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Abstract The paper aims to find all positive integer solutions for the Diophantine equation
x2 + 3a89b = yn, where x, y ≥ 1, with non-negative exponents a and b, and an integer n ≥ 3,
under the constraint that gcd(x, y) = 1.

1 Introduction

Consider the Diophantine equation of the form

x2 + C = yn, x, y ≥ 1, n ≥ 3, (1.1)

where C is a fixed positive integer. The initial discovery of positive integer solutions for the
given equation dates back almost 17 decades ago [24]. It has been proven that the equation in-
variably has only a finite number of solutions that are positive integers [22]. Early investigations
focused on Eq. (1.1) when C = c0 is a constant integer [21, 31, 32]. In reference [17], Cohn
solved equation (1.1) under the assumption that gcd(x, y) = 1, examining the parameter C in
the interval 1 ≤ C ≤ 100, with some specific values of C excluded. Subsequent research, as
outlined in [29], further investigated additional C values within the same range, while the re-
maining values were addressed in [11]. Over time, researchers have examined not just situations
where C = pk with a particular prime p [1, 2, 3, 4, 6, 16, 28] but also the case involving a prime
number p in general [7, 9, 23, 33, 39].

Consider a prime set S = {p1, p2, . . . , pk}. Recent studies have concentrated on Eq. (1.1),
particularly when C is expressed as the product of prime powers pk, where p ∈ S and k is a
non-negative integer [5, 10, 13, 14, 18, 19, 20, 25, 26, 27, 30, 34, 35, 36, 37, 38]. Additionally,
in [40], the authors looked at a wider range of positive integer solutions to Eq. (1.1), taking into
account C = 2apb for any odd prime p.

The main emphasis of this paper lies in the investigation of the Diophantine equation ex-
pressed as

x2 + 3a89b = yn,where n ≥ 3, (1.2)

where gcd(x, y) = 1 is the condition under which a, b ≥ 0 and x, y ≥ 1. Next, the subsequent
result is established.

Theorem 1.1. The equation (1.2) has the following solutions:

(x, y, n, a, b) =(6, 5, 3, 0, 1), (46, 13, 3, 4, 0), (10, 7, 3, 5, 0), (40, 7, 4, 2, 1)

excluding the case where 11 ∤ n.

2 Preliminaries

Consider algebraic integers denoted as η and its conjugate η. A Lucas pair, denoted as (η, η), is
characterized by the requirement that the sum η + η and the product ηη are non-zero coprime
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rational integers, and
η

η
is not a root of unity. The sequences of Lucas numbers are defined in

correspondence with any given Lucas pair (η, η) as follows:

Ln(η, η) =
ηn − ηn

η − η
, n = 0, 1, 2, . . .

The presence of primitive divisors within Ln(η, η) holds significant importance within the do-
main of Lucas sequences.

A primitive divisor of Ln(η, η) is defined as a prime number p that satisfies p | Ln(η, η) and
p ∤ (η − η)2 ∏n−1

i=1 Li(η, η) for n > 1. Additionally, a primitive divisor q of Ln(η, η) satisfies the
congruence q ≡

(
(η−η)2

q

)
(mod n), where

(
∗
q

)
denotes the Legendre symbol [15].

For n > 4 and n ̸= 6, every n-th term within any Lucas sequence Ln(η, η) is character-
ized by the presence of primitive divisors, with the exception of specific finite configurations of
parameters η, η, and n [8].

3 Proof of Theorem 1.1

When n = 3, n = 4, and n ≥ 5, Equation (1.2) will be investigated independently as outlined
below:

Proposition 3.1. If n = 3, the Eq. (1.2) has the following solutions:

(x, y, a, b) =(6, 5, 0, 1), (46, 13, 4, 0), (10, 7, 5, 0)

Proof. When n = 3, represent a = 6a1 + i and b = 6b1 + j, where i, j ∈ {0, 1, . . . , 5}.
Subsequently, Eq. (1.2) takes the form of an elliptic curve

L2 = M3 − 3i89j

where L =
x

33a1 893b1
and M =

y

32a1 892b1
.

