=
{w € C: |w?—1| < 2|w|}. Gandhi and Ravichandran [4] proved the following inclusion lemma:

Lemma 5.1. [4] ForvV2—1<a<V2+1,let
re =1—|V2—al.
Then, {w : |w—a| <7,} C (D) =Q :={weC: |w— 1| <2wl}
Theorem 5.2. Let o > 0, —1 < B < 0and B < A < 1. For the class ST [A, B], the inclusion
STy[A,B] C ST holds if either
(i)(—aB(A—B))/(1-B>)<V2—-1 and (a(A—-B))/(1-B)<2-V2
(or)
(ii)(—aB(A—B))/(1-B*)>vV2-1 and (a(A-B))/(1+ B) < V2.

If neither condition (i) nor condition (ii) holds, then the ST radius is given by

1/n
2-2 :
—vs if «a(A-B)>=2|B|
R = (a(A—B)+(2—\/§)B)

V2 "
(m) if a(A-B)<2[B|
Proof. To prove the inclusion, assume that the condition (i) holds. The inequality (—aB(A —
B))/(1 — B?) < v/2 — lisequivalent to ¢(cv, 1) < v/2. The condition (—a(A — B))/(1 — B) <
2 — /2 is equivalent to the inequality d(a, 1) < ¢(a, 1) — /2 — 1. By (2.13), we get

29'(2) —c(a,1)| < d(a, 1) < e(a, 1) — V2~ 1.

Therefore, using Lemma 5.1, we see that the disc in (2.13) is contained in Q. Assume that
(—aB(A — B))/(1 = B*) > v2 — 1 and o(A — B)/(1 + B) < V2. The first inequality
reduces to ¢(a, 1) > v/2. The condition follows a(A — B)/(1 + B) < v/2 from the inequality
d(a, 1) V2 +1—c(a,1). By (2.13), we get

—c(a, )| <d(a, 1) < V241-— c(ay 1).

Using Lemma 5.1, we see that the disc in (2.13) is contained in Q.

When the conditions (i) and (ii) fails, we show that, for 0 < r» < R := Rgs7, the disc
D(c(e,7); d(cr, 7)) given in (2.2) is contained in Q.

Case (i): Let (A — B) > 2|B|. The number

._ \/Z_l 1/n
P\ aBA-B) + (V2 - B2

be the unique root of the equation ¢(c, ) = v/2 and let the number

1/n
= 2- 2 / <1
P\ 3(a(A-B)+ 2-v2)B
be the positive root of the equation ¢(r) = v2 — 1 or d(a,7) = c¢(a,7) — (V2 — 1) .

For a(A—B) > 2|B|, acomputation shows that p, < p; . We now show that R = Rs1 = ps.
For 0 < r < py < 1, since ¢(a,r) > 1, it can be seen that c(a, ) > v2 — 1. Also since
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¢(a, ) is an increasing function, for r < p;, we have ¢(a,r) < ¢(a,p1) = v/2. We note that
c(a,r) — d(a, 7) is a decreasing function of 7, hence for 0 < r < p; it follows that,

clo,r) —d(a,r) = c(a, pp) — d(e, p2) = V2 — 1

and hence
d(a,r) < c(a,7) — (V2 = 1). (5.1
Therefore, for 0 < r < R = py, using (2.2) and (5.1), we have
zg'(2)
o cla,r)| < ela,r) — (V2 -1). (5.2)
g\z

Thus, using the inclusion result in Lemma 5.1, for 2(\@ -1)<a< V2, the disc in (5.2) lies
inside the region Q proving that ST radius for functions belonging to the class ST [A, B] is at
least p,.
To prove the sharpness, consider the function § € ST, [A, B] defined by (2.18). For z = —p,
in (2.19), we have
2f(z) _1+(B+a(A-DB))(=p)" _ 5

=) L+ B(=p2)"

which proves the sharpness for ps.
Case (ii): Let a(A — B) < 2|B|. The number

= V2 1/n<1
7=\ a(A-B) - V2B

be the positive root of the equation 7(r) = v2 + 1 or d(a, ) = V2 + 1 — ¢(a, 7).

