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Abstract This paper aims to define and investigate a new class of open sets in ideal topo-
logical spaces called τ∗βI -open sets. We have obtained some fresh results accompanied by
examples. Examples are provided to demonstrate independent connection with more generalized
open sets. In addition, we study and characterize the continuous mappings and connectedness
in topological spaces with respect to τ∗βI -open sets.

1 Introduction

Jankovic and Hamlett [1, 2] developed the idea of ideal topological spaces in 1962. Dunham
[3] proposed the idea of C ℓ∗ and τ∗ in 1990. β-open is a concept that was introduced by Glaisa
T. Catalan et al. [4]. Chalice Boonpok [5, 6, 7, 8, 9, 10, 11, 12, 13, 14], Ferit yalaz, Aynur
keskin [5, 6, 7, 8, 9, 10, 11, 12, 13, 14] have recently contributed their novel ideas on local
and multi continuous functions in topolological spaces. In topological spaces, Pushpalatha et
al. [15] created the τ∗g-closed sets and mappings. Approximations of some near open sets in
ideal topological spaces have been examined by Nawar, A.S. [16]. The authors explained the
latest open set in ideal topological space, known as τ∗βI -open set, using these terms. Using the
τ∗βI -open set, a novel method is developed to investigate connectedness, continuous path and
independent outcomes in topological spaces.

2 Preliminaries

Readers require a previously specified definition that follows.

Definition 2.1. [1] A non empty family of subsets of a set X is said to be an ideal I if it satisfies
(i) If I1 and I2 belongs to I then I1 ∪I2 ∈ I and (ii) If I1 ∈ I and I2 ⊆ I1 then I2 ∈ I .

In every part of this paper, the ideal topological space (X, τ,I ) represented as ITS, open
set of X as os(X), closed set of X as cs(X), interior of a set A as int(A), closure of a set
A as cl(A), cl∗ as C ℓ∗, C ℓ∗(int(C ℓ∗(Γ)) as B, C ℓ∗(int(C ℓ∗(L)) as H , continuous as Cs,
connected as Cd and mapping as Mpg.

Remark 2.2. The definition of βI -open sets and topology τ∗ utilized in this paper and be found
in [3] and [4].

3 On τ ∗βI-Open Sets in Ideal Topological Spaces

This section examined the idea of τ∗βI -open sets.

Definition 3.1. A subset A of a ITS is called τ∗βI -open if ∃ os(Γ) such that
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(i) Γ\A ∈ I

(ii) A\C ℓ∗(int(C ℓ∗(Γ))) ∈ I .

Remark 3.2. τ∗βI − os(X) = τ∗βI − cs(X).

Example 3.3. Let X = {l1, l2, l3} with the topology
τ = {∅, {l1}, {l3}, {l1, l3}, X} and the ideal I = {∅, {l3}}.
Here τ∗ = {∅, {l1}, {l3}, {l1, l2}, {l1, l3}, X}.
Then the sets {l1}, {l3}, {l1, l2}, {l1, l3}, X and ∅ are τ∗βI − os(X).

Theorem 3.4. Every os(X) in a ITS is a τ∗βI − os(X).

Proof. In ITS, let G be any os(X). Since every os(X) is τ∗ − os(X), G is a τ∗ − os(X). To
prove G is τ∗βI -open set, it is enough to find a os(Γ) satisfying

(1) Γ\G ∈ I (2) G\B ∈ I . Since G is itself an τ∗ − os(X).
Let us take Γ = G. Also G = Γ\Γ = ∅ ∈ I .
Now Γ ⊆ C ℓ∗(Γ) ⇒ int(Γ) ⊆ int(C ℓ∗(Γ)). Then Γ ⊆ int(Γ) ⊆ int(C ℓ∗(Γ)) ⇒ C ℓ∗(Γ) ⊆
B ⇒ Γ ⊆ C ℓ∗(Γ) ⊆ B. So Γ ⊆ C ℓ∗(int(C ℓ∗(M)). Now G\B = Γ\B = ∅ ∈ I . So, both the
conditions are satisfied. Hence G is τ∗βI − os(X).

