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Abstract This paper introduces Pythagorean fuzzy graph (PFG) mathematical morphology
using βn-adjacency of vertices and edges, grounded in lattice theory. We define the concepts
of vertex dilation, edge dilation, vertex erosion, and edge erosion in PFGs and present an algo-
rithm to compute these operations with an illustrative example. Additionally, we explore various
properties of dilation and erosion in PFGs and introduce the concept of morphological dilation-
induced strong products of dilated PFGs. The primary objective of this study is to extend the
general theory of mathematical morphology on graphs within the framework of fuzzy set theory.
Finally, we propose an algorithm for predicting and managing the spread of infectious diseases
through vertex and edge dilation in PFG-based decision-making.

1 Introduction

1.1 Fuzzy Mathematical Morphology

Mathematical Morphology (MM) was developed based on set theory by George Matheron and
his student Jean Serra [5, 6] in 1964 and generated many operators for quantification of mineral
characteristics. Main idea of MM is a study and analysis of geometric structures by superposing
with small patterns, called structuring element. Then MM was generally defined based on lattice
theory.

Let P and Q be two complete lattices with supremum ∨ and infimum ∨. Let ϵ be an operator
from P to Q and δ be an operator from Q to P . The pair (ϵ, δ) is an adjuntion between P and Q
if δ(Y ) ≤ X ⇔ Y ≤ ϵ(X) for every X ∈ P , Y ∈ Q. Here δ is called dilation and ϵ is called
erosion.
Some Properties of Erosion and Dilation

(i) δ(∅) = ∅, ϵ(U) = U , where ∅ and U are least and greatest elements

(ii) ∨iδ(Yi) = δ(∨iYi) for every Yi ∈ P .
That is dilation is distributive over supremum.

(iii) ∧iϵ(Xi) = ϵ(∧iXi) for every Xi ∈ P .
That is erosion is distributive over infimum.

(iv) Dilation is extensive. i.e., δ(X) ≥ X for every X in Q.

(v) Erosion is anti-extensive. i.e., ϵ(X) ≤ X for every X in P .

(vi) Erosion and dilation are increasing.

Authors like Di Gesu, De Baets, Bloch, Maitre and Nachtegeal [25–32] did extension of
binary morphology to grayscale morphology based on fuzzy set theory, bipolar fuzzy set theory,
intuitionistic fuzzy set theory and interval valued fuzzy set theory.

Mathematical morphology (MM) on graphs was introduced by Vincent [21] based on the
frame work of complete lattice. Rosenfeld’s Fuzzy graph was extended by Shannon and Atanassov
[33] and introduced Intuitionistic Fuzzy Graph (IFG). In fuzzy graph, each vertex and edge has
membership functions which lie in the interval [0, 1] and sum of membership function and its
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complement of each vertex and edge is unity, whereas in IFG, sum of membership function and
non-membership function of each vertices and edges in IFG should lie in the interval [0, 1]. So
there is a space for indetermination. However, IFG cannot handle the situations when this sum
is greater than unity. In particular, if membership function of a vertex is and its non-membership
function is 0.5, then their sum = 0.6 + 0.5 = 1.1 which is greater than one. Such problems can
not handle with IFG.

Recently Yagar [22] introduced Pythagorean fuzzy sets to handle uncertainty situations. As
a continuation of this, Rajkumar [13] defined Pythagorean fuzzy graphs (PFG). In PFG, sum
of squares of membership function and non-membership function of each vertices and edges
in PFG should lie in the interval [0, 1]. The main advantage of this membership functions is
that this involves all Intuitionistic fuzzy membership functions. But every Pythagorean mem-
bership functions need not be intuitionistic fuzzy membership functions. So this paper aims the
theoretical developments of basic operations on Pythagorean fuzzy graph morphology using βn-
adjacency of vertices and edges. βn-adjacency of a vertex or edge helps to adjust the size of the
neighbourhood of each vertex or edge.

1.2 Pythagorean Fuzzy Graph (PFG)

Definition 1.1. [13] A Pythagorean fuzzy graph (PFG) is of the form G = (G,G×, µ1, γ1, µ2, γ2),
where

(i) G = {v1, v2, . . . , vn} such that µ1 : G → [0, 1] and γ1 : G → [0, 1], the member-
ship function and non membership function of the element vi ∈ G respectively and 0 ≤
[µ1(vi)]2 + [γ1(vi)]2 ≤ 1 for every vi ∈ G, i = 1, 2, . . . , n.

(ii) G× ⊆ G×G where µ2 : G× → [0, 1] and γ2 : G× → [0, 1] are such that
(a) µ2(evivj ) ≤ min(µ1(vi), µ1(vj))
(b) γ2(evivj

) ≤ max(γ1(vi), γ1(vj))

(c) 0 ≤ [µ2(evivj )]
2 + [γ2(evivj )]

2 ≤ 1 for every edges evivj
∈ G×, i = 1, 2, . . . , n,

j = 1, 2, . . . , n.

G is the Pythagorean fuzzy vertex set and G× is the Pythagorean fuzzy edge set. For conve-
nience, (µi, γi) is called Pythagorean Fuzzy Number (PFN).

Adjacency Matrix A(G) of Pythagorean Fuzzy Graph G is defined as an n×n matrix A(G) =,
where i = 1, 2, . . . , n, j = 1, 2, . . . , n and γ2(evivj ) indicate the relationship strength and non-
relationship strength of the vertices vi and vj respectively.

Example 1.2. Let Gi = (V,E) be a simple graph. Let V = {v1, v2, v3, v4} and
E = {ev1v2 , ev2v3 , ev3v4 , ev4v1}. Then G = (G,G×, µ1, γ1, µ2, γ2) in Figure 1 is a Pythagorean
fuzzy graph where G and G× are fuzzy vertex set and fuzzy edge set respectively.
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In vertex v1(.5, .6) in Figure 1

µ1(v1) = .5, γ1(v1) = 0.6

∴ [µ2
1(v1)]

2 + (γ1(ev1))
2 = .52 + .62

= .61 ≤ 1.

Similarly condition (i) in definition 1.1 is satisfied for each vertices v2, v3, v4 in figure 1.
In edge ev1v2(.2, .7) in figure 1.