For a(A — B) < 2|B|, we note that p3 > p; . We shall now show that R = Rs7 = p3. For
0 < r < ps < 1it follows that c(a, ) < v/2 + 1. Since ¢(a, ) is an increasing function, for
r < p1, we have c(a, ) < c(a, pr) = V2. Also since ¢(a, ) + d(a, ) is an increasing function
of r, for 0 < r < p3, it follows that

—1=p(-1),

clo, ) +d(e, ) < ela, p3) +d(e, p3) = V2 + 1

and hence
d(o,r) < V2+1—cla,r). (5.3)
Therefore, for 0 < r <R = p3, using (2.2) and (5.3), we have
zg'(2)
FONE clo, )| <K V2+1—cla,r). (5.4)

Therefore, using the inclusion result in Lemma 5.1, for V2 <a< V2 + 1, the disc in (5.4) lies
inside the region Q proving that ST radius for functions belonging to the class ST [A, B] is at
least ps3.

To prove the sharpness, consider the function § € ST [A, B] defined by (2.18). For z = p3
in (2.19), we have

29'(z) _ 1+ (B+a(A-B))(p3)"

(2) 1+ B(p3)"

Qr

S=u

proving the sharpness for ps.
For 0 < B < 1, if neither condition (i) nor condition (ii) holds, then the R s radius for the
class ST, [A, B] is given by

o 22 v
T \aa-B)+2-v2)B)
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6 ST, RADIUS FOR FUNCTIONS IN THE CLASS ST, [A, B]
Kumar and Kamaljeet [11] introduced the class ST, = ST (¢,,), Where p,(z) = 1 + ze?.

Lemma 6.1. (/1] For 1 — (1/e) <a < 1+e, let

L _Ja-nrl i 1o <a<iy g
¢ e—(a—1) if 1+6_T"571<a<1+6.
Then, {w : |[w —a| <14} C o (D) = Q, where Q, is a cardiod.

Theorem 6.2. Let o« > 0, —1 < B < 0and B < A < 1. For the class ST |A, B], the inclusion
STnlA,B] C ST, holds if either

@)(~aB(A-B))/(1-B*) <(e—e¢")/2 and (a(A-B))/(1-B)<1/e
(or)
(ii))(—aB(A—-B))/(1-B*) > (e—e1)/2 and (a(A—-B))/(1+B)<e.

If neither condition (i) nor condition (ii) holds, then the Rst , radius is given by

1/n . B
Rey, = | (ortmrs) i a(A=B)e- ) 220B
o 1/n
(7(!(147;)763) if a(A-B)(e—e1)<2|B|

Proof. To prove the inclusion, we first assume that the condition (i) holds. The inequality
(—aB(A—-B))/(1 — B?) < (e — e~ !)/2is equivalent to c(a, 1) < 1+ (e — e~!)/2. The con-
dition (—a(A — B))/(1 — B) < 1/e is equivalent to the inequality d(a, 1) < c(a, 1) — 14+ 1/e.
By (2.13), we get

zg’(z) . c(a, 1)

9(2)

Therefore, using Lemma 6.1, we see that the disc in (2.13) is contained in Q. Assume that
(—aB(A - B))/(1 = B?) > (e — e ')/2 and a(A — B)/(1 + B) < e. The first inequality
reduces to c(a, 1) = 1+ (e—e~ 1) /2. If d(a, 1) < e — (¢(a, 1) — 1) which directly follows from
(a(A—B))/(1+ B) < e, then from (2.13), we get

<dloy1) <ela,1) =1+ 1/e.

29'(2) —cla, )] <d(e,1) < e+ 1-c(a,1).

Hence, using Lemma 6.1, we see that the disc in (2.13) is contained in €.

When the inclusion fails, we shall show that, for 0 < r < R := R, the disc D(c(a, r); d(a, 7))
given in (2.2) is contained in £,.

