# Wilf's conjecture for numerical semigroups 

Mariam Dhayni<br>Communicated by Ayman Badawi

2000 Mathematical Subject Classification: 11D07, 20M14
Keywords and phrases: Numerical semigroup, Wilf conjecture, Frobenius number.


#### Abstract

Let $S \subseteq \mathbb{N}$ be a numerical semigroup with multiplicity $m$, embedding dimension $\nu$ and conductor $c=q m-\rho$ for some $q, \rho \in \mathbb{N}$ with $\rho<m$. Let $n$ be the cardinality of the set of elements $x \in S ; x<c$. Wilf conjecture says that $c \leq \nu n$. Despite a lot of activities around this conjecture, it is still open. The aim of this paper is first to prove that Wilf's conjecture holds for $S$ if $\left(2+\frac{1}{q}\right) \nu \geq m$. This generalizes the case when $2 \nu \geq m$, proved by Sammartano in [9]. We also prove the conjecture for $m-\nu \leq 5$, and also for $m=9$. These cases result from the following: let $\operatorname{Ap}(S, m)=\left\{w_{0}<w_{1}<\ldots<w_{m-1}\right\}$ be the Apéry set of $S$. The conjecture holds if $w_{m-1} \geq w_{1}+w_{\alpha}$ and $\left(2+\frac{\alpha-3}{q}\right) \nu \geq m$ for some $1<\alpha<m-1$ (Theorem 4.1).


## 1 Introduction and notations

Let $\mathbb{N}$ denotes the set of natural numbers, including 0 . A numerical semigroup $S$ is an additive submonoid of $(\mathbb{N},+)$ of finite complement in $\mathbb{N}$, that is $0 \in S$, if $a, b \in S$ then $a+b \in S$, and $\mathbb{N} \backslash S$ is a finite set. The elements of $\mathbb{N} \backslash S$ are called the gaps of $S$ and their cardinality is denoted by $g(S)$ and is called the genus of $S$. The largest gap is denoted by $f=f(S)=\max (\mathbb{N} \backslash S)$ and is called the Frobenius number of $S$. The smallest non zero element $m=m(S)=\min \left(S^{*}\right)$ is called the multiplicity of $S\left(S^{*}=S \backslash\{0\}\right)$ and $n=|\{s \in S ; s<f(S)\}|$ is also denoted by $n(S)$. Every numerical semigroup $S$ is minimally generated, i.e.

$$
S=<g_{1}, \ldots, g_{\nu}>=\mathbb{N} g_{1}+\ldots+\mathbb{N} g_{\nu}
$$

for suitable unique coprime integers $g_{1}, \ldots, g_{\nu}$. The cardinality of the minimal set of generators of $S$ is denoted by $\nu=\nu(S)$ and is called the embedding dimension of $S$. An integer $x \in \mathbb{N} \backslash S$ is called a pseudo-Frobenius number if $x+S^{*} \subseteq S$. The type of the semigroup, denoted by $t(S)$ is the cardinality of the set of pseudo-frobenius numbers. The Apéry set of $S$ with respect to $a \in S$ is defined as $\operatorname{Ap}(S, a)=\{s \in S ; s-a \notin S\}$.

The invariants associated with a numerical semigroup $S$ are connected with equalities and inequalities. For example, $f(S)+1=g(S)+n(S), \nu(S) \leq m(S) \ldots$. In [10], H. S. Wilf proposed the following conjecture:

$$
f(S)+1 \leq \nu(S) n(S)
$$

Suggesting a regularity in the set $\mathbb{N} \backslash S$. Although the problem has been considered by several authors (cf. [1], [2], [4], [5], [6], [7], [9]), only special cases have been solved and it remains wide open. In [4], D. Dobbs and G. Matthews proved Wilf's conjecture for $\nu \leq 3$. In [7] N. Kaplan proved it for $f+1 \leq 2 m$ and in [5] S. Eliahou extended Kaplan's work for $f+1 \leq 3 m$.
In this paper, we prove Wilf's conjecture in some relevant cases. More precisely, we prove that the conjecture holds for numerical semigroups $S$ when $\left(2+\frac{1}{q}\right) \nu \geq m$ (where $f+1=$ $q m-\rho, \rho<m$ ). This generalizes the case proved by A. Sammartano ([9]), who showed that Wilf's conjecture holds for $2 \nu \geq m$. We also prove the conjecture when $m-\nu=5$, and also for $m=9$. Our main idea is based on counting the elements of $S$ in some intervals of length $m$. This gives us an equivalent form of Wilf's conjecture, and allows us to prove the conjecture in the cases cited above.
The paper is organized as follows. In section 2 we use some notations and prove some results in order to give an equivalent form of Wilf's conjecture. In section 3 we give some technical results needed in the paper. Section 4 is the heart of the paper. Let $\operatorname{Ap}(S, m)=\left\{0=w_{0}<w_{1}<\right.$
$\left.\cdots<w_{m-1}\right\}$. First, we show that Wilf's conjecture holds for numerical semigroups that satisfy $w_{m-1} \geq w_{1}+w_{\alpha}$ and $\left(2+\frac{\alpha-3}{q}\right) \nu \geq m$ for some $1<\alpha<m-1$ (see Theorem 4.1). Then we prove Wilf's conjecture for numerical semigroups with $m-\nu \leq 4$. This implies the case where $2 \nu \geq m$. We also prove that numerical semigroups with $m-\nu=5$ satisfy Wilf's conjecture. This allows us to prove the conjecture for $m=9$. Finally we prove, using the previous cases, that Wilf's conjecture holds for numerical semigroups with $\left(2+\frac{1}{q}\right) \nu \geq m$.
A good reference on numerical semigroups is [8].