µ2(ev1v2) = .2, γ2(ev1v2) = 0.7, µ1(v2) = .3, γ1(v2) = .8

µ2(ev1v2) = .2 ≤ min{µ1(v1), µ1(v2)} = min{.5, .3} = .3

γ2(ev1v2) = .7 ≤ max{γ1(v1), γ(v2)}
= max[.6, .8] = .8

[µ2(ev1v2)]
2 + [γ2(ev1v2 ]

2 = .22 + .72 ≤ 1.

∴ Similarly, condition (ii) in definition 1.1 are satisfied for each edges ev2v3 , ev3v4 and ev4v1 .
∴ Gi = (G,G×, µ1, γ1, µ2, γ2) in Figure 1 is a Pythagorean fuzzy graph.

Corresponding Adjacency Matrix A(G) of Pythagorean Fuzzy Graph G in Figure 1 is given
as follows:

A(G) =


(0, 0) (.2, .7) (0, 0) (.5, .8)
(.2, .7) (0, 0) (.1, .6) (0, 0)
(0, 0) (.1, .6) (0, 0) (.3, .7)
(.5, .8) (0, 0) (.3, .7) (0, 0)


Definition 1.3. [13] A Pythagorean fuzzy graph Gi = (G,G×, µ1i, γ1i, µ2i, γ2i) is said to be PF
subgraph of PFG Gj = (G,G×, µ1j , γ1j , µ2j , γ2j) if Gi ⊆ Gj and G×

i ⊆ G×
j and

µ1i(vk) ≤ µ1j(vk), γ1i(vk) ≥ γ1j(vk), ∀vk ∈ Gi

µ2i(evkvl) ≤ µ2j(evkvl), γ2i(evkvl) ≥ γ2j(evkvl
), ∀evkvl ∈ G×

i .

Example 1.4. Consider a PFG Gj = (Gj , G
×
j ) with Gj = {v1, v2, v3, v4} and

G×
j = {ev1v2 , ev2v3 , ev3v4 , ev4v1} in Figure 2 and PFG Gi = (Gi, G

×
i ) with Gi = {v1, v2, v3, v4}

and
G×

i = {ev1v2 , ev2v3 , ev3v4 , ev4v1}.
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Here, Gj ⊆ Gi and G×
j ⊆ G×

i

µ1j(vk) ≤ µ1i(vk), γ1j(vk) ≥ γ1i(vk), ∀vk ∈ Gj

µ2j(evkvl
) ≤ µ2i(evkvl), γ2j(evkvl) ≥ γ2i(evkvl), ∀evkvl ∈ G×

j .

Therefore, Gj in Figure 2 is a PF subgraph of Gi in Figure 1.

In section 2, we introduce lattice structure of Pythagorean fuzzy graph and definitions of ver-
tex dilation, edge dilation, vertex erosion and edge erosion on Pythagorean fuzzy graphs using
βn-adjacency and illustrate an algorithm to find vertex dilation, edge dilation, vertex erosion and
edge erosion on Pythagorean fuzzy graphs with a numerical example. We also define morpho-
logical dilation induced strong products of these dilated PFGs. Derivations of some important
properties of Pythagorean fuzzy dilation and erosion are done in section 3. An algorithm is
proposed to predict and control the spread of infectious diseases in section 4.

2 Lattice structure and Pythagorean fuzzy graph dilations and Erosions

Let G be the set of all PF subgraphs Gi = (G,G×, µ1i, γ1i, µ2i, γ2i) defined on G = (G,G×)
where each pair satisfies property of subgraph, G = {v1, v2, . . . , vn} is the underlying vertex set,
G× ⊆ G × G is the set of all edges, µ1i, γ1i are membership and non membership functions
of vertices vk in Gi and µ2i and γ2i are membership and non membership functions of edges
evkvl in Gi. Let 0 be PFG in G with all vertices and edges of membership function 0 and non
membership function 1 and 1 be PFG in G with all vertices and edges of membership function 1
and non membership function 0. Smallest element and greatest element of the collection G are
the PFGs 0 and 1 respectively. We will be used these notations throughout this paper.

A partial order on G is defined as Gi ⊆ Gj if and only if (µ1i(vi), γ1i(vi)) ≤ (µ1j(vi), γ1j(vi))
and (µ2i(evlvk)), γ2i(evlvk) ≤ (µ2j(evlvk), γ2j(evlvk)). It is clear that the relation ⊆ is reflexive,
antisymmetric and transitive. Therefore (G,⊆) is a poset. Supremum (∨) and infimum (∧) of
Pythagorean fuzzy graphs are defined as follows.

Definition 2.1. Supremum and infimum of PF subgraphs in G are defined as follows. For
Gi, Gj ∈ G,

Gi ∨Gj = Gi ∪Gj = (G,G×, µ1i ∨ µ1j , γ1i ∧ γ1j , µ2i ∨ µ2j , γ2i ∧ γ2j)

Gi ∧Gj = Gi ∩Gj = (G,G×, µ1i ∧ µ1j , γ1i ∨ γ1j , µ2i ∧ µ2j , γ2i ∧ γ2j)

The following proposition proves that the union (intersection) of finite collection of PF subgraphs
in G is the suprimum (infimum) of the collection.

Proposition 2.2. Let F = {G1, G2, . . . , Gn} be a collection of elements in G. Then F = G1 ∨
G2 ∨ · · · ∨Gn and infF = G1 ∧G2 ∧ · · · ∧Gn.

Proof. Let

S = G1 ∨G2 ∨ · · · ∨Gn = G1 ∪G2 ∪ · · · ∪Gn

= (G,G×,∨n
i=1µ1i,∧n

i=1γ1i,∨n
i=1µ2i,∧n

i=1γ2i)

Let Gk = (G,G×, µ1k, γ1k, µ2k, γ2k) be any Pythagorean subgraph contained in the collec-
tion F . To prove that Gk ⊆ S.

By definition of suprimum, we have

µ1k ≤ ∨n
i=1µ1i, γ1k ≥ ∧n

i=1µ2i, γ2k ≥ ∧n
i=1γ2i, for k = 1, 2, . . . , n. (2.1)

By definition of PF subgraph and equation (2.1), we get Gk ⊆ S which proves any element in F
is a subgraph of S.