Case (i): Let o(A — B)(e — e~ 1) > 2|B|. The number

—1 1/277.
L e — e
p1 = (2aB|(A —B)+ (e — 61)32>

be the unique root of the equation ¢(a,7) = 1 + (e — e~!)/2 and let the number

1 1/n
= 1
P2 (ea(AB)+B) <

be the positive root of the equation {(r) = 1 — (1/e) or d(a,r) = c(a,r) — 1+ (1/e).
Observe that py < py, for a(A — B)(e — e~ ') > 2| B|. We shall show that R = Rs7, = pa.
For 0 < r < pp < 1, since c(a,7) > 1, we have c¢(a,7) > 1 — (1/e) . Since ¢(w,r) is an
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increasing function, for r < p;, we have c¢(a,7) < ¢(a,p1) = 1 + (e — e~ !)/2. Note that
c(a,r) — d(a, 7) is a decreasing function of r, for 0 < r < pa, it follows that

1
c(aw) - d(a,r) > 0(04/)2) - d(a,pz) =1--
e
and hence
1
d(a,r) < c(a,r) — 1 +E' (6.1)

Therefore, for 0 < r < R = py, using (2.2) and (6.1), we have

<cla,r)—1+ é. (6.2)

Therefore, using the inclusion result in Lemma 6.1, for 1 — (1/e) < a < 1 + (e — e~ 1) /2, the
disc in (6.2) lies inside the region €, proving that ST, radius for functions belonging to the
class ST [A, B] is at least ps.

To prove the sharpness, consider the function § € ST [4, B] defined by (2.18). For z = —pa,
(2.19) gives

2§'(z) 1+ (B+a(A—-B))(—p)" _ 1
qJ B n _1_7_§Dp(_1)7
3(2) 1+ B(—p2) e

which proves the sharpness for p;.

Case (ii): Let a(A — B)(e — e~ 1) < 2| B|. The number

1/n
=] <1
p3- <a(AB)eB)

be the positive root of the equation or (1) = e+1ord(«,r) = e4+1—c(a,7) . Note that p3 > py,
for a(A — B)(e — e~') < 2|B|. We shall show that R = Rsr, = p3. For0 < r < p3 < 1,
we have c¢(o,r) < e + 1. Since ¢(«,r) is an increasing function, for r < p;, it follows that
c(a,r) < c(a,p1) = 1+ (e — e71)/2. Clearly, c(,r) + d(a, r) is an increasing function of r,
for 0 < 7 < p;3, it follows that

clayr) +d(a,r) < cla, p3) +d(a, p3) = e+ 1

and hence
dla,r) < e+ 1—cla,r). (6.3)

Therefore, for 0 < r <R = p3, using (2.2) and (6.3), we have

<e+1—cla,r). (6.4)

Therefore, using the inclusion result in Lemma 6.1, for 1 + (e — e“)/Z < a <1+ e, the disc
in (6.4) lies inside the region £, proving that ST, radius for functions belonging to the class
STo[A, B]is at least p3.

To prove the sharpness, consider the function § € ST [A, B] (2.18). For z = ps3, (2.19) gives

() _ 1+ (B+a(A-B))(p)"
i2) [+ B(p)"

=1+e=py(1),

proving the sharpness for ps.
For 0 < B < 1, if neither condition (i) nor condition (ii) holds, then the Rs7, radius for the
class ST, [A, B] is given by

1 1/n
RST“_(ea(AB)—i-B) ' -
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7 ST ne RADIUS FOR FUNCTIONS IN THE CLASS ST, [A, B]

Wani and Swaminathan [23] studied the class ST nye = ST (¢n.) Which consists of starlike
functions associated with a nephroid domain, where ¢ y.(z) = 1+ z — (23/3) that maps the unit

circle onto a 2-cusped curve, ((u — 1) + v* — (4/9))3 —(4v?/3) = 0. The following lemma due
to Wani and Swaminathan [22] provides the inclusion {w : |w — a| < 7.} C pne(D) = Qne.