## 2 Equivalent form of Wilf's conjecture

Let $S$ be a numerical semigroup and the notations be as in the introduction. For the sake of clarity, we shall use the notations $\nu, f, n, c, m \ldots$ for $\nu(S), f(S), n(S), c(S), m(S) \ldots$. In this section, we will introduce some notations and prove some results in order to give an equivalent form of Wilf's conjecture. Let $q, \rho \in \mathbb{N}, 0 \leq \rho<m$ such that $c=f+1=q m-\rho$. Given a nonnegative integer $k$, we define the $k$ th interval $I_{k}$ of length $m$ as

$$
I_{k}=[k m-\rho,(k+1) m-\rho[=\{k m-\rho, k m-\rho+1, \ldots,(k+1) m-\rho-1\} .
$$

We denote by

$$
n_{k}=\left|S \cap I_{k}\right| .
$$

For all $j \in\{1, \ldots, m-1\}$, we define $\eta_{j}$ to be the number of intervals $I_{k}$ with $n_{k}=j$.

$$
\eta_{j}=\left|\left\{k \in \mathbb{N} ;\left|S \cap I_{k}\right|=j\right\}\right| .
$$

Proposition 2.1. Under the previous notations, we have the following:
i) $1 \leq n_{k} \leq m-1$ for all $0 \leq k \leq q-1$ and $n_{k}=m$ for all $k \geq q$.
ii) $\sum_{j=1}^{m-1} \eta_{j}=q$.
iii) $\sum_{j=1}^{m-1} j \eta_{j}=\sum_{k=0}^{q-1} n_{k}=n(S)=n$.

Proof. $i$ ) obvious. We will prove $i i$ ) and $i i i$ ).
ii) $\sum_{j=1}^{m-1} \eta_{j}=\sum_{j=1}^{m-1}\left|\left\{k \in \mathbb{N} ;\left|I_{k} \cap S\right|=j\right\}\right|=\sum_{j=1}^{m-1}\left|\left\{k \in \mathbb{N} ; n_{k}=j ; 0 \leq k \leq q-1\right\}\right|=$ $q$.
iii) $\sum_{j=1}^{m-1} j \eta_{j}=\sum_{j=1}^{m-1} j\left|\left\{k \in \mathbb{N} ;\left|I_{k} \cap S\right|=j\right\}\right|=\sum_{j=1}^{m-1} j \mid\left\{k \in \mathbb{N} ; n_{k}=j ; 0 \leq k \leq\right.$ $q-1\} \mid=\sum_{k=0}^{q-1} n_{k}=n$.

Remark: We shall use the notation $\lfloor x\rfloor$ for the largest integer smaller than or equal to $x$.
Next, we will express $\eta_{j}$ in terms of the Apéry set.
Proposition 2.2. Let $\operatorname{Ap}(S, m)=\left\{w_{0}=0<w_{1}<w_{2}<\ldots<w_{m-1}\right\}$. Under the previous notations, for all $1 \leq j \leq m-1$ we have

$$
\eta_{j}=\left\lfloor\frac{w_{j}+\rho}{m}\right\rfloor-\left\lfloor\frac{w_{j-1}+\rho}{m}\right\rfloor .
$$

Proof. Fix $0 \leq k \leq q-1$ and let $1 \leq j \leq m-1$. We will show that the interval $I_{k}$ contains exactly $j$ elements of $S$ if and only if $w_{j-1}<(k+1) m-\rho \leq w_{j}$. Recall to this end that for all $s \in S$, there exist $0 \leq i \leq m-1$ and $a \in \mathbb{N}$ such that $s=w_{i}+a m$.
Suppose that $I_{k}$ contains exactly $j$ elements of $S$. Suppose, by contradiction, that $w_{j-1} \geq$ $(k+1) m-\rho$. We have $w_{m-1}>\ldots>w_{j-1} \geq(k+1) m-\rho$, thus $w_{m-1}, \ldots, w_{j-1} \in \cup_{t=k+1}^{q} I_{t}$. Hence, $I_{k}$ contains at most $j-1$ elements of $S$ (namely $w_{0}+k m=k m, w_{1}+k_{1} m, w_{2}+$ $k_{2} m, \ldots, w_{j-2}+k_{j-2} m$ for some $\left.k_{1}, \ldots, k_{j-2} \in\{0, \ldots, k-1\}\right)$. This contradicts the fact that $I_{k}$ contains exactly $j$ elements of $S$.
Let us prove that $(k+1) m-\rho \leq w_{j}$. If $w_{j}<(k+1) m-\rho$, then $w_{0}<\ldots<w_{j}<(k+1) m-\rho$, thus $w_{0}, \ldots, w_{j} \in \cup_{t=0}^{k} I_{t}$. Hence, $I_{k}$ contains at least $j+1$ elements of $S$ which are : $w_{0}+k m=$
$k m, w_{1}+k_{1} m, w_{2}+k_{2} m, \ldots, w_{j}+k_{j} m$ for some $k_{1}, \ldots, k_{j} \in\{0, \ldots, k-1\}$. This is again a contradiction.
Conversely, suppose that $w_{j-1}<(k+1) m-\rho \leq w_{j}$. Since $w_{j-1}<(k+1) m-\rho$ then $w_{0}<\ldots<w_{j-1}<(k+1) m-\rho$, whence $w_{0}, \ldots, w_{j-1} \in \cup_{t=0}^{k} I_{t}$. In particular $I_{k}$ contains at least $j$ elements of $S$, namely $w_{0}+k m=k m, w_{1}+k_{1} m, w_{2}+k_{2} m, \ldots, w_{j-1}+k_{j-1} m$ for some $k_{1}, \ldots, k_{j-1} \in\{0, \ldots, k-1\}$. On the other hand $w_{j} \geq(k+1) m-\rho$ implies that $w_{m-1}>\ldots>w_{j} \geq(k+1) m-\rho$, so $w_{m-1}, \ldots, w_{j} \in \cup_{t=k+1}^{q} I_{t}$. Thus, $I_{k}$ contains at most $j$ elements of $S$ which are: $w_{0}+k m=k m, w_{1}+k_{1} m, w_{2}+k_{2} m, \ldots, w_{j-1}+k_{j-1} m$ for some $k_{1}, \ldots, k_{j-1} \in\{0, \ldots, k-1\}$. Hence, if $w_{j-1}<(k+1) m-\rho \leq w_{j}$, then $I_{k}$ contains exactly $j$ elements of $S$ and this proves our assertion.