Let
Gk ⊆ T for all k = 1, 2, . . . n ∧ where T = (G,G×, µ1t, γ1t, µ2t, γ2t). (2.2)
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We have to prove S ⊆ T

(2.2) ⇒ µ1k ≤ µ1t, γ1k ≥ γ1t, γ2k ≤ γ2t, γ2k ≥ γ2t ∀k = 1, 2, . . . , n

⇒ ∨n
k=1µ1k ≤ µ1t, ∧n

k=1γ1k ≥ γ1t, ∨n
k=1µ2k ≤ µ2t, ∧n

k=1γ2k ≥ γ2t,

⇒ S ⊆ T by definition of S.

∴F = S = G1 ∨G2 ∨ · · · ∨Gn.

In similar manner we can prove that infF = G1 ∧G2 ∧ · · · ∧Gn.

Theorem 2.3. (G,∧,∨, 0, 1) is a complete lattice.

Proof. Proof follows from Proposition 2.2, Definition 1.3.

Neighbourhood of vertex and edge is essential to define dilation and erosion on PFG. The βn

adjacency helps us to select the size of neighbourhood. Neighbourhood of a vertex u is the set
of all vertices which are connected to u by one edge and it is called β1 adjacency vertices of u.
In the same manner, βn adjacency vertices are defined as follows.

Definition 2.4. Two vertices vl and vk in Gi in G are βn adjacency vertices (n path adjacency
vertices) if they are connected by almost n edges. We represent it as vlβnadj vk.

Similarly βn adjacency edges are defined as follows.

Definition 2.5. Two edges evlvk and evmvn in Gi in G are βn adjacency edges if either vl or vk is
connected to vm or vn by at most n edges. It is illustrated in Example 2.8.

Definition 2.6. Dilation and erosion of vertices vl in Gi are respectively denoted by δ1i(vl) and
ϵ1i(vl) and are defined as
for each vertices vl in G, δ1i, ϵ1i : G → [0, 1] by

δ1i(vl) = (sup
vk

µ1i(vk), inf
vk

γ1i(vk)) (2.3)

and

ϵ1i(vl) = (inf
vk

µ1i(vk), sup
vk

γ1i(vk)) (2.4)

where vk is vl itself or vkβn adj vl.

Equation (2.3) & (2.4) respectively define Pythagorean Fuzzy graphs called vertex dilated
PFG and vertex eroded PFG and denote them as Gvd

i or δv1i and Gve
i or δe1i.

Definition 2.7. Dilation and erosion of edges evlvk in G× are respectively denoted by δ2i(evlvk)
and ϵ2i(evlvk) and are defined by
for each edges evlvk in G× dilation δ2i, ϵ2i : G× → [0, 1] by

δ2i(evlvk) = ( sup
evrvs

µ2i(evrvs), inf
evrvs

γ2i(evrvs)) (2.5)

and

ϵ2i(evlvk) = ( inf
evrvs

µ2i(evrvs), sup
evrvs

γ2i(evrvs)) (2.6)

where evrvs is evlvk itself or evrvsβn adjacency edge to evlvk .
Equation (2.5) & (2.6) respectively define Pythagorean Fuzzy graphs called edge dilated PFG
and edge eroded PFG and denote them as Ged

i or δe2i and Gee
i or δe2i.

Combination of (2.3) and (2.5) define Pythagorean Fuzzy Graph called dilated PFG GD
i or

(δv1i, δ
e
2i) and Combination of (2.4) and (2.6) define an eroded Pythagorean Fuzzy Graph GE

i or
(ϵv1i, ϵ

e
2i).
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Algorithm to find Vertex Dilated PFG Gvd
i or δv1i, Edge Dilated PFG Ged

i or δe2i, Dilated PFG
GD

i or (δv1i, δ
e
2i) using β1 adjacency vertices and edges.

Input: Given PFG Gi = (G,G×, µ1i, γ1i, µ2i, γ2i) with corresponding membership and non-
membership functions µ1i and γ1i of each vertices vl and corresponding membership and non-
membership functions µ2i and γ2i of each edges evlvk

.

Output:

(i) Vertex Dilated PFG Gvd
i or δv1i.

1. Find adjacency vertices of each vertices vl
2. Find dilation of each vertex using formula (2.3)
3. Replace membership and non-membership functions µ1i and γ1i of each vertices vl from
given PFG Gi by corresponding membership and non-membership functions of dilated
vertices so that it results Vertex Dilated PFG Gvd

i or δv1i.

(ii) Edge Dilated PFG Ged
i or δe2i

1. Find β1 adjacency edges of each edges evlvk

2. Find dilation of each vertex using formula (2.4)
3. Replace membership and non-membership functions µ2i and γ2i of each edges evlvk from
given PFG G1 by corresponding membership and non-membership functions of dilated
edges so that it results Edge Dilated PFG Ged

i or δe2i.

(iii) Dilated PFG GD
i = (δv1i, δ

e
2i).

Combining Vertex Dilation and Edge Dilation, obtain Dilated PFG GD
i or (δv1i, δ

e
2i).

Example 2.8. Consider the PF graph Gi = (G,G×, µ1i, γ1i, µ2i, γ2i) where G = {v1, v2, v3, v4,
v5, v6, v7} and G× = {ev1v2 , ev2v3 , ev1v4 , ev3v4 , ev4v5 , ev4v7 , ev5v6 , ev6v7}. The Pythagorean fuzzy
graph Fig. 3 is given below:

From above Figure 3, β1 adjacency of v1 are v1, v2, v4, β1 adjacency of ev1v2 are ev1v2 , ev1v4 , ev2v3 .
Vertex Dilated PFG and Vertex Eroded PFG are given in Figure 4 & 5:

Dilation and Erosion of Vertices
Vertice β1 Adjacency Dilation of Erosion of
s of Vertex vertex (vl) vertex (vi)

δvdGi
(vl) ϵveGi

(vl)

v1 v1, v2, v4 δGi
(v1) = (.6, .2) ϵGi

(v1) = (.2, .5)
v2 v1, v2, v3 δGi(v2) = (.4, .1) ϵGi(v2) = (.2, .5)
v3 v2, v3, v4 δGi

(v3) = (.6, .1) ϵGi
(v3) = (.3, .3)

v4 v1, v3, v4, v5, v7 δGi(v4) = (.6, .1) ϵGi(v4) = (.2, .8)
v5 v4, v5, v6 δGi

(v5) = (.6, .3) ϵGi
(v5) = (.3, .8)

v6 v5, v6, v7 δGi(v6) = (.5, .1) ϵGi(v6) = (.3, .8)
v7 v4, v6, v7 δGi

(v7) = (.6, .1) ϵGi
(v7) = (.4, .7)
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Edge Dilated PFG and Edge Eroded PFG in Figure 6 & 7 are given.