Lemma 7.1. [22] For 1/3 < a < 5/3, let

- { B
a =5 .
3—ae if
Then, {w : |w—al < 1.} C one(D) = QN where Q. is the region bounded by the nephroid
®Ne-

—_ —

NN
AN IN

a<1
5
a 3

Theorem 7.2. Let « > 0, —1 < B < 0and B < A < 1. For the class ST |A, B], the inclusion
STw[A, B] C ST ne holds if either
(B3>0 and (a(A—B))/(1-B)<2/3
(or)
(i))B<0 and (a(A-B))/(1+ B)<2/3.

If neither condition (i) nor condition (ii) holds, then the Rs ., radius is given by

2 1/n
RsTwe = (3a(A—B) +2|B|> '

Proof. We need to show that the inclusion ST7,[A, B] C ST n., therefore assume that B > 0
and «(A — B)/(1 — B) < 2/3. The inequality B > 0 is equivalent to ¢(«, 1) < 1. Since the
inequality d(c, 1) < ¢(a, 1) — 1/3 follows from a(A — B)/(1 — B) < 2/3. By (2.13), we have

1
3

—c(a, )| < d(a, 1) < e, 1) —

Therefore, using Lemma 7.1 we see that the disc in (2.13) is contained in Q..

Now assume that B < 0 and a(4 — B)/(1 + B) < 2/3. The first inequality reduces to
c(ay 1) = 1. The inequality (a(A — B))/(1+ B) < 2/3 is equivalent to d(a, 1) < 5/3 —c(a, 1).
Therefore, by (2.13), we have

—c(a, 1) <d(a, 1) <

W[ L

—c(ay 1).

Therefore, using Lemma 7.1 we see that the disc in (2.13) is contained in Q..

When the inclusion fails, we show that, for0 < r < R := Rs7,.,thedisc D(c(a, r); d(a, 1))
given in (2.2) is contained in Q.. We prove the theorem by considering the cases B > 0 and
B <O0.

Case (i): Let B > 0. Let the number

2 1/n
= 1
P2 <3a(A—B) +2B> <

be the positive root of the equation {(r) = 1/3 or d(a,r) = c(a,7) — (1/3).
We shall show that R = Rs7,. = p2. For 0 < r < R < 1, it follows that 1/3 < ¢(a,7) <
c(a, R) < 1. Since ¢(a, ) — d(«, r) is a decreasing function of r, for 0 < r < py, it follows that

cla,r) —d(a,r) = cla,pp) —d(a, p2) = %
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and hence

d(a,r) < c(a,r) — % (7.1

Therefore, for 0 < r <R = p2, using (2.2) and (7.1), we have

<cla,r) — <. (7.2)

Thus, using the inclusion result in Lemma 7.1, for 1/3 < a < 1, the disc in (7.2) lies inside
the region Q. proving that ST y. radius for functions belonging to the class STS[A, B] is at
least p,.

To prove the sharpness, consider the function § € ST [A, B] defined by (2.18). For z = —p,,
(2.19) gives

23'(2) 14+ (B+a(A—B))(—p)" 1
= = " :7:901\76(71)3
9(2) 1+ B(=p2) 3

which proves the sharpness for p;.
Case(ii): Let B < 0. Let the number

2 1/n
= 1
P <3a(A—B)—ZB> <

be the positive root of the equation (r) = 5/3 or d(«, ) = (5/3) — ¢(a, 7).

We shall show that R = Rs7,, = p3. For 0 < r < R < 1, it follows that 1 < c¢(a,r) <
c(a,R) < 5/3. Since c¢(«, r) 4+ d(a, r) is an increasing function of 7, for 0 < r < ps, it follows
that

cla,r) +d(a,r) < cla, p3) +d(a, p3) = §

3
and hence
d(a,r) < g —c(a, ). (7.3)
Therefore, for 0 < r < R = p3, using (2.2) and (7.3), we have
24’ (%) 5
—cla,r)| < = —cla,T). (7.4)
9 —elon)| < 3 —elou)

Thus, using the inclusion result in Lemma 7.1, for 1 < a < 5/3, the disc in (7.4) lies inside
the region Q. proving that ST y. radius for functions belonging to the class ST>[A, B] is at
least ps.