We finally have the following:

$$
\begin{aligned}
\eta_{j} & =\mid\left\{k \in \mathbb{N} \text { such that }\left|I_{k} \cap S\right|=j\right\} \mid \\
& =\mid\left\{k \in \mathbb{N} \text { such that } w_{j-1}<(k+1) m-\rho \leq w_{j}\right\} \mid \\
& \left.=\left\lvert\,\left\{k \in \mathbb{N} \text { such that } \frac{w_{j-1}+\rho}{m}<(k+1) \leq \frac{w_{j}+\rho}{m}\right\}\right. \right\rvert\, \\
& \left.=\left\lvert\,\left\{k \in \mathbb{N} \text { such that } \frac{w_{j-1}+\rho}{m}-1<k \leq \frac{w_{j}+\rho}{m}-1\right\}\right. \right\rvert\, \\
& \left.=\left\lvert\,\left\{k \in \mathbb{N} \text { such that }\left\lfloor\frac{w_{j-1}+\rho}{m}\right\rfloor \leq k \leq\left\lfloor\frac{w_{j}+\rho}{m}\right\rfloor-1\right\}\right. \right\rvert\, \\
& =\left\lfloor\frac{w_{j}+\rho}{m}\right\rfloor-\left\lfloor\frac{w_{j-1}+\rho}{m}\right\rfloor .
\end{aligned}
$$

Proposition 2.3 gives an equivalent form of Wilf's conjecture using Proposition 2.1 and Proposition 2.2.

Proposition 2.3. Let the notations be as above. We have $S$ satisfies Wilf's conjecture if and only if

$$
\sum_{j=1}^{m-1}\left(\left\lfloor\frac{w_{j}+\rho}{m}\right\rfloor-\left\lfloor\frac{w_{j-1}+\rho}{m}\right\rfloor\right)(j \nu-m)+\rho \geq 0 .
$$

Proof. By Proposition 2.1, we have

$$
\begin{aligned}
& f+1 \leq n \nu \Leftrightarrow q m-\rho \leq \nu \sum_{k=0}^{q-1} n_{k} \Leftrightarrow \sum_{k=0}^{q-1} m-\rho \leq \sum_{k=0}^{q-1} n_{k} \nu \Leftrightarrow \sum_{k=0}^{q-1}\left(n_{k} \nu-m\right)+\rho \geq 0 \Leftrightarrow \\
& \sum_{j=1}^{m-1} \eta_{j}(j \nu-m)+\rho \geq 0 .
\end{aligned}
$$

And by Proposition 2.2, we get

$$
\sum_{j=1}^{m-1} \eta_{j}(j \nu-m)+\rho \geq 0 \Leftrightarrow \sum_{j=1}^{m-1}\left(\left\lfloor\frac{w_{j}+\rho}{m}\right\rfloor-\left\lfloor\frac{w_{j-1}+\rho}{m}\right\rfloor\right)(j \nu-m)+\rho \geq 0 .
$$

## 3 Technical results

Let $S$ be a numerical semigroup and let the notations be as in sections 1 and 2 . In this section, we give some technical results used through the paper. Recall that $\operatorname{Ap}(S, m)=\left\{w_{0}=0<w_{1}<\right.$ $\left.\ldots<w_{m-1}\right\}$.

Remark 3.1. With the notations above, we have the following:
i) $\left\lfloor\frac{w_{0}+\rho}{m}\right\rfloor=0$.
ii) For all $1 \leq i \leq m-1$, we have $\left\lfloor\frac{w_{i}+\rho}{m}\right\rfloor \geq 1$ (as $w_{i}>m$ ).
iii) For all $1 \leq i \leq m-1$, we have $\left\lfloor\frac{w_{i}+\rho}{m}\right\rfloor=\left\lfloor\frac{w_{i}}{m}\right\rfloor$ or $\left\lfloor\frac{w_{i}+\rho}{m}\right\rfloor=\left\lfloor\frac{w_{i}}{m}\right\rfloor+1$.
$i v)$ If $\left\lfloor\frac{w_{i}+\rho}{m}\right\rfloor=\left\lfloor\frac{w_{i}}{m}\right\rfloor+1$, then $\left\lfloor\frac{w_{i}+\rho}{m}\right\rfloor \geq 2$ and $\rho \geq 1$.
$v)$ For all $0 \leq i<j \leq m-1$, we have $\left\lfloor\frac{w_{i}+\rho}{m}\right\rfloor \leq\left\lfloor\frac{w_{j}+\rho}{m}\right\rfloor$.
vi) $\left\lfloor\frac{w_{m-1}+\rho}{m}\right\rfloor=\left\lfloor\frac{q m-\rho-1+m+\rho}{m}\right\rfloor=q\left(\right.$ as $\left.w_{m-1}=f+m\right)$.