Dilation and Erosion of Edges
Edges β1 adjacency of Edge Dilation of Edge (evivj ) Erosion of Edge (evivj )

δGi(evivj ) ϵGi(evivj )

ev1v2 ev1v2 , ev2v3 , ev1v4 δGi(ev1v2) = (.2, .1) ϵGi(ev1v2) = (.1, .4)
ev2v3 ev1v2 , ev2v3 , ev3v4 δGi

(ev2v3) = (.3, .1) ϵGi
(ev2v3) = (.1, .3)

ev1v4 ev1v2 , ev4v5 , ev3v4 , ev4v7 , ev1v4 δGi(ev1v4) = (.3, .2) ϵGi(ev1v4) = (.1, .7)
ev3v4 ev2v3 , ev1v4 , ev3v4 , ev4v7 , ev4v5 δGi

(ev3v4) = (.3, .1) ϵGi
(ev3v4) = (.2, .7)

ev4v5 ev1v4 , ev3v4 , ev4v7 , ev4v5 , ev5v6 δGi(ev4v5) = (.3, .2) ϵGi(ev4v5) = (.2, .7)
ev4v7 ev1v4 , ev3v4 , ev4v7 , ev4v5 , ev6v7 δGi

(ev4v7) = (.4, .2) ϵGi
(ev4v7) = (.2, .7)

ev5v6 ev5v6 , ev4v5 , ev6v7 δGi(ev5v6) = (.4, .3) ϵGi(ev5v6) = (.2, .7)
ev6v7 ev6v7 , ev4v7 , ev5v6 δGi

(ev6v7) = (.4, .2) ϵGi
(ev6v7) = (.3, .6)
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Combining vertex dilation and edge dilation on PFG results dilated PFG δGi
or GD

i in Fig-
ure 8.

Combining vertex erosion and edge erosion on PFG results eroded PFG ϵGi or GE
i in Figure 9.

Definition 2.9 (Morphological dilation induced strong products of these dilated PFGs). Let
Gi = (Vi, Ei) and Gj = (Vj , Ej) be two simple graphs.

Let GD
i = (Gi, G

×
i , µ

D
1i, γ

D
1i , µ

D
2i, γ

D
2i ) and GD

j = (Gj , G
×
j , µ

D
1j , γ

D
1j , µ

D
2j , γ

D
2j) be the dilated

Pythagorean Fuzzy Graphs of the Pythagorean Fuzzy Graphs Gi = (Gi, G
×
i , µ1i, γ1i, µ2i, γ2i)

and Gj = (Gj , G
×
j , µ1j , γ1j , µ2j , γ2j) respectively. The morphological dilation induced strong

products of these dilated PFGs is denoted by GD
i ⊠GD

j and is defined as

i. (µD
1i ⊠ µD

1j)(u1, u2) = µD
1i(u1) ∧ µD

1j(u2)

(γD
1i ⊠ γD

1j)(u1, u2) = γD
1i (u1) ∨ γD

1j(u2) for all (u1, u2) ∈ Vi × Vj .

ii. (µD
2i ⊠ µD

2j)((u, u2), (u, v2)) = µD
1i(u) ∧ µD

2j(eu2v2)

(γD
2i ⊠ γD

2j)((u, u2), (u, v2)) = γD
1i (u) ∨ γD

2j(eu2v2) for all u ∈ Vi, eu2,v2 ∈ Ej .

iii. (µD
2i ⊠ µD

2j)((u1, w), (v1, w)) = µD
2i(eu1v1

) ∧ µD
1j(w)

(γD
2i ⊠ γD

2j)((u, u2), (u, v2)) = γD
2i (u1) ∨ γD

1j(w) for all w ∈ Vj , eu1v1 ∈ Ei.

iv. (µD
2i ⊠ µD

2j)((u1, u2), (v1, v2)) = µD
2i(euu1v1

) ∧ µD
2j(eu2v2).

Example 2.10. Let Gi = (Vi, Ei) and Gj = (Vj , Ej) be two simple graphs, where Vi =
{v1, v2, v3}, Vj = {u1, u2}, Ei = {ev1v2 , ev2v3} and Ei = {eu1u2}. Consider two Pythagorean
Fuzzy Graphs Gi = (Gi, G

×
i , µ1i, γ1i, µ2i, γ2i) and Gj = (Gj , G

×
j , µ1j , γ1j , µ2j , γ2j) in Fig-

ure 10.



PYTHAGOREAN FUZZY GRAPH DILATIONS AND EROSIONS 391

Dilated PFGs of Pythagorean Fuzzy Graphs and are shown in Figure 11.

The morphological dilation induced strong products GD
i ⊠GD

j is shown below in Figure 12.

Proposition 2.11. Let GD
i and GD

j be two dilated PFGs of Pythagorean Fuzzy Graphs Gi and
Gj respectively. The morphological dilation induced strong products GD

i ⊠GD
j is a PFG.

Now we derive some properties of dilated PFG and eroded PFG as follows in the next section.

3 Properties of Dilated PFG and Eroded PFG

Theorem 3.1. GD
i , dilation of Pythagorean fuzzy graph Gi in G, is a member of G.

Proof. By definition 2.6 and 2.7 for each vertices vk and edges evkvl in Gi and GD
i

µ1i(vk) ≤ µD
1i(vk), γ1i(vk) ≥ γD

1i (vk), µ2i(evkvl) ≤ µD
2i(evkvl), γ2i(evkvl) ≥ γD

2i (evkvl)

⇒ Gi ⊆ GD
i by defintion 1.3 of PF subgraph.

Now we need to prove that dilated Pythagorean fuzzy graph is again Pythagorean fuzzy graph.
Suppose µD

2i(evkvl) > µD
1i(vk) ∧ µD

1i(vl).
Then by definition of edge dilation, ∃ a βn-adjacency edges evmvn in Gi such that

µ2i(evmvn) = µD
2i(evkvl). (3.1)

By definition of PFG Gi,
µ2i(evmvn) ≤ µ1i(vm) ∧ µ1i(vn). (3.2)

Note that if an edge evmvn is a βn adjacency edge of evkvl
, then its vertices vm or vn is a βn

adjacency vertices of vk or vl. By definition of vertex dilation, µD
1i(vk) and µD

1i(vl) are suprimum
of their βn adjacency vertices which includes vm or vn.