To prove the sharpness, consider the function § € ST, [A, B] defined by (2.18). We have, for
2= p3

2§'(z) _ 1+ B+a(A=B))(p3)" _ 5
= = p — 5 — (pNe(l)7
9(z) 1+ B(ps) 3

proving the sharpness for ps. O

8 S7 sc¢ RADIUS FOR FUNCTIONS IN THE CLASS STg [A, B]
Goel and Kumar [6] introduced the class ST s¢ = ST (¢sa), where psg(z) = 2/(1 + e #).
Lemma 8.1. /6] For2/(1 + ¢) < a < 2e/(1 + e), let

_efl
T e+1

—la—1].

Ta

Then, {w : |w —a| < r.} C psa(D) = Qs := {w : |logw/(2 —w)| < 1} where Qs¢ is a
modified sigmoid.
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Theorem 8.2. Let o > 0, —1 < B < 0and B < A < 1. For the class ST,[A, B], the inclusion
ST [A, B] C 8T s¢ holds if either

OB >0 and (a(A—B))/(1-B)<(e—1)/(e+1)

(or)
(iH)B <0 and (o(A—B))/(1+B)< (e—1)/(e+1).

If neither condition (i) nor condition (ii) holds, then the Rst . radius is given by

1/n
» _ e—1
ST Qa+1M@«—B%+@—1NBJ
Proof. To prove the inclusion, we assume that B > 0 and (A —B)/(1—B) < (e—1)/(e+1).
The inequality B > 0 is equivalent to ¢(,1) < 1. The condition a(A — B)/(1 — B) <
(e —1)/(e + 1) is equivalent to the inequality d(c, 1) < ¢(a, 1) + ((e — 1)/(e + 1)) — 1. By

(2.13), we get
e—1

zg'(2)
— (o, 1) pe i

9(2)

Therefore, using Lemma 8.1 we see that the disc in (2.13) is contained in Qg¢.

Now assume that B < 0 and a(A — B)/(1 + B) < (e — 1)/(e + 1). The first inequality
reduces to ¢(a, 1) > 1. The condition a(A — B)/(1 + B) < (e — 1)/(e + 1) follows from the
inequality d(a, 1) < ((e —1)/(e+ 1)) + 1 — ¢(a, 1). using (2.13), we get

<d(ay1) <ela, 1) —

-1
¢ +1—c(a,1).

zg/(z) _c(a’]) —

<d(o, 1) <

By Lemma 8.1, we see that the disc in (2.13) is contained in Qg .

When the inclusion fails, we now show that, for0 < r < R := Rs74., thedisc D(c(w, 7); d(a, 7))
given in (2.2) is contained in Qgg.

Case (i): For B > 0, let the number

e—1 I/n
p”:<@+UMA—m+@—wB> <!

be the positive root of the equation ((r) = 1 — ((e — 1)/(e + 1)) or d(a,r) = c(a,7) + ((e —
1)/(e+1))—1.

We shall show that R = Rsrs, = p2. For 0 < 7 < R < 1, it follows that 2/(1 4+ ¢) <
c(a,r) < ¢(a,R) < 1. Since ¢(o, ) — d(a, r) is an decreasing function of r, it follows, for
0 < 7 < py, that

e—1
C(a’r) - d(a,r) D C(a7p2) - d(aap2) =1- e+ 1
and hence 1
e
d(a,r) < c(a,r) + P 1. 8.1
Therefore, for 0 < 7 < R = o, using (2.2) and (8.1), we have
zg'(2) e—1
—_ < - = . )
o) )| seen Tt (8.2)

Therefore, using the inclusion result in Lemma 8.1, for 2/(1 + ¢) < a < 1, the disc in (8.2) lies
inside the region Q¢ proving that ST s radius for functions belonging to the class ST 5[4, B]
is at least p;.