Let $1<\alpha<m-1$. Using Remark 3.1 we get the following inequalities which will be used later in the paper:

$$
\begin{aligned}
\sum_{j=1}^{\alpha}\left(\left\lfloor\frac{w_{j}+\rho}{m}\right\rfloor-\left\lfloor\frac{w_{j-1}+\rho}{m}\right\rfloor\right)(j \nu-m) & =\sum_{j=1}^{\alpha}\left\lfloor\frac{w_{j}+\rho}{m}\right\rfloor(j \nu-m)-\sum_{j=1}^{\alpha}\left\lfloor\frac{w_{j-1}+\rho}{m}\right\rfloor(j \nu-m) \\
& =\sum_{j=1}^{\alpha}\left\lfloor\frac{w_{j}+\rho}{m}\right\rfloor(j \nu-m)-\sum_{j=0}^{\alpha-1}\left\lfloor\frac{w_{j}+\rho}{m}\right\rfloor((j+1) \nu-m) \\
& =\left\lfloor\frac{w_{\alpha}+\rho}{m}\right\rfloor(\alpha \nu-m)-\left\lfloor\frac{w_{0}+\rho}{m}\right\rfloor(\nu-m)-\sum_{j=1}^{\alpha-1}\left\lfloor\frac{w_{j}+\rho}{m}\right\rfloor \nu \\
& =\left\lfloor\frac{w_{\alpha}+\rho}{m}\right\rfloor(\alpha \nu-m)-\left\lfloor\frac{w_{1}+\rho}{m}\right\rfloor \nu-\sum_{j=2}^{\alpha-1}\left\lfloor\frac{w_{j}+\rho}{m}\right\rfloor \nu \\
& \geq\left\lfloor\frac{w_{\alpha}+\rho}{m}\right\rfloor(\alpha \nu-m)-\left\lfloor\frac{w_{1}+\rho}{m}\right\rfloor \nu-\sum_{j=2}^{\alpha-1}\left\lfloor\frac{w_{\alpha}+\rho}{m}\right\rfloor \nu \\
& =\left\lfloor\frac{w_{\alpha}+\rho}{m}\right\rfloor(\alpha \nu-m)-\left\lfloor\frac{w_{1}+\rho}{m}\right\rfloor \nu-\left\lfloor\frac{w_{\alpha}+\rho}{m}\right\rfloor(\alpha-2) \nu \\
& =-\left\lfloor\frac{w_{1}+\rho}{m}\right\rfloor \nu+\left\lfloor\frac{w_{\alpha}+\rho}{m}\right\rfloor(2 \nu-m) .
\end{aligned}
$$

Consequently,

$$
\begin{equation*}
\sum_{j=1}^{\alpha}\left(\left\lfloor\frac{w_{j}+\rho}{m}\right\rfloor-\left\lfloor\frac{w_{j-1}+\rho}{m}\right\rfloor\right)(j \nu-m) \geq-\left\lfloor\frac{w_{1}+\rho}{m}\right\rfloor \nu+\left\lfloor\frac{w_{\alpha}+\rho}{m}\right\rfloor(2 \nu-m) . \tag{3.1}
\end{equation*}
$$

On the other hand,

$$
\begin{aligned}
\sum_{j=\alpha+1}^{m-1}\left(\left\lfloor\frac{w_{j}+\rho}{m}\right\rfloor-\left\lfloor\frac{w_{j-1}+\rho}{m}\right\rfloor\right)(j \nu-m) & \geq \sum_{j=\alpha+1}^{m-1}\left(\left\lfloor\frac{w_{j}+\rho}{m}\right\rfloor-\left\lfloor\frac{w_{j-1}+\rho}{m}\right\rfloor\right)((\alpha+1) \nu-m) \\
& =((\alpha+1) \nu-m)\left(\sum_{j=\alpha+1}^{m-1}\left\lfloor\frac{w_{j}+\rho}{m}\right\rfloor-\sum_{j=\alpha+1}^{m-1}\left\lfloor\frac{w_{j-1}+\rho}{m}\right\rfloor\right) \\
& =((\alpha+1) \nu-m)\left(\sum_{j=\alpha+1}^{m-1}\left\lfloor\frac{w_{j}+\rho}{m}\right\rfloor-\sum_{j=\alpha}^{m-2}\left\lfloor\frac{w_{j}+\rho}{m}\right\rfloor\right) \\
& =\left(\left\lfloor\frac{w_{m-1}+\rho}{m}\right\rfloor-\left\lfloor\frac{w_{\alpha}+\rho}{m}\right\rfloor\right)((\alpha+1) \nu-m) .
\end{aligned}
$$

Hence,

$$
\begin{equation*}
\sum_{j=\alpha+1}^{m-1}\left(\left\lfloor\frac{w_{j}+\rho}{m}\right\rfloor-\left\lfloor\frac{w_{j-1}+\rho}{m}\right\rfloor\right)(j \nu-m) \geq\left(\left\lfloor\frac{w_{m-1}+\rho}{m}\right\rfloor-\left\lfloor\frac{w_{\alpha}+\rho}{m}\right\rfloor\right)((\alpha+1) \nu-m) . \tag{3.2}
\end{equation*}
$$

Lemma 3.2. Suppose that $w_{i} \geq w_{j}+w_{k}$. We have the following:
i) $\left\lfloor\frac{w_{i}+\rho}{m}\right\rfloor \geq\left\lfloor\frac{w_{j}+\rho}{m}\right\rfloor+\left\lfloor\frac{w_{k}+\rho}{m}\right\rfloor-1$.
ii) If $\left\lfloor\frac{w_{i}+\rho}{m}\right\rfloor=\left\lfloor\frac{w_{j}+\rho}{m}\right\rfloor+\left\lfloor\frac{w_{k}+\rho}{m}\right\rfloor-1$, then

$$
\left\lfloor\frac{w_{j}+\rho}{m}\right\rfloor=\left\lfloor\frac{w_{j}}{m}\right\rfloor+1,\left\lfloor\frac{w_{k}+\rho}{m}\right\rfloor=\left\lfloor\frac{w_{k}}{m}\right\rfloor+1 \text { and } \rho \geq 1 .
$$

In particular, $\left\lfloor\frac{w_{j}+\rho}{m}\right\rfloor \geq 2,\left\lfloor\frac{w_{k}+\rho}{m}\right\rfloor \geq 2$ and $\rho \geq 1$.