∴ µ1i(vm) ∧ µ1i(vn) are less than or equal to µD
1i(vk) ∨ µD

1i(vl)

µD
1i(vk) ∧ µD

1i(vl) ≥ µ1i(vm) ∧ µ1i(vn) (3.3)

By (3.1) and (3.3) µ2i(evmvn) > µ1i(vm) ∧ µ1i(vn) which is a contradiction to (3.2)

∴ µD
2i(evkvl) ≤ µD

1i(vk) ∧ µD
1i(vl).
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Using similar argument, we can prove

γD
2i (evkvl

) ≤ γD
1i (vk) ∨ γD

1i (vl).

Since each membership and non membership grades are in [0, 1],

0 ≤ µ1i(vk) + γ1i(vk) ≤ 1

0 ≤ µ2i(evkvl) + γ2i(evkvl) ≤ 1

∴GD
i is a member of G.

Theorem 3.2. GE
i erosion of Pythagorean fuzzy graph Gi, is member of G.

Proof. In similar manner in Theorem 3.1, we can prove Theorem 3.2.

Remark 3.3. Dilated PFG GD
i and eroded PFG GE

i in figure 8 and 9 of a PFG Gi in example
2.8 are again PFG.

Theorem 3.4. Let Gi = (G,G×, µ1i, γ1i, µ2i, γ2i) ∈ G then Gi ⊆ GD
i and GE

i ⊆ Gi.

Proof. By Definition 1.3 and 2.5, Gi ⊆ GD
i and GE

i ⊆ Gi.

Remark 3.5. By Theorem 3.4, dilation on PFG is extensive and erosion in anti-extensive.

Theorem 3.6. Let Gi = (G,G, µ1i, γ1i, µ2i, γ2i) ∈ G; i = 1, 2.

G3 = G1 ∪G2 = (G,G×, µ13, γ13, µ23, γ23)

G4 = G1 ∩G2 = (G,G×, µ14, γ13, µ24, γ24

then
1. GD

3 = GD
1 ∪GD

2 ; dilation is distributive with respect to union
2. GD

4 = GD
1 ∩GD

2 ; erosion is distributive with respect to intersection.

Proof. (i) Let vk be any vertex in G3, then

µ13(vk) = µ11(vk) ∨ µ12(vk)

γ13(vk) = γ11(vk) ∧ γ12(vk)

µ23(evkvl) = µ21(evkvl) ∨ µ22(evkvl)

γ23(evkvl) = γ21(evkvl) ∧ µ22(evkvl).

Now

µD
13(vk) = ∨n

m=1µ13(vm); where vm is a βn-adjacency vertex of vk
≤ ∨n

m=1[µ11(vm) ∨ µ12(vm)]

≤ [∨n
m=1µ11(vm)] ∨ [∨n

n=1µ12(vm)]

≤ µD
11(vk) ∨ µD

12(vk)

and γD
13(vk) = ∧n

m=1γ13(vm); where vm is a βn-adjacency vertex of vk

≥ ∧n
m=1[γ11(vm) ∧ γ12(vm)]

≥ [∧n
m=1γ11(vm)] ∧ [∧n

m=1γ12(vm)]

≥ γD
11(vk) ∧ γD

12(vk).

Similarly we can prove that for each edges evkvl
in G3,

µD
23(evkvl) = µD

21(evkvl) ∨ µD
22(evkvl)

µD
23(evkvl) = µD

21(evkvl) ∧ µD
22(evkvl)

∴ GD
3 = GD

1 ∪GD
2 .



PYTHAGOREAN FUZZY GRAPH DILATIONS AND EROSIONS 393

(ii) In similar way, we can prove GD
4 = GD

1 ∩GD
2 .

Theorem 3.7. Let Gi = (G,G×, µ1i, γ1i, µ2i, γ2i) and Gj = (G,G×, µ1j , γ1j , µ2j , γ2j), are
members of G then
1. Gi ⊆ Gj ⇒ GD

i ⊆ GD
j (Dilation is increasing)

2. Gi ⊆ Gj ⇒ GE
i ⊆ GE

j (Erosion is increasing)

Proof. (i) Suppose Gi ⊆ Gj . Then for any vertex vk and edge evkvl ,

µ1i(vk) ≤ µ1j(vk), γ1i(vk) ≥ γ1j(vk)

µ2i(evkvl) ≤ µ2j(evkvl
), γ2i(evkvl) ≥ γ2j(evkvl).

If possible let GD
i ̸⊆ GD

j . Then atleast one of the following will not be true.

µD
1i(vk) ≤ µD

1j(vk), γ
D
1i (vk) ≥ γD

1j(vk)

µD
2i(evkvl) ≤ µD

2i(evkvl), γ
D
2i (evkvl) ≥ γD

2j(evkvl).

Suppose
µD

1i(vk) > µD
1j(vk) (3.4)

Then ∃ a βn adjacency vertex vm in Gi and Vn in Gj such that

µ1i(vm) = µD
1i(vk) (3.5)

and
µ1i(vn) = µD

1j(vk). (3.6)

If the vertices vm in Gi and Vn in Gj are corresponding vertices, µ1i(vm) ≤ µ1j(vn) since
Gi ⊆ Gj . But by equations (3.4), (3.5) and (3.6), µ1i(vm) > µij(vn) which is a contradic-
tion to Gi ⊆ Gj . If vm in Gi and vn in Gj are not corresponding vertices, then suppose vr
in Gj corresponds to vn in Gi. Then µ1j(vr) ≤ µ1j(vn) = µD

1j(vk). By (3.5),

µ1i(vm) = µD
1i(vk) > µD

1j(vk) = µ1j(vn) > µ1j(vr)

⇒ µ1i(vm) > µ1j(vr) which is a contradiction

∴ GD
i ⊆ GD

j .

(ii) In similar manner in case 1, we can prove case 2.

Theorem 3.8. Let Gi = G,G×, µ1i, γ1i, µ2i, γ2i) ∈ G, i = 1, 2 then GD
1 ⊆ G2 ⇔ G1 ⊆ GE

2 .