To prove the sharpness, consider the function § € ST [A, B] defined by (2.18). For z = —pa,
(2.19) gives

2(2) 1+ (B+a(A-B)(—p)" 2
i)~ L+ B(=p2)" 2 T
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which proves the sharpness for p;.
Case (ii): When B < 0, let the number

e—1 1/n
p3 = ((e—i—l)a(A—B)—(e—l)B) <1

be the positive root of the equation n(r) = 1+ ((e — 1)/(e + 1)) or d(ev,7) = ((e — 1)/(e +
1))+ 1—c(a,r).

We shall show that R = Rs7s, = p3. For 0 < r < R < 1, it follows that I < ¢(a,r) <
cla,R) < 2¢/(1+ e). Since c(a,7) + d(a, ) is an increasing function of r, for 0 < r < p3, it
follows that

-1
clayr) +d(a,r) < c(a, p3) + d(a, p3) = Z+ i +1
and hence |
d(a,r) < Z; 1 +1—cla,r). (8.3)
Therefore, for 0 < r < R = p3, using (2.2) and (8.3), we have
zg'(2) e—1
— < 1—cla,r). 4
o02) cla,r) p—— + cla,r) (8.4)

Thus, using the inclusion result in Lemma 8.1, for 1 < a < 2¢/(1 + ¢), the disc in (8.4) lies
inside the region Qg¢ proving that ST g¢ radius for functions belonging to the class ST [A, B]
is at least ps.
To prove the sharpness, consider the function § € ST [A, B] defined by (2.18). For z = p3,
(2.19) gives
2§’ (z) 1+ (B4+a(A-B))(p3)"  2e
3(2) 1+ B(p)" I+

proving the sharpness for ps. O

= psa(l),

9 ST .in RADIUS FOR FUNCTIONS IN THE CLASS ST [A, B]
The class ST = ST (9n), Where (gn(2) = 1 + sin = was introduced by Cho et al. [2].
Lemma 9.1. /2] For 1 —sinl < a < 1 +sinl, let
re =sinl—|a— 1.
Then, {w : |w —a| <.} C @in(D) = Qgin.

Theorem 9.2. Let o > 0, —1 < B < 0and B < A < 1. For the class ST [A, B], the inclusion
ST [A, B] C 8Tsin holds if either

(B >0 and (a(A—B))/(1-B)<sinl

(or)
(i)B<0 and (a(A—-B))/(1+B)<sinl.

If neither condition (i) nor condition (ii) holds, then the Rs,, radius is given by

R B sin 1 l/n
STa =\ @(A—=B)+ (sin1)|B] )

Proof. To prove the inclusion ST [A, B] C ST i, we assume that B > 0 and «(A — B) /(1 —
B) < sinl. The inequality B > 0 is equivalent to ¢(c, 1) < 1. The condition a(A — B)/(1 —
B) < sin 1 is equivalent to the inequality d(«, 1) < ¢(«, 1) + (sin1) — 1. By (2.13), we get

—c(a, )| < d(a, 1) < c(a, 1) + (sin 1) — 1.
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Therefore, using Lemma 9.1 we see that the disc in (2.13) is contained in Qg,.

Now assume that B < 0 and (A — B)/(1 + B) < sinl. The first inequality reduces
to ¢c(a, 1) > 1. The condition o(A — B)/(1 + B) < sin1 which directly follows from the
inequality d(a, 1) < (sinl) + 1 — ¢(a, 1). By (2.13), we get

2g'(2)
9(2)

—cla, 1) <d(a, 1) < (sinl) + 1 — ¢(a, 1).

Using Lemma 9.1, we see that the disc in (2.13) is contained in Qgjp,.

When the inclusion fails, we now show that, for0 < r» < R := Rs7,,. thedisc D(c(a, 7); d(c, 7))
given in (2.2) is contained in Qgjy.

Case (i): Let B > 0. The number

o sin 1 I/n <1
2=\ a(A—B)+ (sin1)B

be the positive root of the equation ((r) =1 — (sin1) or d(a,7) = ¢(a,7) 4 (sin1) — 1.