Theorem 3.5. In ITS if G ∈ I , then G is a τ∗βI − os(X).

Proof. Let G ⊆ X such that G ∈ I . Let us take Γ = ∅. Obviously Γ is τ∗-open set. Also
Γ\G = ∅ ∈ I and G\B = G\∅ = G ∈ I . Hence G is an τ∗βI − os(X).

Theorem 3.6. In ITS if I = {∅}, then L is a βI − os(X) iff L is a τ∗βI − os(X).

Proof. Let L be a βI − os(X) in X and I = {∅}, ∃ oS(Γ) such that (i) Γ\G ∈ I and (ii)
G\B ∈ I . Since I = {∅}, C ℓ∗(L) = C ℓ(L). Then G\H = G\C ℓ(int(C ℓ(L))). By (ii)
G\H ∈ I . Therefore L is a τ∗βI − os(X).
Conversely, suppose L is a τ∗βI − os(X), ∃ oS(Γ) such that (i) Γ\G ∈ I and (ii) G\B ∈
I . By the above arguments, G\B = G\B. From these arguments, we can say that L is a
τ∗βI − os(X).

Theorem 3.7. If P,Q ∈ τ∗βI − os(X), then P ∪ Q is a τ∗βI − os(X).

Proof. Let P,Q ∈ τ∗βI − os(X). Then ∃ a oS(Γ) s.t
Γ\P ∈ I , P\B ∈ I and Γ\Q ∈ I , Q\B ∈ I . Since, Γ\P∪Q ⊆ Γ\P∪Γ\Q ∈ I ∪I ∈
I .
P ∪ Q\B ⊆ P\B ∪ Q\B ∈ I ∪ I ∈ I
P ∪ Q is an τ∗βI − os(X).

Theorem 3.8. If P,Q ∈ τ∗βI − os(X), then P ∩ Q is a τ∗βI − os(X).

Proof. Let P,Q ∈ τ∗βI − os(X). Then ∃ a oS(Γ) s.t
Γ\P ∈ I , P\B ∈ I and Γ\Q ∈ I , Q\B ∈ I . Since Γ\P ∩Q ⊆ Γ\P ∩Γ\Q ∈ I ∩I ∈
I
P ∩ Q\B ⊆ P\B ∩ Q\B ∈ I ∩ I ∈ I

Corollary 3.9. If A1, A2, . . . , An are τ∗βI − os(X) then

(i) A1 ∪A2 ∪ · · · ∪An is a τ∗βI − os(X)

(ii) A1 ∩A2 ∩ · · · ∩An is a τ∗βI − os(X)

Remark 3.10. In example 3.3, the set A = {l1} and B = {l3} gives their union A∪B = {l1, l3}
is a τ∗βI − os(X).

Remark 3.11. In example 3.3, the set A = {l1, l2} and B = {l1, l3} gives their intersection
A ∩B = {l1} is a τ∗βI − os(X).
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Example 3.12. Let X = {l1, l2, l3}, τ = {∅, {l1}, X} and I = {∅, {l3}}. Here the set {l1, l3} is
τ∗βI − os(X) but not τ∗ − os(X).
Consider another ITS X = {l1, l2, l3}, τ = {∅, {l1}, X}, I = {∅, {l1}}. Here the set {l2, l3} is
τ∗ − os(X) but not τ∗βI − os(X). Hence τ∗ − os(X) and τ∗βI − os(X) are independent.

Example 3.13. Let X = {l1, l2, l3}, τ = {∅, {l1}, X} and I = {∅, {l3}}. Here the set {l1, l3} is
τ∗βI − os(X) but not βI − os(X).
Consider another ITS X = {l1, l2, l3}, τ = {∅, {l1}, {l3}, {l1, l3}, X}, I = {∅, {l3}}. Here the
set {l2} is βI − os(X) but not τ∗βI − os(X).

