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Abstract In this work, the new subclass of bi-univalent functions related to differential oper-
ator of polylogarithm function has been examined. The convolution of two well-known differen-
tial operators define the new differential operator A’A"% ,» Using this operator a new bi-univalent
subclass has been introduced and estimate the initial coefficients |a,| and |as|. Furthermore,
by specializing the parameters in our primary findings, we show that various subclasses have
been obtained and investigated the properties of the subclasses. The result of this study will for-
tify the field’s theoretical foundations and open up fresh avenues for mathematical inquiry and
application.

1 Introduction

For the normalized analytic functions A represent the class of

=+ _ac",
k=2

in the unit disc U = {¢ € C: || < 1}, which is analytical.

Let L represent the subclass of all functions in A, it also satisfies f'(0) = 1 in U and the
Jollowing constraints f(0) = 0 Let (f * g)(C) be the convolution between subsequence functions
(O, g(¢) is written by

(Fra)(©) =+ anhict.

k=2

where

=+ bch
k=2

The polylogarithms function of v € N, with v > 2, defined as
Liy (€) Z ﬁ
k=1
For A\ € N, Re()\) > 1 and Re(c) > —1, the \*" order polylogarithms function defined by

INCIOEDS

o (k+ o
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For f(C) € Q, Al-Shagsi [2] introduced the following operator

U (e0) = (140 9 (6.€) + <+Z(1“) axd?,

where A € N, Re(\) > 1 and Re(c) > 0.
For f(C) € A, we define the differential operator

- 1+c\?
X = Z_: (kyp+~ — p)(k —1)] <k+c> arg”.
Hence,
1+c¢
A = <+Z( ) arck,
- 14\
A = CHY [T+ (kyp+ry—p)(k—1)] (k+c) arC”,
k=2
Ai"%/i = A)‘t"/#" (A/\,'y“u,) .
Similarly,

1+e¢
k+c

A
N = Am;t(AMH)—CJrZ (yu+y = p)(k = D]" ( )akc’ﬂ (1.1)

which is convolution of the well known operators of Raducanu et al. [15] and Al-Shagsi [2].

Remark 1.1. (i) For u = 0, and ¢ = 0 in (1.1), we get the multiplier transformation ™ f({)
introduced by Flett [4].

(i) For . = 0,y = l,c = 0and A\ = —n,n € Ny in (1.1), we get the differential oprator
D" f(¢) introduced by Salagean [16].

(iii) Fory = 0,y = 1, ¢ = 1 and A = n in (1.1), we get the differential oprator Z" f ()
introduced by Uralegaddi et al. [18].

@iv) Foru=0,7=1,c=1,A=din(1.1), we get the mutiplier transformation oprator Z° f ()
was introduced by Jung et al. [7].

(v) Forpy=0,y=1,c=a—1(a>0),\=¢in(1.1), we get the integral operator Z°_, f(¢)
was introduced and studied by Komatu et al. [10].

In recent years, the researchers are fascinated by the differential and integral operators like
Frasin et al. [5], Bansal et al. [3], Santosh Joshi et al. [8], Lashin [11], Agnes et al. [13]
Srivastava et al. [17], Kassim A. Jassim et al. [9], Al-Shbeil et al. [1], Hussen et al. [6],
Murugusundaramoorthy et al. [12] and Yousef et al. [19] investigated a number of bi-univalent
Sfunction subclasses and came up with bounds for the fundamental coefficients |ay| as well |as)|.

By these inspiration, we present few bi-univalent functions new subclasses and compute the
underlying coefficients |ay| and |as|.

In order to determine our principal results, we really want to review the accompanying
lemma.

Lemma 1.2. [14] Ifp € P, then |p,| < 2 for every n, where P is the symbol for family containing
all functions. which is analytic in U for which

Re (p(¢)) > 0,p(¢) =1+ pi{+pa+ -+

for ¢ € U.
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2 Coefficient Estimation related to the operator AQ, -~

2.1 Coefficient Estimation for the class LS . u(d))
It is expected that the sequel will
¢(Q) =1+ Bi(+ B+ B¢ +---, B >0.

Let assume u(¢) as well as v(C) are analytical in the unit disk U with u,(0) = v1(0) =0,
lur (O)] < 1, Jui(n)| < 1, and

YO =1+pC+pC+pC4-, (p1>0),

v =l+an+ar +ar +-, (@ >0).
Since ¥(0) = 1,4'(0) > 0

~1 1 1
ur(¢) = iEE;Jrl = §p1C+§(pz—p%)C2+---,
~1 1 1
v1(n)=m+l22Q177+2(Q2—Q12)772+~--

It is widely acknowledged that

Pl <1, |pl <1=pil% ol <1 g <1 —|a

A brief computation yields the following:

1 1 20
#(Q) = (w1 () =1+ >Bipi¢+ (231(}72 - %‘) + 4sz%> - 2.1
and
1 1 q% 1 2\ 2
¢(n) = e(vi(n)) =1+ 5 Bian + <2B1(qz -2+ 4qu1> w4 2.2)

Definition 2.1. If a function f € ﬁ):;y - u(¢)’ then the subsequent subordinations are hold:

1 [ C(AR, L F(Q)
1+ —— -1 2.3
+b< ;O < () (23)
and
1 (n(A%, ,.9(M))
14+ - —=2—= -1 . 2.4
3 ( A g0 =< ¢(n) (2.4)
Theorem 2.2. If f(¢) € Ef‘\m“w), then
0] < 26| By (p2 + q2) + |b (B2 — By) (p7 + 4})
2= 82X, — X
and
a3 < 26| By (p2 + q2) + [bl (B2 — By) (p7 + 47)
: 82X, — X
2 |b] Bi (p2 — ¢2) + [ (B2 — By) (p7 — 47)
16X, :
where

X =(1+2@wm+v- u) (57 ) :
X=(1+2w+7—u " (3Ee

C)
=(1+2yu+y—pw" (5% )2
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Proof. Let f € L%, ,(¢). There are also analytical functions u,v : U — U given by (2.3) and

AV
(2.4) such that
L1 <<<AA,%,Lf(<>) - 1) _ 50

b\ AR, Q)
and
1 An !/
b AM,#Q(n)
Since
1 (CAR, . f() 1 1
14— [ =22 | =1+ —[X — [X1a3 — Xpd3] P+ - 2.
+b < A;\L’%#f(c) +b[ 3a2]C+b[ 1a3 2a2]§ + 2.5)
and
1 (n(AS, .9(n) 1 1 1
T4 — | 22 ) =1--[X —[-X 2+ [2x - X)) a3 P+
+5 ( ;o) ; [Xsa]n + 5 [FXaas]n® + - [(2X = Xo) ag] n” +
(2.6)
It follows from (2.1), (2.2), (2.5) and (2.6), equating coefficient of (:
1 [X3]ax = lB 2.7
p L33 az = 3 1P1- .
Equating coefficient of ¢
1 1 p? 1
3 [2X1a3 = Xaa3] = SBi(p2 = ) + 5 Bopt. (2.8)
Equating coefficient of 7:
1 1
-3 [(X3]a, = EBIQI- (2.9)
Equating coefficient of n*:
1 n 1 2 1
“[2Xjas + 4%, — (1+6) ag} = Bi(— Ly 4 - By (2.10)
b 2 2 4
Adding (2.7) and (2.9), we get
b1 = —q.
Squaring and adding the equations (2.7) and (2.9), we get
WB2 (1 + )
2_ 2\t A
a; = 8%, . (2.11)
Substitute (2.8) in (2.10), we arrive
2bB b(B,— B 2+ ¢
a%: 1 (p2+ @) +0(Bs2 21)(p1+q1). (2.12)
8 [2X1 —(1+96) "]
Subtracting (2.8) and (2.10), we get
2bB - b(B, — B 2 ¢
0 =dd+ 1(p2— @) +b0(B2 1) (P (11). (2.13)

16X,
Substitute (2.11) in (2.13), we obtain

_ v B} (p} + ¢}) n 2bBi (p2 — q2) + b (B2 — By) (p7 — 4i)
8X, 16X, '

as
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Substitute (2.12) in (2.13), we arrive

2bB) (p2 + @) +b(B, — By) (p + q}) N 2bBi (p2 — @) + b (B2 — B1) (p — q})

az = 82X, — X5] 16X,
Hence,
laa] < \/2 6] By (p2 + @) + |b| (B2 — By) (p? + q})
82X, — X))
and
o < 2PLBL 2+ @) + (B2 = B) (04 8) | 201 B (02— ) + 01 (B2 = B) (v~ ).

82X, — X,] 16X,

2.2 Coefficient Estimation for the class £ ()

If we set
ea(C) =14+ Bi(+ B+ B+, (B >0).

Since ©(0) = 1,4'(0) >
Let assume u(C) as well as v(¢) are analytical about the unit disk U with u(0) = v(0) = 0,
lu(Q)| < 1, [v(n)| < 1, and

u(@) =p¢+ > prc

and

o) =qn+Y_ an®

k=2
It is widely acknowledged that

Pl <1 Il < T=IpiP ] <15 gl < 1= o
A brief computation yields the following:
p(u(Q)) =1+ BipiC + (Bipz + Bopi)¢* 4+, ¢ < 1

and
e(v(n)) =14 Biain + (Bigz + Bagh)n* + -+ ,n| < 1.