We shall show that R = Rs7,, = p2- For 0 < r < R < 1 it follows that 1 —sinl <
c(a,r) < e(a, R) < 1. Since ¢(a, 1) — d(a, 7) is an decreasing function of r, for 0 < r < py, it
follows that

cla,r) —d(a,r) = cla, pa) —d(a, pp) =1 — (sin1)

and hence
d(a,r) < c(a,r) + (sin1) — 1. 9.1)
Therefore, for 0 < r < R = py, using (2.2) and (9.1), we have
29'(2) :
FORE cla,r)| < cela,r) + (sinl) — 1. (9.2)

Therefore, using the inclusion result in Lemma 9.1, for 1 — (sin 1) < a < 1, the disc in (9.2) lies
inside the region Q;, proving that ST, radius for functions belonging to the class ST 5[4, B]
is at least p,.

Therefore, the inclusion {w := 2¢'(2)/g(z) : |lw — a| < ro} € Qgs¢ holds which proves that
ST sc radius for functions in the class ST [A, B] is at least R = p,.

To prove the sharpness, consider the function § € ST [A, B] defined by (2.18). For z = —p»,
(2.19) gives

/(2) 1+ (BHa(A-B)(p)" _ | o
g(z) B 1+B(—p2)n =1 ( 1) Spsm( 1)7

which proves the sharpness for p;.
Case (ii): Let B < 0. The number

o sin 1 1/m <1
P3=\a(A—B)— (sin)B

be the positive root of the equation n(r) = 1 4 (sin1) or d(a,7) = (sin1) + 1 — ¢(«, 7).

We shall show that R = Rsr,, = p3. For 0 < r < R < 1, it follows that 1 < ¢(a,r) <
c(a,R) < 14 (sinl). Since c¢(a,r) + d(«, ) is an increasing function of r, for 0 < r < p;, it
follows that

c(a,r) +d(a,7) < e(a, p3) +d(a, p3) = (sinl) + 1

and hence
d(a,r) < (sinl) + 1 — ¢(a, 7). 9.3)

Therefore, for 0 < r < R = p3, using (2.2) and (9.3), we have

29(2) —c(a,r
9(2) ()

< (sinl) + 1 —c(a,r). 9.4)
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Hence, using the inclusion result in Lemma 9.1, for 1 < a < 1+ (sin 1), the disc in (9.4) lies
inside the region Qg proving that ST, radius for functions belonging to the class ST5[A, B]
is at least ps.
To prove the sharpness, consider the function § € ST [A, B| defined by (2.18). For z = ps,
(2.19) gives
2§'(z) _ 14 (B+a(A—B))(p3)"
9(=) 1+ B(p3)"

proving the sharpness for ps. O

=1+sin1 = pg(1),

10 ST, RADIUS FOR FUNCTIONS IN THE CLASS ST [A, B]

Kumar and Arora [10] introduced the class ST}, = ST (), where oy, (2) = 1 + sinh™'(z).
Lemma 10.1. /10] For 1 —sinh™' (1) < a < 1 +sinh™' (1), let
a—(1—sinh™'(1)) if 1—sinh™'(1)<a<1
Ta = L -
1+sinh™'(1)—a if 1<a<1+sinh™'(1).

Then {w : |w —a| < 1.} C pp(D) = Qp := {w € C: |sinh(w — 1)| < 1}. The boundary of
on(D) is petal shaped.

Theorem 10.2. Ler o > 0, —1 < B < 0and B < A < 1. For the class ST, [A, B|, the inclusion
STolA, B] C 8Ty, holds if either

(()B>0 and o(A—B)/(1— B)<sinh~'(1)
(or)
(i) B<0 and ofA— B)/(1+ B) <sinh™'(1).

If neither condition (i) nor condition (ii) holds, then the Rs, radius is given by

1/n
- sinh ™' (1)
RsT), = (a(A —~B) + (sinh_l(l))B|> '

Proof. To prove the inclusion, we assume that B > 0 and (A — B)/(1 — B) < sinh~'(1). The
inequality B > 0 is equivalent to ¢(c, 1) < 1. The condition a(A — B)/(1 — B) < sinh™'(1) is
equivalent to the inequality d(a, 1) < ¢(a, 1) 4 sinh™' (1) — 1. By (2.13), we get

2g'(2) _ c(o, 1) < d(a, 1) < ¢(a, 1) 4 sinh ™' (1) — 1.

