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Abstract The article describes a study on a specific type of boundary value problems for
partially singularly perturbed differential equations of a reaction-diffusion system. The equa-
tion involves discontinuous source terms across all terms. Additionally, there is a singular point
d within the interval (0, 1) where the source terms exhibit a single discontinuity. Solutions to
this problem exhibit boundary layers at x=0, x=1, and an interior layer at x=d. To address this
problem, we propose a computational analysis based on a finite element method. This method
utilizes a piecewise-uniform Shishkin mesh, which is a commonly used discretization technique
for problems with boundary and interior layers. The study demonstrates that this computational
procedure achieves almost second-order convergence in the maximal norm, uniformly across
various perturbation parameters. This suggests that the method provides accurate approxima-
tions of the solutions, even as the perturbation parameters vary. The validity of the proposed
approach is supported by numerical examples presented in the article. These examples likely
illustrate how the method performs in various scenarios and validate the theoretical results re-
garding convergence and accuracy. In summary, the article contributes to the understanding and
solution of partially singularly perturbed differential equations with discontinuous source terms,
providing a computational framework that is effective and reliable for practical applications.

1 Introduction

Singularly perturbed differential equations may be encountered in many areas of applied math-
ematics. Many researchers have concentrated on the analytical and numerical handling of these
equations. In general, basic numerical methods do not provide good approximations to these
equations. As a result, one must search out non-traditional approaches. Several papers on non-
classical techniques have appeared during the last three decades, the bulk of which deal with
second-order problem. However, just a few authors have developed numerical methods for sin-
gularly perturbed systems of ordinary differential equations. This uniformity guarantees that our
study’s many parts or examples form an effective framework for analysis and comparison. By
preserving consistency in these characteristics, we want to contribute to clearer and more accu-
rate interpretations of our results and methodology.
The article presents a study focusing on a specific class of boundary value problems associated
with partially singularly perturbed differential equations in reaction-diffusion systems. These
equations feature discontinuous source terms across all terms, with a singular point d within the
interval (0, 1) where the source terms exhibit a single discontinuity. Solutions to this problem
exhibit boundary layers at x = 0, x = 1, and an interior layer at x = d. To tackle this problem
computationally, the article proposes an analysis based on a finite element method. Specifically,
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the method employs a piecewise-uniform Shishkin mesh, a commonly used discretization tech-
nique for problems characterized by boundary and interior layers. The study demonstrates that
this computational approach achieves nearly second-order convergence in the maximum norm,
consistently across various perturbation parameters. This indicates that the method offers ac-
curate approximations of the solutions, even as the perturbation parameters vary. Numerical
examples provided in the article likely illustrate the performance of the method in different sce-
narios and validate the theoretical findings concerning convergence and accuracy. In summary,
the article contributes to the understanding and solution of partially singularly perturbed differ-
ential equations with discontinuous source terms. It offers a computational framework that is
both effective and reliable for practical applications.
Our current research focuses on partially singularly perturbed differential equations with dis-
continuous source terms, which we compare to previous results [16] and [13]. The first article
specifically deals with systems where the source terms are discontinuous. This introduces addi-
tional challenges in the numerical approximation due to the discontinuities. The second article
considers partially singularly perturbed systems, which may have regions where the singular per-
turbation dominates and other regions where it is less influential. This introduces complexities
in understanding the behavior of the solution across different parameter regimes. When dealing
with partially singularly perturbed differential equations with discontinuous source terms, we
may investigate how these terms affect the behavior of the system under investigation, which
could be a physical system, a mathematical model, or anything else. When comparing this to
previous research, we will most likely look for parallels, differences, and any new advancements
or insights gained from the current work.