Proof. $i$ ) Since $w_{i} \geq w_{j}+w_{k}$, then $\frac{w_{i}+\rho}{m} \geq \frac{w_{j}+w_{k}+\rho}{m}$. Consequently, $\left\lfloor\frac{w_{i}+\rho}{m}\right\rfloor \geq\left\lfloor\frac{w_{j}+\rho}{m}\right\rfloor+\left\lfloor\frac{w_{k}}{m}\right\rfloor$. By Remark 3.1 (iii), $\left\lfloor\frac{w_{k}}{m}\right\rfloor \geq\left\lfloor\frac{w_{k}+\rho}{m}\right\rfloor-1$. Hence, $\left\lfloor\frac{w_{i}+\rho}{m}\right\rfloor \geq\left\lfloor\frac{w_{j}+\rho}{m}\right\rfloor+\left\lfloor\frac{w_{k}+\rho}{m}\right\rfloor-1$.
ii) Suppose by the way of contradiction that $\left\lfloor\frac{w_{j}+\rho}{m}\right\rfloor \neq\left\lfloor\frac{w_{j}}{m}\right\rfloor+1$ or $\left\lfloor\frac{w_{k}+\rho}{m}\right\rfloor \neq\left\lfloor\frac{w_{k}}{m}\right\rfloor+1$ or $\rho<1$. By Remark 3.1 (iii) and that $\rho \geq 0$, it follows that $\left\lfloor\frac{w_{j}+\rho}{m}\right\rfloor=\left\lfloor\frac{w_{j}}{m}\right\rfloor$ or $\left\lfloor\frac{w_{k}+\rho}{m}\right\rfloor=\left\lfloor\frac{w_{k}}{m}\right\rfloor$ or $\rho=0$. Since $w_{i} \geq w_{j}+w_{k}$, we have

$$
\left\lfloor\frac{w_{i}+\rho}{m}\right\rfloor \geq\left\lfloor\frac{w_{j}+w_{k}+\rho}{m}\right\rfloor
$$

Since $\left\lfloor\frac{w_{j}+\rho}{m}\right\rfloor=\left\lfloor\frac{w_{j}}{m}\right\rfloor$ or $\left\lfloor\frac{w_{k}+\rho}{m}\right\rfloor=\left\lfloor\frac{w_{k}}{m}\right\rfloor$ or $\rho=0$, it follows that $\left\lfloor\frac{w_{i}+\rho}{m}\right\rfloor \geq\left\lfloor\frac{w_{j}+\rho}{m}\right\rfloor+\left\lfloor\frac{w_{k}+\rho}{m}\right\rfloor$, which contradicts the hypothesis. Hence,

$$
\left\lfloor\frac{w_{j}+\rho}{m}\right\rfloor=\left\lfloor\frac{w_{j}}{m}\right\rfloor+1,\left\lfloor\frac{w_{k}+\rho}{m}\right\rfloor=\left\lfloor\frac{w_{k}}{m}\right\rfloor+1 \text { and } \rho \geq 1
$$

Using Remark 3.1 (ii), it follows that $\left\lfloor\frac{w_{j}+\rho}{m}\right\rfloor=\left\lfloor\frac{w_{j}}{m}\right\rfloor+1 \geq 2,\left\lfloor\frac{w_{k}+\rho}{m}\right\rfloor=\left\lfloor\frac{w_{k}}{m}\right\rfloor+1 \geq 2$ and $\rho \geq 1$.

## 4 Main Results

Let $S$ be a numerical semigroup and let the notations be as in sections 1,2 and 3. The aim of this section is to prove that Wilf's conjecture holds for $S$ in the following cases:
(i) $w_{m-1} \geq w_{1}+w_{\alpha}$ and $\left(2+\frac{\alpha-3}{q}\right) \nu \geq m$ for some $1<\alpha<m-1$.
(ii) $m-\nu \leq 5$. (Note that the case $m-\nu \leq 4$ results from the fact that Wilf's conjecture holds for $2 \nu \geq m$. This case has been proved in [9]), however we shall give a proof in order to cover it through our techniques).
We shall then deduce the conjecture when $\left(2+\frac{1}{q}\right) \nu \geq m$, and also when $m=9$.
Next, we will show that Wilf's conjecture holds if $w_{m-1} \geq w_{1}+w_{\alpha}$ and $\left(2+\frac{\alpha-3}{q}\right) \nu \geq m$.
Theorem 4.1. Let the notations be as above. In particular $S$ is a numerical semigroup with multiplicity $m$, embedding dimension $\nu$ and conductor $f+1=q m-\rho$ for some $q, \rho \in \mathbb{N}$; $0 \leq \rho \leq m-1$, and $\operatorname{Ap}(S, m)=\left\{w_{0}=0<w_{1}<w_{2}<\ldots<w_{m-1}\right\}$. Suppose that $w_{m-1} \geq w_{1}+w_{\alpha}$ for some $1<\alpha<m-1$. If $\left(2+\frac{\alpha-3}{q}\right) \nu \geq m$, then $S$ satisfies Wilf's conjecture.
Proof. We are going to use the equivalent form of Wilf's conjecture given in Proposition 2.3. Since $w_{m-1} \geq w_{1}+w_{\alpha}$, Lemma 3.2 (i) implies that $\left\lfloor\frac{w_{m-1}+\rho}{m}\right\rfloor \geq\left\lfloor\frac{w_{1}+\rho}{m}\right\rfloor+\left\lfloor\frac{w_{\alpha}+\rho}{m}\right\rfloor-1$. Let $x=\left\lfloor\frac{w_{m-1}+\rho}{m}\right\rfloor-\left\lfloor\frac{w_{1}+\rho}{m}\right\rfloor-\left\lfloor\frac{w_{\alpha}+\rho}{m}\right\rfloor$. Then, $x \geq-1$ and $\left\lfloor\frac{w_{1}+\rho}{m}\right\rfloor+\left\lfloor\frac{w_{\alpha}+\rho}{m}\right\rfloor=q-x$. Now using (3.1) and (3.2), we have