Therefore, using Lemma 10.1 we see that the disc in (2.13) is contained in ;. Now assume
that B < 0 and a(A — B)/(1 + B) < sinh™'(1). The first inequality reduces to c(a, 1) > 1.
The condition a(A — B)/(1 + B) < sinh™'(1) directly follows from the inequality d(a, 1) <
1 +sinh~'(1) = ¢(a, 1). By (2.13), we get

29'(2) _ c(er, 1) < d(a,1) < 1 +sinh™ (1) — e(a, 1).

Using Lemma 10.1, we see that the disc in (2.13) is contained in Q.

When the inclusion fails, we now show that, for0 < r < R := Rs7,, the disc D(c(a, r); d(c, 7))
given in (2.2) is contained in Q.

Case (i): Let B > 0. Let the number

- I/n
9 sinh 1.(1)_1 <1
a(A— B)+ (sinh™ (1))B
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be the positive root of the equation ¢(r) = 1 — sinh~'(1) or d(e, ) = ¢(a, 7) 4 sinh ™' (1) — 1.
We shall show that R = Rs7, = p2. For 0 < <R < 1, it follows that 1 — sinh_l(l) <
cla,r) < ¢(a, R) < 1. Since ¢(a,r) — d(c, ) is a decreasing function of 7, for 0 < r < py, it
follows that
clo,r) —d(a,r) = (o, pa) — d(a, p2) = 1 —sinh ™' (1)

and hence
d(o, 1) < e(a, ) 4+ sinh ™' (1) — 1. (10.1)
Therefore, for 0 < r < R = ps, using (2.2) and (10.1), we have
zg'(2) o
) cla,r)| < e(a,r) +sinh™ (1) — 1. (10.2)

Hence, using the inclusion result in Lemma 10.1, for 1 — sinhfl(l) < a < 1, the disc in (10.2)
lies inside the region Q, proving that ST, radius for functions belonging to the class ST 5[4, B]
is at least p;.

To prove the sharpness, consider the function § € ST, [A, B] defined by (2.18) that satisfies
(2.19). For z = —py, (2.19) gives

2§(z) _ 1+ (B+a(A-B)(—p)"
i) [+ B(—p)"

which proves the sharpness for p,.
Case (ii): Let B < 0. Let the number

- /n
. ( sinh 1.(1)—1 ) <1
a(A - B) — (sinh™ ' (1))B

be the positive root of the equation 5(r) = 1 + sinh ™' (1) or d(ev,r) = 1 + sinh ™' (1) — ¢(av, 7).

We shall show that R = Rs7, = p3. For 0 < r < R < 1, it follows that 1 < ¢(a,7) <
¢(a, R) < 1+ sinh™'(1). Since ¢(a,) + d(a,r) is an increasing function of r, for 0 < r < ps,
it follows that

=1 —sinh™'(1) = pp(—1),

clo, ) +d(o, ) < (e, p3) + d(a, p3) = 1 + sinh ™' (1)

and hence
d(a,r) <1+ sinh™' (1) — ¢(a, 7). (10.3)
Therefore, for 0 < r < R = p3, using (2.2) and (10.3), we have
2g'(2) o
o cla,r)| < 14 sinh™ (1) — c(a, 7). (10.4)
g z

Hence, using the inclusion result in Lemma 10.1, for 1 < a < 1 + sinh™' (1), the disc in (10.4)
lies inside the region Q, proving that ST, radius for functions belonging to the class ST, [A, B]
is at least ps.

To prove the sharpness, consider the function § € ST [A, B| defined by (2.18). For z = p3
in (2.19), we have

() _ 1+ (B+a(A-B)(p)"
i) T+ Blpy)"

proving the sharpness for ps. O

=1 +sinh™'(1) = ¢p(1),
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