Example 3.14. Let X = {l1, l2, l3}, τ = {∅, {l1}, X} and I = {∅, {l3}}. Here the set {l3} is
τ∗βI − os(X) but not βI − os(X).
Consider another ITS X = {l1, l2, l3}, τ = {∅, {l1}, {l3}, {l1, l3}, X}, I = {∅, {l3}}. Here
the set {l2} is βI − os(X) but not τ∗βI − os(X). Hence βI − os(X) and τ∗βI − os(X) are
independent.

4 τ ∗βI-Continuous Maps in ITS

Throughout this section, same ideal for both domain and co domain in a mapping to be consid-
ered.

Definition 4.1. A Mpg h : (X, τ1,I ) → (Y, τ2,I ) is called τ∗βI -Cs at x0 ∈ X iff for each
τ∗-open set G containing h(x0) in (Y, τ2,I ), ∃ an τ∗βI − os(X) in I ⊇ x0 in (X, τ1,I ), such
that f(I ) ⊆ G.

Theorem 4.2. A Mpg h : (X, τ1,I ) → (Y, τ2,I ) is τ∗βI -Cs iff every τ∗−os(Y ) is τ∗βI−os(X)
in (X, τ1,I ).

Proof. Suppose h : (X, τ1,I ) → (Y, τ2,I ) is τ∗βI -Cs. Let x0 be any element in (X, τ1,I ) and
G be a τ∗ − os(Y ) containing h(x0) in (Y, τ2,I ). Since h is continuous, h is continuous at x0.
Then ∃ τ∗βI − os(I ) in I ⊇ x0 in (X, τ1,I ) such that h(I ) ⊆ G. Since I is τ∗βI − os(X),
choose h−1(G) = I . Hence, h−1(G) is τ∗βI − os(X).
Conversely, suppose every τ∗−os(Y ) is τ∗βI−os(X). If x ∈ X then G be a part of τ∗−os(Y ) ⊇
h(x). By hypothesis h−1(G) is τ∗βI − os(X), where h(x) ∈ G, x ∈ h−1(G). Then h−1(G) is
τ∗βI−os(X) ⊆ X . Also h(h−1(G)) ⊆ G. Hence h is τ∗βI -Cs at all points. So h is τ∗βI -Cs.

Theorem 4.3. A Mpg q : (X, τ1,I ) → (Y, τ2,I ) is τ∗βI -Cs iff every τ∗ − cs(X) and K in
(Y, τ2,I ) is τ∗βI − cs(X) in (X, τ1,I ).

Proof. Suppose q : (X, τ1,I ) → (Y, τ2,I ) is τ∗βI -Cs. If K be a part of τ∗ − cs(Y ). Then
Y \K is τ∗ − os(Y ). Since q is τ∗βI -Cs and by Theorem 4.2, q−1(Y \K) is τ∗βI − os(X) in X .
That is, q−1(Y \K) = q−1(Y )\q−1(K) = X\q−1(K) is τ∗βI − os(X) in X . Then q−1(K) is
τ∗βI − cs(X) in X .
Conversely, suppose every τ∗ − cs(X) is τ∗βI − cs(X). Let G be any τ∗ − os(Y ). Then let
B = Y \G is τ∗βI − cs(X) in X . But q−1(B) = q−1(Y \G) = q−1(Y )\q−1(G) = X\q−1(G).
Then X\q−1(G) is τ∗βI − cs(X). This implies, q−1(G) is τ∗βI − os(X). Therefore, we get,
every τ∗ − os(Y ) in Y is τ∗βI − os(X) in X . So, by Theorem 4.2, q is τ∗βI -Cs.

Theorem 4.4. Every Cs Mpg is τ∗βI -Cs Mpg.

Proof. The proof is straight forward by the following theorems.

(1) h is Cs iff h−1(os(X)) is os(X).

(2) Every os(X) is a τ∗ − os(X).