Definition 2.3. If f € £ (), then the subsequent subordinations are hold:

(ALY
T ( S 1) <9l)

and

1 (n(A%, .9(n)
1+ 3 (Ag,y,ﬂg(n) — 1) =< (n).

Theorem 2.4. If f(¢) € L, (), then

o] [By pz+qz)+Bz P+ )]
22X, — X

laa] <

and

6] Bi (p2 + @2) + |b] B2 (p} + 4f) +|b|Bl (p2 — @) + [b| B2 (p} —ql)

<
|CL3| - 2[2X1—X2] 4X,
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2.3 Coefficient Estimation for the class M > s u(?,b)

If we set

W) =14+p+pC+pC+---, (p>0)
and

v =1+an+ar+an +--, (g >0).

Definition 2.5. If f € M5 (), then the subsequent subordinations are hold:

o] (c(xtzvﬁf(c))'

&, 00 1) =¥

and

n(A%, .9(m)
1+ 5 <Ai\17u o 1) < ¥(n).

Theorem 2.6. If f(¢) € M5, ,(¢), then

bl (2 + @2)

<
2l <12 x, = x)]

and
b (p2 + q2) n b (p2 — @2)
22X, — X)] axX,

|as] <

2.4 Coefficient Estimation for the class Mi yona(P)

If we set
V() =1+piC+pC+pC+--, (p1>0)
and

() = l4+an+ar+ar +-, (g >0)
o(¢) = ()"

L+opi¢+ <apz + 04(0421)1)%) ¢+
o(n) = (@m)*

—1
= l+aqn+ (aqz+a(a2 )qf) w’

Definition 2.7. If f € M% ~.u0(®), then the subsequent subordinations are hold:

(¢ Ayt /(©)
1+ - (A" —1><¢(C)

A C

and

1+1 ”“g 0 < é(n).
/\vu 77

Theorem 2.8. If f(¢) € M3, , ,(¢), then
0] < 206l o (p2 + @2) + bl (o — 1) (p} 4+ ¢3)
2l = 4[2X1 —Xﬂ
and
|a3|<2|b\a(pz+qz)+|bla(04—1)(p%+qf)+2\b|a(pz—qz)+|bl a(a—1)(pf —ql)

4[2X1 —Xﬂ SXI
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2.5 Coefficient Estimation for the class L3, ()

If we set
$(¢) =0+ 1 =0)p(¢) =1+ 1 =0)piC+ (1 —o)pag® + -

and
o) =c+1—o)p(n)=1+1-0)gn+ (1 —o)pn*+ --; 0<o< 1

Definition 2.9. If f € £ (¢), then the subsequent subordinations are hold:

XYl 0
16 T0)
e (g 1) <o
and
1 (A, 9m)"
1+ 2 <A§\L777M9(77) 1] <o(n).

Theorem 2.10. If f(¢) € L5 ., ,, ,(¢), then

jal < \/ Ml o) r o)

and
bl(1—0)(p2+a) , [bl(1-0) P —a)
< .
|a3‘ - 2 [ZX] — Xz] + 4X,
2.6 Coefficient Estimation for the class Mi% oo (@)
If we set
14+(1-2
¢(¢) = +(1_<U)< =1+2(1=0)¢+2(1-0)°¢C +- -
and
() = H(ll__:")” 142l = +2(1—0)P+-; 0<o <.
Definition 2.11. If a function f € M§ ..o (@), then the subsequent subordinations are hold:
1 An . !/
b\ A% L f(Q)
and
L n(AS .9()
1+ - | —2E 2 — 1) < o(n).
b < A% 9()
Theorem 2.12. If f(¢) € ME , , ,(¢), then
2[bl (1 = 0)*
< - @ 7
2l <\ 2 =,
and
206 (1 —0)’
las| < 218 (1~ )"

2X) - Xy
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2.7 Coefficient Estimation for the class L3, (¢)

If we set
1+

] C> =142l +22C+--; 0<a<l.

o6 = (
and N
qﬁ(n):(ii_:;) =14 2an+ 227> +---

Definition 2.13.1f f € £ , ,(¢), then the subsequent subordination’s are hold:

141 (C Al g)/—1><¢(<)

and

Theorem 2.14. If f(¢) € L5, jio(®) then

aa] 216 a2
2 2X, — X,
and
03] 2 |b| ?
Bl=ox - X

3 Conclusion remarks

In this current paper two initial coefficients |az| and |ag| are estimated for a new sub-class.
Furthermore, this work motivated the researchers to extend the results of this article into some
new subclass of meromorphic functions, and g-calculus of bi-univalent functions. Also the re-
searchers to extend into the famous inequalities like Fekete szego inequality and second and third
Hankel determinants. Naturally it has a wide range of applications in science, engineering, and
other related areas such as signal processing and control theory.
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