In the interval Ω = {x : 0 < x < 1}, a singularly perturbed linear system of ‘n’second
order ordinary differential equations of reaction diffusion type with discontinuous source terms
is considered. Assume that the point d ∈ Ω occurs as a single discontinuity in the source terms.
The jump at d in any function ϕ⃗ is defined by [ϕ⃗](d) = ϕ⃗(d+) − ϕ⃗(d−). First ’m’ equation’s
leading term is multiplied by a small positive parameter and remaining ‘n-m’ equations are not
singularly perturbed. It is assumed that these ‘m’ singular perturbation parameters are distinct.
First ‘m’ solution’s elements have overlapping boundary layers and remaining ‘n-m’ solution’s
elements have less serve overlapping layers.
The self-adjoint two-point boundary value problem that corresponds is

−Eu⃗′′(x) +A(x)u⃗(x) = f⃗(x)onΩ
− ∪ Ω

+, u⃗given onΓandf⃗(d+) ̸= f⃗(d−) (1.1)

where Γ = {0, 1},Ω− = {x : 0 < x < d},Ω+ = {x : d < x < 1}.
Here u⃗ is a column n−vector, E and A(x) are n×n matrices, E = diag(ε⃗), ε⃗ = (ε1, · · · , εn) with
0 < εi ≤ 1 for all i = 1, . . . , n. The parameters are assumed to be distinct and, for convenience,
to have the ordering

ε1 < · · · < εm < εm+1 = · · · = εn = 1.
The number of layer functions and, as a result, the number of transformation parameters in the
Shishkin mesh specified in Section 3 is reduced in these situations. The problem can also be
written in the operator form

L⃗u⃗ = f⃗ on Ω
− ∪ Ω

+, u⃗ given on Γ, and f⃗(d+) ̸= f⃗(d−),

where the operator L⃗ is defined by

L⃗ = −ED2 +A,D2 =
d2

dx2 .

For all x ∈ Ω, it is assumed that the components aij(x) of A(x) satisfy the inequalities

aii(x) >
n∑

j ̸=i
j=1

|aij(x)| for 1 ≤ i ≤ n and aij(x) ≤ 0 for i ̸= j (1.2)

and, for some α,

0 < α < min
x∈[0,1]
1≤i≤n

(
n∑

j=1

aij(x)). (1.3)
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It is assumed that aij , fi ∈ C(2)(Ω), for i, j = 1, . . . , n. Then (1.1) has a solution u⃗ ∈ C(Ω) ∩
C(1)(Ω) ∩ C(4)(Ω− ∪ Ω+).
C is a generalised positive constant that is independent of x as well as all singular perturbation
and discretization parameters used in this article. The analytical results for the continuous prob-
lem are presented on the following section. In Section 3, piecewise-uniform Shishkin meshes can
be used to solve the boundary and interior layers. The discrete problem is described in Section
4, and the corresponding maximum principle and stability result are defined. The parameteruni-
form error estimation is defined and illustrated in Section 6. The numerical diagrams in Section
8 are included.

2 Analysis of the finite element method

Consider the weak formulation, find u⃗ ∈ H1
0 (Ω

− ∪ Ω+)n in particular ui ∈ H1
0 (Ω

− ∪ Ω+) for
i = 1, . . . , n such that

βi(ui, vi) = fi(vi) ∀vi ∈ H1
0 (Ω

− ∪ Ω
+) (2.1)

βi(ui, vi) = −εi(u
′

i, v
′

i)+

( n∑
j=1

(aijuj), vi

)
and

fi(vi) = (fi, vi)

For i = 1, . . . ,m

βi(ui, vi) = −εi(u
′

i, v
′

i)+

( n∑
j=1

(aijuj), vi

)
for i = m+ 1, . . . , n

βi(ui, vi) = −(u
′

i, v
′

i)+

( n∑
j=1

(aijuj), vi

)

where (ui, vi) =
1∫

0
uivi dx, βi(ui, vi) is a bilinear form on H1

0 (Ω
− ∪ Ω+)n and fi(vi), a given

continuous linear functional on H1
0 (Ω

− ∪ Ω+)n and fi(vi(d+)) ̸= fi(vi(d−)).

Lemma 2.1. Suppose that the bilinear form βi(·, ·), i = 1, . . . , n, is continuous on H1
0 (Ω

− ∪ Ω+)n

is coercive, that
|βi(ui, vi)| ≤ γ||ui|| ||vi|| (2.2)

βi(vi, vi) ≥ α||vi||2 (2.3)

where α and γ are“constants that are indepentent of ui and vi. Then for any continuous linear
functional fi(·), the problem (2.1) has a unique”solution.