Therefore, the task of discovering positive integer solutions for Eq. (1.2) is transformed into
identifying all {3, 89}-integer points on the corresponding 36 elliptic curves for each i and j. It’s
essential to highlight that for any finite prime number set S, an S-integer is defined as a rational
number

r

s
, where r and s > 0 are coprime integers, and any prime factor of s belongs to the set

S.
The MAGMA function SIntegralPoints is utilised to find all S-integral points on the provided

curves. For the set S = {3, 89} [12], the recognised points are shown below:

(M,L, i, j) =(1, 0, 0, 0), (5, 6, 0, 1), (89, 0, 0, 3),
(

7387
9

,
633680

27
, 1, 3

)
, (3, 0, 3, 0),

(87, 810, 3, 1), (267, 0, 3, 3), (13, 46, 4, 0), (7, 10, 5, 0)

Considering that x and y are positive integers with no common factors, it’s important to highlight
that only three among these points yield a solution for Eq. (1.2). With this, the proof comes to
an end.

Proposition 3.2. If n = 4, the Eq. (1.2) has only one solution (x, y, a, b) = (40, 7, 2, 1)

Proof. Let n = 4. Initially, express a = 4α1 + i and b = 4β1 + j, where i, j ∈ {0, 1, 2, 3}.
Consequently, Eq. (1.2) takes the form

A2 = B4 − 3i89j

where A =
x

32α1 892β1
and B =

y

3α1 89β1
.

Determining each of the 16 quartic curves’ corresponding S = {3, 89}-integral points equates
to finding each integer solution of Eq. (1.2).
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By employing the SIntegralLjunggrenPoints, we successfully determined all S-Integral Points
on these curves, resulting in

(A,B, i, j) = (∓1, 0, 0, 0), (∓7, 40, 2, 1)

Given the condition on the values of x and y, it is evident that Eq. (1.2) have only one solution
(x, y, a, b) = (40, 7, 2, 1) .

Proposition 3.3. If n ≥ 5, the Eq. (1.2) does not possess any positive integer solutions.

Proof. Assume that n is greater than or equal to 5. If a solution for Equation (1.2) exists with
n = 2k and k ≥ 3, it may be derived from solutions with n = 4 using the relationship y2k

=(
y2k−2

)4
. Hence, there are no solutions for equation (1.2) when n is equal to 2k and k is greater

than or equal to 3.
Consequently, Eq. (1.2) also lacks a solution when n equals 3k and k is equal to 2. Therefore,

it may be assumed that n is an odd prime without any loss of generality.
Let’s initiate the analysis of the factorization of Eq. (1.2) in the field K = Q(

√
−d) as follows

(x+ e
√
−d)(x− e

√
−d) = yn

where e = 3α89β for some integers α, β ≥ 0 and d ∈ {1, 3, 89, 267}.
Assuming that y is even leads to a contradiction, as x must be odd according to (1.2), resulting

in 1 + 3a ≡ 0 (mod 8).
The ideals generated by x+ e

√
−d and x− e

√
−d are relatively prime in the field K because

y is an odd integer as a consequence.
The class number h(K) takes on one of three values: 1, 2, or 12 for the specific choice of d.
Thus, we can deduce that the greatest common divisor of n and h(K) is 1.
Given an algebraic integer ξ ∈ K and units u1 and u2 in the ring of algebraic integers of K,

this can be expressed as:
x+ e

√
−d = ξnu1

x− e
√
−d = ξ

n
u2

Taking into account that the orders of the multiplicative group of units in the ring of algebraic
integers of K are 2, 4, or 6, depending on the value of d, and observing that these orders are
relatively prime to n, the units u1 and u2 can be eliminated from the equations. Consequently,
the units u1 and u2 can be integrated into the factors ξn and ξ

n
.

Let us examine the two cases separately, where d belongs to {1, 89} or {3, 267}. These
cases correspond to distinct integral bases for OK , specifically {1,

√
−d} for d ∈ {1, 89} and{

1, 1+
√
−d

2

}
for d ∈ {3, 267}. To begin with, the case d ∈ {1, 89}. Consequently, we have the

following equations:
x+ e

√
−d = ξn = (s+ t

√
−d)n

x− e
√
−d = ξ

n
= (s− t

√
−d)n

where y = s2 + dt2 for certain rational integers s and t. By examining these equations, we can
deduce that

e = Lnt,

where Ln = ξn−ξ
n

ξ−ξ
. It is important to note that the sequence Ln forms a Lucas sequence.