(3) Every os(X) in ITS is a τ∗βI − os(X).
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5 Connectedness with respect to τ ∗βI − os(X)

In this section, our discussion is about the connectedness, separated sets in ITS with respect to
τ∗βI − os(X). Consider the ITS, where τ is any topology and I is any ideal.

Definition 5.1. Let P,B ⊆ X . If P,B are said to be τ∗βI -Separated sets then C ℓ∗(P)∩B =
∅ = P ∩ C ℓ∗(B)

Definition 5.2. Let P,B ⊆ X . If P ̸= union of two disjoint τ∗βI − os(X), then P is said to
be τ∗βI -Cd.

Theorem 5.3. Consider ITS. If A1(̸= ∅), A2(̸= ∅) ⊆ X and A1 ∩ A2 = ∅ such that A1 and A2
are τ∗βI − os(X), then A1, A2 are τ∗βI -Separated sets.

Proof. Let A1(̸= ∅), A2(̸= ∅) be two disjoint τ∗βI -Open subsets of X . To prove A1 and A2 are
τ∗βI -Separated sets, by using the definition, it is enough to prove that either C ℓ∗(A1) ∩ A2 = ∅
or A1 ∩ C ℓ∗(A2) = ∅. Since A1 is τ∗βI -Open, AC

1 is τ∗βI -Closed. Also, since A1 ∩ A2 = ∅,
A1 ⊆ AC

2 . This implies C ℓ∗(A1) ⊆ AC
2 . As AC

2 ∩ A2 = ∅, C ℓ∗(A1) ∩ A2 = ∅ by using the
τ∗βI -Open set A.

Theorem 5.4. If X is τ∗βI -Cd in a ITS then (X, τ) is Cd.

Proof. Let X is not Cd and X1(̸= ∅), X2(̸= ∅) be two disjoint os(X) such that X = X1∪X2. As
every open set is τ∗βI -Open, X1 and X2 are both τ∗βI − os(X). Since X = X1 ∪X2, X1 = XC

2
and X2 = XC

1 , X1 and X2 are also both τ∗βI -Closed. Thus X1 = C ℓ∗(X1) and X2 = C ℓ∗(X2),
C ℓ∗(X1) ∩X2 = X1 ∩X2 = ∅ and X1 ∩ C ℓ∗(X2) = X1 ∩X2 = ∅. Therefore, ITS is not Cd,
⇒⇐.

Theorem 5.5. Consider ITS and K be os(X). If H is a τ∗βI ⊆ X , then H ∩K is τ∗βI -Open
⊆ K .

Proof. Let H ∈ τ∗βI − os(X). Then ∃ an os(X) J ′ such that J ′\H ∈ I and
H \C ℓ∗(int(C ℓ∗(J ′))) ∈ I .
Let J = J ′ ∩ K . Then

J ′\(H ∩ K ) = J ′ ∩ (H ∩ K )C

= (J ′ ∩ K ) ∩ (H C ∪ K C)

= (J ′ ∩ K ∩ H C) ∪ (J ′ ∩ K ∩ K C)

= J ′ ∩ K ∩ H C

= (J ′\H ) ∩ K ∈ I .

Also,

(H ∩ K )\C ℓ∗(int(C ℓ∗(J )) = (H ∩ K )\C ℓ∗(int(C ℓ∗(J ′ ∩ K )))

= (H ∩ K )\C ℓ∗(int(C ℓ∗(J ′))) ∩ K

= [H \C ℓ∗(int(C ℓ∗(J ′))) ∩ K ] ∩ K ∈ I

Hence, H ∩ K is τ∗βI -open subset of K .

6 Conclusion Remarks

In this article a new type of open sets called τ∗βI -open sets is formed in Ideal Topological
spaces. The present work is explained about definitions of τ∗βI -open sets with examples and
some new theorems with proofs. The result works well in the domain of continuous maps. Fi-
nally various forms of connected related results are obtained. The reader may extend the results
in Bi topological spaces, Fuzzy Topological spaces, Nano topological spaces, Soft topological
spaces and Rough topological spaces in future.
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