Proof. GD
1 ⊆ G2 ⇔ By definition 1.3 of PF subgraph, for any vertex vk and edge evkvl ,

µD
11(vk) ≤ µ12(vk), γ

D
11(vk) ≥ µ12(vk)µ

D
21(evkvl) ≤ µD

22(evkvl),

γD
11(evkvl) ≥ γD

22(evkvl).

⇔ ∨µ11(vm) ≤ µ12(vk), ∧γ11(vm)) ≥ γ12(vm) ≥ γ12(vk),

∨ µ21(evmvn) ≤ µ21(evkvl), ∧γ21(evmvn) ≥ γ22(evkvl
)

where vm is the βn adjacency vertex of vk and evmvn is the βn adjacency edge of evkvl

⇔ µ11(vm) ≤ µ12(vk), γ11(vm) ≥ γ12(vk),

µ21(evmvn) ≤ µ22(evkvl), γ
D
22(evkvl)

for each vertices vk and each edges evkvl .

⇔ µ11(vm) ≤ ∧µ12(vk), γ11(vm) ≥ ∨γ12(vk),
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µ21(evmvn) ≤ µ22(evkvl), γ
D
21(evmvn) ≥ ∨γD

21(evkvl),

where vk are the βn-adjacency vertices of vm and evkvl are the βn adjacency edges of evmvn .

⇔ µ11(vm) ≤ µE
12(vm), γ11(vm) ≥ ∨γE

12(vm),

µ21(evmvn) ≤ µE
22(evmvn), γ

D
21(evmvn) ≥ γE

22(evmvn)

⇔ G1 ⊆ GE
12.

This completes the proof.

Remark 3.9. The above theorem proves an adjunction between dilation and erosion in Pythagorean
fuzzy graph.

4 Application: Spread of a pandemic: Prediction and Control

It is a great challenge to predict and control the spread of a disease in a school. Construction
of a disease spread prediction model by considering the infection patterns of neighboring areas
is explained in this section using an idea of vertex dilation and edge dilation in a Pythagorean
fuzzy graph.

Algorithm for Disease Spread Prediction using Vertex Dilation:

Construction of PFG:
Construct a Pythagorean fuzzy graph Gi = (G,G×, µ1i, γ1i, µ2i, γ2i) wheres µ1i and γ1i

are membership and non-membership functions of each vertices µ2i and γ2i are membership
and non-membership functions of each edges evlvk . There are different co-curricular activity
groups in a school. Each student should be member of at least one group. These groups are
represented as vertices and the edges are represented as social connections of members of the
groups. Students from different groups may not be from same class. They may interact in
lunch time or in assembly or at the time of different events in the school. We, in this example,
consider six groups (vertices): Groups A-Sports Group, Group B-Book club, Group C-Study
group, Group D-Music club, Group E-Nature Club and Group F-NSS. Due to large size of the
team and high contact frequency, transmission rate is high for sports like football and volleyball
and music club. Interactions are limited in Book group and Nature club and they are small in size
so that transmission rate is low. However, medium size and regular meetings in a room create a
moderate transmission in study group. NSS programs also creates medium transmission. Health
status of a student (body mass index, vaccination, presences of illness) also causes spreading of
diseases.

Group Characteristics
A Large size, contact frequency is high, Transmission rate is high
B Small size, contact frequency is too limited, Transmission rate is low
C Medium size, contact frequency is not high, Transmission rate is moderate
D Large size, contact frequency is high, Transmission rate is high
E Small size, contact frequency is limited, Transmission rate is low
F Medium size, contact frequency is not limited, Transmission rate moderate

Membership functions of each vertices represent the likelihood of transmitting the disease,
whereas non-membership functions represent the likelihood of not transmitting the disease. The
values of membership and non-membership functions of vertices of PFG are influenced by the
factors like size, health status, and contact frequency.

Assign membership functions for the factors size and health status:
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Size Approximate Score
Less than 20 students 0.3
20–30 students 0.6
Greater than 30 students 0.9

Health-Vaccination Approximate Score
Less than 50% vaccination 0.3
50–75% vaccination 0.6
Greater than or equal to 75% 0.8

Calculation of pythagorean membership (µ1i) and pythagorean non-membership functions
(γ1i):
Use the maximum (supremum) operation to combine the membership values for each factor:

µ1i = maximum (Membership-Size, Membership-HealthStatus,

Membership-SpreadingTendency)

Use the minimum (infimum) operation to combine the non-membership values for each factor:

γ1 = minimum (NonMembership-size, NonMembership-HealthStatus,

NonMembership-SpreadingTendency)

Group Factors Membership
Size Contact Health function (µ1i)

Frequency
A 0.6 0.8 0.5 0.8
B 0.3 0.1 0.2 0.3
C 0.4 0.3 0.5 0.5
D 0.7 0.8 0.4 0.8
E 0.2 0.1 0.4 0.4
F 0.4 0.3 0.4 0.4

Group Factors Non-membership
Size Contact Health function (γ1i)

Frequency
A 0.1 0.2 0.5 0.1
B 0.8 0.9 0.6 0.6
C 0.5 0.7 0.5 0.5
D 0.3 0.2 0.3 0.2
E 0.9 0.9 0.5 0.5
F 0.7 0.6 0.5 0.5

Interaction among the students of these groups A, B, C, D, E and F in different activities and
sharing of space and equipment cause transmission of disease within the school. At what extent,
this interaction among groups happens is taken to be membership degree of an edge connecting
these vertices. This can be calculated based on the observation.
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Possible edges with membership (µ2i) and non-membership functions (γ2i) are listed below:

Edges Membership and
non-membership
degrees

AC (0.5,0.6)
AD (0.8,0.3)
AF (0.2,0.7)
BC (0.2,0.6)
BD (0.2,0.7)
BE (0.3,0.7)
CD (0.3,0.5)
CE (0.4,0.7)
CF (0.2,0.7)
DF (0.3,0.9)
EF (0.2,0.6)

Thus, a Pythagorean Fuzzy Graph (Figure 13) which represent the above table is given below:

Figure 13 PFG.

Dilation of vertices and edges & Measurement of risk.
Analysis of spread of disease can be done using vertex dilation and edge dilation of Pythagorean
fuzzy graph. Vertex dilation helps to identify at what extend a group spread disease and edge
dilation indicate at what extend the interaction between two groups may cause spreading of
disease. Dilation (whether it is for vertices or edges) focuses on determining the effect of neigh-
bouring vertices or edges on risk measurement. To attain this, we exclude edge’s (or vertex’s)
own membership and non-membership function at the time of calculating dilation of edge (or
vertex). Dilated membership function of vertices and edges (µ1 ∨ µ2) gives at what extent the
disease likely to spread and non-membership function of vertices and edges (γ1 ∨ γ2) projects at
what extent the disease not likely to spread. Non-membership function measures the uncertainty
on risk transmission.