A natural norm on H1
0 (Ω

− ∪ Ω+)n associated with the bilinear form βi(·, ·) is the energy
norm

||vi||2εi = (εi||vi||21 + α||vi||20)

where ||vi||1 = (v
′

i, v
′

i)
1/2, ||vi||0 = (vi, vi)1/2 on H1

0 (Ω
− ∪ Ω+)n.

Lemma 2.2. A bilinear functional βi(ui, vi), i = 1, . . . , n, satisfies the coercive property with
respect to

||vi||2εi ≤ βi(vi, vi).

Proof. For i = 1, . . . , n

βi(vi, vi) = −εi(v
′

i, v
′

i)+

( n∑
j=1

(aijvj), vi

)

= εi||vi||21 +
1∫

0

( n∑
j=1

(aijvj) · vi
)
dx

≥ εi||vi||21 + α||vi||20.
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3 The Shishkin mesh

A piecewise uniform Shishkin mesh with N mesh-intervals is now constructed on Ω− ∪ Ω+ as
follows. Let ΩN = Ω−N ∪Ω+N where Ω−N

= {xk}
N
2 −1
k=1 ,Ω+N

= {xk}N−1
k=N

2 +1, Ω
N
= {xk}Nk=0

and ΓN = Γ. The mesh Ω
N

is a piecewise uniform mesh on [0, 1] which is generated by dividing
[0, d] into 2m+ 1 mesh-intervals as follows:

[0, σ1] ∪ · · · ∪ (σm−1, σm] ∪ (σm, d− σm] ∪ (d− σm, d− σm−1] ∪ · · · ∪ (d− σ1, d].

The“points separating the uniform meshes are determined by the m parameters σr, which are
defined”by σ0 = 0, σm+1 =

1
2 ,

σm = min
{
d

4
, 2

√
εm√
α

lnN
}

(3.1)

and, for r = m− 1, . . . 1,

σr = min
{
rσr+1

r + 1
, 2

√
εr√
α

lnN
}
. (3.2)

Clearly

0 < σ1 < · · · < σm ≤ d

4
,

3d
4

≤ 1 − σm < · · · < 1 − σ1 < d.

Then“a uniform mesh of N
4 mesh-points is placed on the sub-interval (σm, d−σm], and a uniform

mesh of N
8m mesh-points is placed on each of the”sub-intervals (σr, σr+1] and (d − σr+1, d −

σr], r = 0, 1, . . . ,m− 1, respectively.
The remaining is generated by dividing [d, 1] into 2m+ 1 mesh-intervals as follows:

[d, d+ τ1]∪ · · · ∪ (d+ τm−1, d+ τm]∪ (d+ τm, 1− τm]∪ (1− τm, 1− τm−1]∪ · · · ∪ (1− τ1, 1].

The points separating the uniform meshes are determined by the m parameters τr, which are
defined by τ0 =

1
2 , τm+1 = 1,

τm = min
{

1 − d

4
, 2

√
εm√
α

lnN
}

(3.3)

and, for r = m− 1, . . . 1,

τr = min
{
rτr+1

r + 1
, 2

√
εr√
α

lnN
}
. (3.4)

Clearly

d < d+ τ1 < · · · < d+ τm ≤ 1 − d

4
,

3(1 − d)

4
≤ 1 − τm < · · · < 1 − τ1 < 1.

Then a uniform mesh of N
4 mesh-points is placed on the sub-interval (d + τm, 1 − τm], and a

uniform mesh of N
8m mesh-points is placed on each of the subintervals. Shishkin meshes Ω

N

(d+ τr, d+ τr+1] and (1 − τr+1, 1 − τr], r = 0, 1, . . . ,m− 1, respectively.
In practice, it is convenient to take

N = 8mδ, δ ≥ 3, (3.5)

where“m denotes the number of distinct singular perturbation parameters involved in the experi-
ment (1.1). This produces a class of 2m+1 piecewise uniform intervals.
When all of the parameters σr and τr, r = 1, . . . ,m, are set to the left, the Shishkin mesh Ω