The Lucas sequences lacking primitive divisors are explicitly enumerated in [8], where it is
verified that Ln does not correspond to any of these sequences. Consequently, we explore the
potential existence of a primitive divisor for Ln. Let q be any such primitive divisor of Ln. In
this context, q must be either 3 or 89. Given that any primitive divisor is congruent to ±1 modulo
n, and since n ≥ 5, we can exclude q = 3. Therefore, we proceed under the assumption that
q = 89. According to the definition of a primitive divisor, q ∤ (ξ − ξ)2 = −4dt2, which implies
that d = 1. Furthermore, considering that

(
−4t2d

q

)
=

(−1
89

)
= 1, we conclude that 89 ≡ 1

(mod n), which indicates n = 11. This leads to a contradiction, as it implies 11 ∤ n, contrary to
our initial assumption.
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Now, consider the case d ∈ {3, 267}. In these cases, the integral basis for OK is given by{
1, 1+

√
−d

2

}
. Consequently, we can represent

x+ e
√
−d = ξn =

(
u+ v

√
−d

2

)n

x− e
√
−d = ξ

n
=

(
u− v

√
−d

2

)n

with u ≡ v (mod 2). Then
2e = Lnv,

where Ln =
ξn − ξ

n

ξ − ξ
.

Upon observing that Ln forms a Lucas sequence, the absence of a primitive divisor for Ln

suggests its correspondence with one of the Lucas sequences listed in the table referenced [8].
However, this inference does not apply to d ∈ {3, 267}.

Hence, Ln possesses a primitive divisor, denoted as q, where q can either be 3 or 89.

From the properties q ∤ (ξ − ξ)2 = −dv2 and q ≡
(
−v2d

q

)
(mod n), it follows that q = 89,

d = 3, and n = 5. So we get that

x+ 3α89β
√
−3 =

(
u+ v

√
−3

2

)5

where α = a−1
2 and β = b

2 . Equating the imaginary parts in the above equation we find that

v(5u4 − 30u2v2 − 9v4) = 253α89β (3.1)

since 89 ∤ v and gcd(u, v) = 1 we have the following possibilities v = ±1, v = ±25, v =
±3α, v = ±253α.
If v = ±1, then Eq. (3.1) transforms into the following equations:

5u4 − 30u2 − 9 = ±253α89β

By letting α = 2a1 + i and β = 2b1 + j for i, j ∈ {0, 1}, we obtain:

5u4 − 30u2 − 9 = δY 2

δ = ±2 ·3i89j and Y = 223a1 89b1 . By multiplying δ both sides of the above equation, we obtain:

5δu4 − 30δu2 − 9δ = (δY )2

We employ the IntegralQuarticPoints function in MAGMA to calculate all integral points on the
quartic curves described above. However, the computations reveal that no solutions exist for this
equation. Hence, equation (1.2) lacks a solution. If v = ±25, then Eq. (3.1) transforms into

5u4 − 30 · 210u2 − 9 · 220 = ±3α89β

Write α = 2a1 + i and β = 2b1 + j for i, j ∈ {0, 1}, we get

5u4 − 30 · 210u2 − 9 · 220 = δY 2

δ = ±3i89j and Y = 3a1 89b1 . Therefore, it is necessary to determine all {2}-integral points
on the aforementioned curves. Employing the SIntegralLjunggrenPoints function in MAGMA
facilitated the identification of these points, yielding (u, Y ) = (0, 3072) and (±96, 12288) for
δ = 1, and (u, Y ) = (±32, 4096) for δ = −1. However, none of these points satisfy equation
(1.2).

For v = ±3α, by dividing both sides of Eq. (3.1) by v4 and introducing β = 2b1 + j for
j ∈ {0, 1}, we obtain:

5U4 − 30U2 − 9 = δY 2
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where δ = ±2589j , Y =
89b1

v2 , U = u
v . To determine all {3}-integral points on the elliptic curve

described above for every value of δ, we seek solutions to the equation. However, no solutions
are found for this equation. Hence, equation (1.2) has no solution.

For v = ±253α, we proceed analogously to the preceding case, yielding:

5U4 − 30U2 − 9 = δY 2

where δ = ±89j , Y =
89b1

v2 , U = u
v . To determine all {2, 3}-integral points on the aforemen-

tioned elliptic curves for every value of δ, we identify the subsequent points:

(U, Y ) = (0, 3), (±3, 12) for δ = 1,

(U, Y ) =

(
±5

9
,

4
81

)
for δ = 89,

(U, Y ) = (±1, 4) for δ = −1,

It is easy to verify that none of them leads to a solution of Eq. (1.2). This completes the proof.
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