µ1 = Supremum of membership functions of neighbouring vertices of a vertex
µ2 = Supremum of membership functions of neighbouring edges of an edge
γ1 = Infimum of non-membership functions of neighbouring vertices of a vertex
γ2 = Infimum of non-membership functions of neighbouring edges of an edge
The measure of risk is defined as βi = µ2

i − γ2
i ; i = 1, 2 for each vertices and edges.

Dilated membership and non-membership functions of vertices and edges are defined as follows:
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Vertex Neighbouring Vertices µ1 γ1 Dilated vertex β1 = µ2
1 − γ2

1

A(0.8,0.1) C,D,F 0.8 0.2 (0.8,0.2) 0.6
B(0.3,0.6) C,D,E 0.8 0.2 (0.8,0.2) 0.6
C(0.5,0.5) A,B,D,E,F 0.8 0.1 (0.8,0.1) 0.63
D(0.8,0.2) A,B,C,F 0.8 0.1 (0.8,0.1) 0.63
E(0.4,0.5) B,C,F 0.5 0.5 (0.5,0.5) 0
F(0.4,0.5) A,D,C,E 0.8 0.1 (0.8,0.1) 0.63

Vertex Neighbouring Edges µ2 γ2 Dilated vertex β2 = µ2
2 − γ2

2

AC(0.5,0.6) AF, AD, CF, CE, BC, CD 0.8 0.3 (0.8,0.3) 0.55
AD(0.8,0.3) AF, AC, DF, DC, BD 0.5 0.5 (0.5,0.5) 0
AF(0.2,0.7) AD, AC, DF, CF, EF 0.8 0.3 (0.8,0.3) 0.55
BC(0.2,0.6) CF, CE, AC, CD, BE, BD 0.5 0.5 (0.5,0.5) 0
BD(0.2,0.7) DF, AD, CD, BC, BE 0.8 0.3 (0.8,0.3) 0.55
BE(0.3,0.7) EF, CE, BC, BD 0.4 0.6 (0.4,0.6) -0.2
CD(0.3,0.5) BC, CE, CF, AC, BD, AD, DF 0.8 7 0.3 (0.8,0.3) 0.55
CE(0.4,0.7) EF, BE, BC, CF, AC, BC, CD 0.5 0.5 (0.5,0.5) 0
CF(0.2,0.7) BC, AC, CD, CE, EF, DF, AF 0.5 0.5 (0.5,0.5) 0
DF(0.3,0.9) EF, CF, AF, AD, CD, BD 0.8 0.3 (0.8,0.3) 0.55
EF(0.2,0.6) BE, CE, CF, AF, DF 0.4 0.7 (0.4,0.7) -0.33

Dilated PFG (Figure 13) of a Pythagorean Fuzzy Graph (Figure 14) is given below:

Figure 14. Dilated PFG.

Both µi and γi are considered for making decision using above PFG model for disease spread.
High values of µi and γi predicts high transmission risk and high uncertainty on risk assessment.
That is, high value of µi and βi is small suggests high transmission risk and high uncertainty on
risk assessment.

Set a threshold.
Set a threshold value for identifying the risk category vertices and edges. In particular, set-

ting a threshold can separate the transmission risk levels as high, medium and low. So this
categorization allocate each vertex and edge to a particular transmission category.
Set threshold value of level of risk (µi) is given below:

Level of risk Membership function (µi)

High µi ≥ 0.7
Medium 0.4 ≤ µ1i < 0.7
Low µ1i < 0.4
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Disease Spread Prediction & Strategy Adaptation

Risk Level Vertices Edges
High A, B, C, D, F AC, AF, BD, CD, DF
Medium E AD, BC, BE, CE, CF, EF
Low — —

The dilated membership value is described as an indicator of the vertex’s transmission risk.
A higher dilated membership value implies a higher likelihood of transmitting the disease due
to the influence of nearby individuals or areas. For each vertex and edge, analyse the dilated
membership values to assess its likelihood of being infected. Measure of risk indicates the
reliability of the result. High risk vertices and edges are represented using large dots and possible
high-risk transmission edges are marked as large width lines in Figure 14.

Different containment strategies can be implemented to different categorized risk level. Strict
isolations measures can be applied in high risk areas and proper monitoring is possible in medium
and low risk levels. Awareness programs regarding hygiene should also be conducted.

Continuous Monitoring and Adaptation:
Continuous monitoring and evaluation are necessary for vertices with risk factor according

to changing situation and upcoming risks.

5 Conclusion

In this paper, we introduced vertex dilation, vertex erosion, edge dilation and edge erosion on
PFG using βn-adjacency. Combining vertex dilation and edge dilation resulted dilated PFG and
combination of vertex erosion and edge erosion gave eroded PFG. An algorithm for determining
dilated PFG and Eroded PFG was illustrated with numerical example. We proposed the definition
of morphological dilation induced strong products of these dilated PFGs. We also derived the
some properties of dilated PFG and eroded PFG. An algorithm for predicting and controlling the
spreading of disease is explained as an application of vertex dilation on PFG in decision making.

References
[1] Atanassov, K. (1999) Intuitionistic Fuzzy Sets: Theory and Applications, Heidelberg:Springer-Verlag

[2] De Baets, Kerre, E. and Gadan, M. (1995) “The fundamentals of fuzzy mathematical morphology Part 1:
Basic concepts”, Int. J. General System, Vol. 23, pp. 155–171

[3] B. De Baets, E. Kerre, M. Gupta, “The Fundamentals of Fuzzy Mathematical Morphology : Part 2 :
Idempotence, Convexity and Decoposition”, International Journal of General Systems, Vol. 23, pp. 307–
322, 1995

[4] Henk Heijmans & Luc Vincent (1992) Graph morphology in image analysis, Mathematical Morphology
in Image Processing, pp. 171–203

[5] J. Serra, Image analysis and mathematical morphology, Vol. 1, Academic Press, London, 1982.

[6] J. Serra, Image analysis and mathematical morphology, Vol. 2, Academic Press, London, 1988.