N

becomes a classical uniform mesh with the transformation parameters σr, τr and a scale N−1
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from” 0 to 1.
The following inequalities hold for the mesh ΩN , s = 1, . . . ,m− 1

hk ≤ 2/N for 1 ≤ k ≤ N

hk ≥ 1/N for
N

8
≤ k ≤ 3N

8
and

5N
8

≤ k ≤ 7N
8

hk ≤ 1/N for 1 ≤ k ≤ N

8
and

3N
8

≤ k ≤ N

2

hk ≤ 1/N for
N

2
≤ k ≤ 5N

8
and

7N
8

≤ k ≤ N

hk ≥ N

8s
for

N

8(s+ 1)
≤ k ≤ N

8(s)
and(d− N

8(s)
) ≤ k ≤ (d− N

8(s+ 1)
) (3.6)

hk ≥ N

8s
for d+

N

8(s+ 1)
≤ k ≤ d+

N

8(s)
and(1 − N

8(s)
) ≤ k ≤ (1 − N

8(s+ 1)
)

hk ≤ N

8s
for 1 ≤ k ≤ N

8(s+ 1)
and(d− N

8(s+ 1)
) ≤ k ≤ N

2

hk ≤ N

8s
for

N

2
≤ k ≤ d+

N

8(s+ 1)
and(1 − N

8(s+ 1)
) ≤ k ≤ N.

4 The discrete problem

In this segment, a numerical method for (2.1) is constructed using a finite element method with a
suitable Shishkin mesh. Let for i = 1, . . . , n and k = 1, . . . , N−1\{N

2 }, Vi,k ⊂ H1
0 (Ω

− ∪ Ω+)n

be the space of piecewise linear functionals on Ω− ∪ Ω+, that vanishes at x = 0, d, and 1.
The finite element approach is now established for the discrete two-point boundary value prob-
lem with solution Ui,k ∈ Vi,k

βi(Ui,k, vi,k) = f(vi,k), ∀vi,k ∈ Vi,k, vi,N2
= 0. (4.1)

By Lax−MigramLemma implies that discrete problem has a unique solution, and stable.

5 Interpolation error bounds

Lemma 5.1. Let u∗
i,k be the Vi,k interpolant of the solution ui,k of (1.1) on the fitted mesh ΩN .

Then
max

i=1,...,n
sup

0<εi≤1
||u∗

i,k − ui,k||ΩN ≤ C(N−2lnN)2,

where C is a constant independent of the parameters εi.

Proof. The solution to Lemma 5.1 is achieved by combining the discontinuous source terms
Lemma 5.1 in [16] and partial parameters Lemma 7.1 in [13], as explained.

Lemma 5.2. Let u∗
i,k be the Vi,k-interpolant of the solution ui,k of (1.1) on the fitted mesh ΩN .

Then
max

i=1,...,n
sup

0<εi≤1
||u∗

i,k − ui,k||εi ≤ C(N−1lnN)2,

where C is a constant independent of εi.

Proof. The solution to Lemma 5.2 is achieved by combining the discontinuous source terms
Lemma 5.2 in [16] and partial parameters Lemma 7.2 in [13], as explained.

Lemma 5.3. Let u∗
i,k be the Vi,k -interpolant of the solution ui,k of (1.1) on the fitted mesh ΩN .

Then
max

i=1,...,n
sup

0<εi≤1
||u∗

i,k − ui,k||εi,ΩN ≤ C(N−1lnN)2.

Proof. The solution to Lemma 5.3 is achieved by combining the discontinuous source terms
Lemma 5.3 in [16] and partial parameters Lemma 7.3 in [13], as explained.
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6 Interpolation error estimate

Lemma 6.1. Let ui,k be the solution of (1.1) and Ui,k the solution of (4.1). Suppose that vi ∈
Vi,k. Then

max
i=1,...,n

|βi(Ui,k − ui,k, vi)| ≤ C(N−1lnN)2||vi,k||l2(Ω
N
)
,

where the constant C is independent of εi.

Proof. The solution to Lemma 6.1 is achieved by combining the discontinuous source terms
Lemma 6.1 in [16] and partial parameters Lemma 8.1 in [13], as explained.