$$
\begin{aligned}
& \sum_{j=1}^{m-1}\left(\left\lfloor\frac{w_{j}+\rho}{m}\right\rfloor-\left\lfloor\frac{w_{j-1}+\rho}{m}\right\rfloor\right)(j \nu-m)+\rho \\
& \geq-\left\lfloor\frac{w_{1}+\rho}{m}\right\rfloor \nu+\left\lfloor\frac{w_{\alpha}+\rho}{m}\right\rfloor(2 \nu-m)+\left(\left\lfloor\frac{w_{m-1}+\rho}{m}\right\rfloor-\left\lfloor\frac{w_{\alpha}+\rho}{m}\right\rfloor\right)((\alpha+1) \nu-m)+\rho \\
&=\left\lfloor\frac{w_{1}+\rho}{m}\right\rfloor(-\nu+((\alpha+1) \nu-m)-((\alpha+1) \nu-m))+\left\lfloor\frac{w_{\alpha}+\rho}{m}\right\rfloor(2 \nu-m) \\
&+\left(\left\lfloor\frac{w_{m-1}+\rho}{m}\right\rfloor-\left\lfloor\frac{w_{\alpha}+\rho}{m}\right\rfloor\right)((\alpha+1) \nu-m)+\rho \\
&=\left\lfloor\frac{w_{1}+\rho}{m}\right\rfloor(\alpha \nu-m)+\left\lfloor\frac{w_{\alpha}+\rho}{m}\right\rfloor(2 \nu-m)+\left(\left\lfloor\frac{w_{m-1}+\rho}{m}\right\rfloor-\left\lfloor\frac{w_{\alpha}+\rho}{m}\right\rfloor-\left\lfloor\frac{w_{1}+\rho}{m}\right\rfloor\right)((\alpha+1) \nu-m)+\rho \\
&=\left(\left\lfloor\frac{w_{1}+\rho}{m}\right\rfloor+\left\lfloor\frac{w_{\alpha}+\rho}{m}\right\rfloor\right)(2 \nu-m)+\left\lfloor\frac{w_{1}+\rho}{m}\right\rfloor(\alpha-2) \nu \\
&+\left(\left\lfloor\frac{w_{m-1}+\rho}{m}\right\rfloor-\left\lfloor\frac{w_{\alpha}+\rho}{m}\right\rfloor-\left\lfloor\frac{w_{1}+\rho}{m}\right\rfloor\right)((\alpha+1) \nu-m)+\rho \\
&=(q-x)(2 \nu-m)+\left\lfloor\frac{w_{1}+\rho}{m}\right\rfloor(\alpha-2) \nu+x((\alpha+1) \nu-m)+\rho .
\end{aligned}
$$

Consequently,

$$
\begin{equation*}
\sum_{j=1}^{m-1}\left(\left\lfloor\frac{w_{j}+\rho}{m}\right\rfloor-\left\lfloor\frac{w_{j-1}+\rho}{m}\right\rfloor\right)(j \nu-m)+\rho \geq(q-x)(2 \nu-m)+\left\lfloor\frac{w_{1}+\rho}{m}\right\rfloor(\alpha-2) \nu+x((\alpha+1) \nu-m)+\rho \tag{4.1}
\end{equation*}
$$

Since $x=\left\lfloor\frac{w_{m-1}+\rho}{m}\right\rfloor-\left\lfloor\frac{w_{1}+\rho}{m}\right\rfloor-\left\lfloor\frac{w_{\alpha}+\rho}{m}\right\rfloor \geq-1$, then we have two cases:

- If $x=-1$, then by Lemma 3.2 (ii), we have $\left\lfloor\frac{w_{1}+\rho}{m}\right\rfloor \geq 2$. From (4.1), it follows that

$$
\begin{aligned}
\sum_{j=1}^{m-1}\left(\left\lfloor\frac{w_{j}+\rho}{m}\right\rfloor-\left\lfloor\frac{w_{j-1}+\rho}{m}\right\rfloor\right)(j \nu-m)+\rho & \geq(q+1)(2 \nu-m)+2(\alpha-2) \nu-((\alpha+1) \nu-m)+\rho \\
& =\nu(2 q+\alpha-3)-q m+\rho \\
& =q\left(\nu\left(2+\frac{\alpha-3}{q}\right)-m\right)+\rho \geq 0 .
\end{aligned}
$$

- If $x \geq 0$, then by Remark 3.1 (ii), we have $\left\lfloor\frac{w_{1}+\rho}{m}\right\rfloor \geq 1$. From (4.1), it follows that

$$
\begin{aligned}
\sum_{j=1}^{m-1}\left(\left\lfloor\frac{w_{j}+\rho}{m}\right\rfloor-\left\lfloor\frac{w_{j-1}+\rho}{m}\right\rfloor\right)(j \nu-m)+\rho & \geq(q-x)(2 \nu-m)+(\alpha-2) \nu+x((\alpha+1) \nu-m)+\rho \\
& =\nu(2 q+(\alpha-2)(x+1)+x)-q m+\rho \\
& >\nu(2 q+\alpha-3)-q m+\rho \\
& =q\left(\nu\left(2+\frac{\alpha-3}{q}\right)-m\right)+\rho \geq 0 .
\end{aligned}
$$

Using Proposition 2.3, we get that $S$ satisfies Wilf's conjecture.
Theorem 4.1 will give us some cases where Wilf's conjecture holds. We shall need the following notations. Let $\leq_{S}$ be the partial order defined by $a \leq_{S} b$ if and only if $b-a \in S$. Then define the following sets:

$$
\begin{aligned}
& \min (\operatorname{Ap}(S, m))=\left\{w \in \operatorname{Ap}(S, m)^{*} \text { such that } w \text { is minimal with respect to } \leq_{S}\right\} \\
& \max (\operatorname{Ap}(S, m))=\left\{w \in \operatorname{Ap}(S, m)^{*} \text { such that } w \text { is maximal with respect to } \leq_{S}\right\}
\end{aligned}
$$

If $S$ is minimally generated by $m, g_{2}, \ldots, g_{\nu}$ then, by [3] Lemma 3.2
(i) $\min (\operatorname{Ap}(S, m))=\left\{g_{2}, \ldots, g_{\nu}\right\}$.
(ii) $\max (\operatorname{Ap}(S, m))=\{w$ such that $w-m$ is a pseudo-frobenius number of $S\}$.