[7] John Goutsias & Henk J. A. M. Heijmans (2000) “Funtamenta Morphologicae Mathematicae”, Mathe-
matical Morphology, Fundamenta informaticae, Vol. 41, pp. 1–31

[8] Karunambigai K. G. & Parvathi, R. (2006) Intuitionistic fuzzy graphs, Journal of Computational Intelli-
gence: Theory and Applications, Vol. 20, pp. 139–150

[9] Karunambigai, M. G., Parvathi, R. & Kalaivani,O. K. (2011) “A study on Atanassov’s intuitionistic fuzzy
graphs”, in IEEE International Conference on Fuzzy Systems

[10] Laurent Najman & HauuesTalbot (2008) Mathematical Morphology from theory to Applications, Wiley

[11] Laurent Najman & Jean Cousty (2014) A Graph-Based Mathematical Morphology Reader, Elsevier

[12] Mahioub, M. & Shubatah, Q. (2012) Domination in product intuitionistic fuzzy graphs, Advances in
Computational Mathematics and its Applications ACMA, Vol. 1, No. 3, ISSN 2167–6356.

[13] Rajkumar Verma, Jose M. Merigo & Manoj Sahni: Pythagorean fuzzy graphs: Some results.

[14] Rosenfeld, A. (1975) Fuzzy Graphs, L. A. Zadeh, K. cS. Fu, K. Tanka and M. Shimura (eds), Fuzzy Sets
and their applications to Cognitive and Decision Process, Academic Press, New York, pp. 75–95.



PYTHAGOREAN FUZZY GRAPH DILATIONS AND EROSIONS 399

[15] Shyla A.M. & Mathew Varkey, T.K. (2016) “Intuitionistic fuzzy soft graph”, International Journal of
Fuzzy Mathematical Archive

[16] Sumera Naz, Samina Ashraf & Akram (2018) M. A noval approch to decision making with Pythagorean
fuzzy information, MDPI, June 2018.

[17] Sumit Mohinta & Samanta, T. K. (2015) “An introduction to fuzzy soft graph”, Mathematica Moravica,
Vol. 19-2, pp. 35–48

[18] Sundas Shahzadi & Muhammad Akram (2016) “Intuitionistic fuzzy soft graphs with applications”, J.
Appl. Math. Comput.

[19] Sunitha, P. (2016) “An elementary introduction to intuitionistic fuzzy soft graphs”, J. Math. Comput. Sci.,
Vol. 6, No. 4, pp. 668–681

[20] Sunitha, M. S. & Sunil Mathew (2013) “Fuzzy graph theory: A survey”, Annals of Pure and Applied
Mathematics

[21] Vincent, L. (1989) Graphs and mathematical morphology, Signal Processing, 16, 365–88

[22] Yagar, R.R. (2013) “Pythagorean fuzzy subsets”, IEEE

[23] Yunqiang Yin, Hongjie Li & Yong Bae Jun (2012) “On algebraic structure of intuitionistic fuzzy soft
sets”, Computers and Mathematics with Applications, Vol. 64, pp. 2896–2911

[24] Zadeh, L. A. (1965) “Fuzzy sets”, Information and Control, Vol. 8, pp. 338–353

[25] Isabelle Bloch (2015) Fuzzy sets for image processing and understanding, Fuzzy sets and Systems, 281,
280–291

[26] Isabelle Bloch (2012) Mathematical morphology on bipolar fuzzy sets: General algebraic framework,
International Journal of Approximate Reasoning 53, 1031–1060

[27] Isabelle Bloch (2007) Mathematical morphology on bipolar fuzzy sets, Proceedings of the 8th Interna-
tional Symposium on Mathematical Morphology, Rio de Janeiro, Brazil, Oct. 10–13, MCT/INPE, v.2, p.
3–4

[28] Isabelle Bloch & Henri Maitre (Sept, 1995) Fuzzy mathematical morphologies: A comparative study,
Pattern Recognition, Volume 28, Issue 9, Pages 1341–1387

[29] Isabelle Bloch (2005) Duality vs. Adjunction and General Form for Fuzzy Mathematical Morphology,
Fuzzy Logic and Applications, pp 354–361

[30] Isabelle Bloch,Samy Blusseau,Ramon Pino Perez, Elodie Puybareau, Guilliaume Tochon (May,2021) On
some Association Between Mathematical Morphology and Artificial Intelligence,Discrete Geometry and
Mathematical Morphology,pp 457-469

[31] Peter Sussner, Mike Nachtegael, Tom Mélange, Glad Deschrijver, Estevao Esmi & Etienne Kerre (2012)
Interval-Valued and Intuitionistic Fuzzy Mathematical Morphologies as Special Cases of L-Fuzzy Math-
ematical Morphology, Journal of Mathematical Imaging and Vision volume 43, pages 50–71

[32] M. Nachtegaela, P. Sussnerb, T. Melangeá & E. E. Kerrea (2008) Some Aspects of Interval-valued and In-
tuitionistic Fuzzy Mathematical Morphology, Proceedings of the 2008 International Conference on Image
Processing, Computer Vision & Pattern Recognition, IPCV 2008, July 14–17, 2008, Las Vegas Nevada,
USA, 2 Volumes

[33] Shannon A. & Atanassov K. (1994) A first step to a theory of the intuitionistic fuzzy graphs, Proc. of the
First Workshop on Fuzzy Based Expert Systems (D. Lakov, Ed.), Sofia, 28–30, 59–61

Author information
Abraham Jacob, Department of Mathematics, Rajagiri School of Engineering & Technology (affiliated to APJ
Abdul Kalam Technological University), Kakkanadu, Ernakulam (Dt.), Kerala, India.
E-mail: abrahamj@rajagiritech.edu.in

Ramkumar P. B., Department of Mathematics, Rajagiri School of Engineering & Technology (affiliated to APJ
Abdul Kalam Technological University), Kakkanadu, Ernakulam (Dt.), Kerala, India.
E-mail: ramkumar_pb@rajagiritech.edu.in


	1 Introduction
	1.1 Fuzzy Mathematical Morphology
	1.2 Pythagorean Fuzzy Graph (PFG)

	2 Lattice structure and Pythagorean fuzzy graph dilations and Erosions
	3 Properties of Dilated PFG and Eroded PFG
	4 Application: Spread of a pandemic: Prediction and Control
	5 Conclusion