7 Discretization error

Lemma 7.1. Let u∗
i,k be the Vi,k-interpolant of the solution ui,k of (1.1) and Ui,k the solution of

(4.1). Then
max

i=1,...,n
sup

0<εi≤1
||Ui,k − u∗

i,k||εi,ΩN ≤ C(N−1lnN)2,

where the constant C is independent of the parameters εi.

Proof. The solution to Lemma 7.1 is achieved by combining the discontinuous source terms
Lemma 7.1 in [16] and partial parameters Lemma 9.1 in [13], as explained.

Theorem 7.2. Let ui,k be the solution of (1.1) and Ui,k the solution of (4.1). Then

max
i=1,...,n

sup
0<εi≤1

||Ui,k − ui,k||εi,ΩN ≤ C(N−1lnN)2,

where“the constant C is independent of the”parameters εi.

Proof. The solution to Theorem 7.2 is achieved by combining the discontinuous source terms
Theorem 7.1 in [16] and partial parameters Theorem 9.1 in [13], as explained.

Theorem 7.3. Let ui,k be the solution of (1.1) and Ui,k the solution of (4.1). Then the following
parameter uniform error estimate holds

max
i=1,...,n

sup
0<εi≤1

||Ui,k − ui,k||εi,ΩN ≤ C(N−1lnN)2,

where the constant C is independent of the parameters εi.

Proof. The solution to Theorem 7.3 is achieved by combining the discontinuous source terms
Theorem 7.2 in [16] and partial parameters Theorem 9.2 in [13], as explained.

8 Numerical Illustrations

Example 8.1. Consider the BVP

−Eu⃗′′(x) +A(x)u⃗(x) = f⃗(x), forx ∈ (0, 1), u⃗(0) = 0⃗, u⃗(1) = 0⃗

where E = diag(ε1, ε2, ε3), A =

 5 −1 −1
−1 5(x+ 1) −1
−1 −1 5

 , f⃗1 = (1 + x2, 2, 3x)T ,

f⃗2 = (4, x2, 1 + x)T . For various values of ε1, ε2, N = 8k, k = 2r, r = 3, · · · , 8, and α =
1.9, d = 0.6. Using the general methods from [2] the ε⃗-uniform order of convergence and the
ε⃗-uniform error constant are computed by applying the fitted mesh method to the example 8.1.
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Table 1. Values of DN
ε , DN , pN , p∗ and CN

p∗ for ε1 =
η
64 , ε2 =

η
16 , ε3 = 1.

η Number of mesh points N
64 128 256 512 1024

100 0.7534E-03 0.1727E-03 0.6673E-04 0.2787E-04 0.1403E-04
10−1 0.1766E-02 0.2875E-03 0.1135E-03 0.4410E-04 0.2250E-04
10−2 0.3934E-02 0.7429E-03 0.1823E-03 0.7169E-04 0.3164E-04
10−3 0.8110E-02 0.1669E-02 0.3019E-03 0.1339E-03 0.4627E-04
10−4 0.1462E-01 0.3048E-02 0.7328E-03 0.1837E-03 0.7122E-04
10−5 0.2416E-01 0.8182E-02 0.1762E-02 0.3210E-02 0.1123E-03
10−6 0.2416E-01 0.8182E-02 0.1762E-02 0.3210E-02 0.1123E-03
10−7 0.2416E-01 0.8182E-02 0.1762E-02 0.3210E-02 0.1123E-03

DN 0.2416E-01 0.8182E-02 0.1762E-02 0.3210E-02 0.1123E-03
pN 0.1139E+01 0.1399E+01 0.1553E+01 0.1573E+01
CN

p 0.9423E+00 0.9153E+00 0.7398E+00 0.5131E+00 0.5132E+00

Computed order of ε⃗-uniform convergence, p∗ = 1.139
Computed ε⃗-uniform error constant, CN

p∗ = 0.9423

9 Conclusion remarks

The research work presented in this article is built upon the foundational concept developed
by Miller [2]. Miller’s work focused on convection diffusion problems in one dimension. In
this paper, the authors establish second-order parameter uniform convergence for a system of n
second-order partial differential equations of reaction-diffusion type with discontinuous source
terms. They demonstrate that the proposed method can be extended to address higher dimen-
sional problems.
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