In particular
i) $\left|\operatorname{Ap}(S, m)^{*} \backslash \min (\operatorname{Ap}(S, m))\right|=m-\nu$.
ii) $|\max (\mathrm{Ap}(S, m))|=t(S)$ (where $t(S)$ denotes the type of $S$ ).

Note that (see [6], Lemma 6, for example), if $w \in \operatorname{Ap}(S, m)$ and $u \leq_{S} w$ with $u \in S$, then $u \in \operatorname{Ap}(S, m)$. This implies the following:

Corollary 4.2. Let $x \in \operatorname{Ap}(S, m)^{*}$. We have the following:
i) $x \in \min (\operatorname{Ap}(S, m))$ if and only if $x \neq w_{i}+w_{j}$ for all $w_{i}, w_{j} \in \operatorname{Ap}(S, m)^{*}$.
ii) $x \in \max (\operatorname{Ap}(S, m))$ if and only if $w_{i} \neq x+w_{j}$ for all $w_{i}, w_{j} \in \operatorname{Ap}(S, m)^{*}$.

The results above imply also the following:
Lemma 4.3. Let the notations be as in Theorem 4.1. If $m-\nu>\frac{\alpha(\alpha-1)}{2}$ for some $\alpha \in \mathbb{N}^{*}$, then $w_{m-1} \geq w_{1}+w_{\alpha}$.

Proof. Suppose by the way of contradiction that $w_{m-1}<w_{1}+w_{\alpha}$ and let $w$ be such that $w \in \operatorname{Ap}(S, m)^{*} \backslash \min (\operatorname{Ap}(S, m))$ (such an element exists because $m>\nu$ ). Hence, $w \leq w_{m-1}<$ $w_{1}+w_{\alpha}$ and from Corollary $4.2(i)$, it follows that $w=w_{i}+w_{j}$ for some $w_{i}, w_{j} \in \operatorname{Ap}(S, m)^{*}$. Thus the only possible values for $w$ are included in $\left\{w_{i}+w_{j} ; 1 \leq i \leq j \leq \alpha-1\right\}$. It follows that $\left|\operatorname{Ap}(S, m)^{*} \backslash \min (\operatorname{Ap}(S, m))\right|=m-\nu \leq \frac{\alpha(\alpha-1)}{2}$, which contradicts the hypothesis.
Next, we will deduce Wilf's conjecture for numerical Semigroups with $m-\nu>\frac{\alpha(\alpha-1)}{2}$ and $\left(2+\frac{\alpha-3}{q}\right) \nu \geq m$ for some $\alpha>1$ in $\mathbb{N}$. This will be used later in order to show that the conjecture holds for numerical semigroups with $\left(2+\frac{1}{q}\right) \nu \geq m$, and also to cover the result in [9] saying that the conjecture is true for $2 \nu \geq m$.

Corollary 4.4. Let the notations be as above. Suppose that $m-\nu>\frac{\alpha(\alpha-1)}{2}$ for some $1<\alpha<$ $m-1$. If $\left(2+\frac{\alpha-3}{q}\right) \nu \geq m$, then $S$ satisfies Wilf's conjecture.

Proof. If $m-\nu>\frac{\alpha(\alpha-1)}{2}$, then, by Lemma 4.3, $w_{m-1} \geq w_{1}+w_{\alpha}$. Now use Theorem 4.1.
In the following Lemma, we will show that Wilf's conjecture holds for numerical semigroups with $m-\nu \leq 3$. This will enable us later to prove the conjecture for numerical semigroups with $\left(2+\frac{1}{q}\right) \nu \geq m$ and to cover the result in [9] saying that the conjecture is true for $2 \nu \geq m$.
Lemma 4.5. Let the notations be as above. If $m-\nu \leq 3$, then $S$ satisfies Wilf's conjecture.
Proof. We shall assume that $\nu \geq 4$ (the case $\nu \leq 3$ is solved in [4]).
i) If $m-\nu=1$, then $m=\nu+1 \geq 5(\nu \geq 4)$. We are going to show Wilf's conjecture holds by using Proposition 2.3. By taking $\alpha=1$ in (3.2), we get

$$
\begin{aligned}
& \sum_{j=2}^{m-1}\left(\left\lfloor\frac{w_{j}+\rho}{m}\right\rfloor-\left\lfloor\frac{w_{j-1}+\rho}{m}\right\rfloor\right)(j \nu-m) \geq\left(\left\lfloor\frac{w_{m-1}+\rho}{m}\right\rfloor-\left\lfloor\frac{w_{1}+\rho}{m}\right\rfloor\right)(2 \nu-m) \text {. Hence, } \\
& \sum_{j=1}^{m-1}\left(\left\lfloor\frac{w_{j}+\rho}{m}\right\rfloor-\left\lfloor\frac{w_{j-1}+\rho}{m}\right\rfloor\right)(j \nu-m)+\rho \\
& =\left(\left\lfloor\frac{w_{1}+\rho}{m}\right\rfloor-\left\lfloor\frac{w_{0}+\rho}{m}\right\rfloor\right)(\nu-m)+\sum_{j=2}^{m-1}\left(\left\lfloor\frac{w_{j}+\rho}{m}\right\rfloor-\left\lfloor\frac{w_{j-1}+\rho}{m}\right\rfloor\right)(j \nu-m)+\rho \\
& \geq\left\lfloor\frac{w_{1}+\rho}{m}\right\rfloor(\nu-m)+\left(\left\lfloor\frac{w_{m-1}+\rho}{m}\right\rfloor-\left\lfloor\frac{w_{1}+\rho}{m}\right\rfloor\right)(2 \nu-m)+\rho \\
& =\left\lfloor\frac{w_{1}+\rho}{m}\right\rfloor(\nu-m+(2 \nu-m)-(2 \nu-m))+\left(\left\lfloor\frac{w_{m}-1+\rho}{m}\right\rfloor-\left\lfloor\frac{w_{1}+\rho}{m}\right\rfloor\right)(2 \nu-m)+\rho \\
& =\left\lfloor\frac{w_{1}+\rho}{m}\right\rfloor(3 \nu-2 m)+\left(\left\lfloor\frac{w_{m-1}+\rho}{m}\right\rfloor-\left\lfloor\frac{w_{1}+\rho}{m}\right\rfloor-\left\lfloor\frac{w_{1}+\rho}{m}\right\rfloor\right)(2 \nu-m)+\rho \\
& =\left\lfloor\frac{w_{1}+\rho}{m}\right\rfloor(m-3)+\left(\left\lfloor\frac{w_{m-1}+\rho}{m}\right\rfloor-\left\lfloor\frac{w_{1}+\rho}{m}\right\rfloor-\left\lfloor\frac{w_{1}+\rho}{m}\right\rfloor\right)(m-2)+\rho
\end{aligned}
$$

Therefore,

$$
\begin{align*}
\sum_{j=1}^{m-1}\left(\left\lfloor\frac{w_{j}+\rho}{m}\right\rfloor-\left\lfloor\frac{w_{j-1}+\rho}{m}\right\rfloor\right)(j \nu-m)+\rho \geq & \left(\left\lfloor\frac{w_{m-1}+\rho}{m}\right\rfloor-\left\lfloor\frac{w_{1}+\rho}{m}\right\rfloor-\left\lfloor\frac{w_{1}+\rho}{m}\right\rfloor\right)(m-2)+\rho \\
& +\left\lfloor\frac{w_{1}+\rho}{m}\right\rfloor(m-3) \tag{4.2}
\end{align*}
$$

Since $m-\nu=1>0=\frac{1.0}{2}$, then by Lemma 4.3, it follows that $w_{m-1} \geq w_{1}+w_{1}$. Consequently, by Lemma 3.2 (i), we have $\left\lfloor\frac{w_{m-1}+\rho}{m}\right\rfloor \geq\left\lfloor\frac{w_{1}+\rho}{m}\right\rfloor+\left\lfloor\frac{w_{1}+\rho}{m}\right\rfloor-1$.

- If $\left\lfloor\frac{w_{m-1}+\rho}{m}\right\rfloor-\left\lfloor\frac{w_{1}+\rho}{m}\right\rfloor-\left\lfloor\frac{w_{1}+\rho}{m}\right\rfloor=-1$. Then by Lemma 3.2, we have $\left\lfloor\frac{w_{1}+\rho}{m}\right\rfloor \geq 2$. By using (4.2) and $m \geq 5$, then

$$
\sum_{j=1}^{m-1}\left(\left\lfloor\frac{w_{j}+\rho}{m}\right\rfloor-\left\lfloor\frac{w_{j-1}+\rho}{m}\right\rfloor\right)(j \nu-m)+\rho \geq 2(m-3)-(m-2)+\rho \geq 0
$$

- If $\left\lfloor\frac{w_{m-1}+\rho}{m}\right\rfloor-\left\lfloor\frac{w_{1}+\rho}{m}\right\rfloor-\left\lfloor\frac{w_{1}+\rho}{m}\right\rfloor \geq 0$. By using (4.2) and $m \geq 5$, then

$$
\sum_{j=1}^{m-1}\left(\left\lfloor\frac{w_{j}+\rho}{m}\right\rfloor-\left\lfloor\frac{w_{j-1}+\rho}{m}\right\rfloor\right)(j \nu-m)+\rho \geq(m-3)+\rho \geq 0 .
$$

Now the assertion results from Proposition 2.3.
ii) If $m-\nu \in\{2,3\}$. We have $m-\nu>1=\frac{2(1)}{2}$. If $\left(2-\frac{1}{q}\right) \nu \geq m$, then by Corollary $4.4 S$ satisfies Wilf's conjecture. Now suppose that $\left(2-\frac{1}{q}\right) \nu<m$. Since Wilf's conjecture holds for $q \leq 3$ (see [7], [5]), we may assume that $q \geq 4$.

- If $m-\nu=2$. Then $\left(2-\frac{1}{q}\right) \nu<\nu+2$. Hence, $\nu<2\left(\frac{q}{q-1}\right) \leq \frac{8}{3}$. By [4], $S$ satisfies Wilf's conjecture.
- If $m-\nu=3$. Then $\left(2-\frac{1}{q}\right) \nu<\nu+3$. Hence, $\nu<3\left(\frac{q}{q-1}\right) \leq 4$. By [4], $S$ satisfies Wilf's conjecture.

Thus Wilf's conjecture holds if $m-\nu \leq 3$.
The next Corollary covers the result of Sammartano for numerical semigroups with $2 \nu \geq m$ ([9]) using Corollary 4.4 and Lemma 4.5.

Corollary 4.6. Let the notations be as above. If $2 \nu \geq m$, then $S$ satisfies Wilf's conjecture.
Proof. If $m-\nu>3=\frac{3(2)}{2}$ and $2 \nu \geq m$, then by Corollary 4.4 Wilf's conjecture holds. If $m-\nu \leq 3$, then, by Lemma 4.5, $S$ satisfies Wilf's conjecture.
In the following Corollary, we will deduce Wilf's conjecture for numerical semigroups with $m-\nu=4$. This will enable us later to prove the conjecture for those with $\left(2+\frac{1}{q}\right) \nu \geq m$.
Corollary 4.7. Let the notations be as above. If $m-\nu=4$, then $S$ satisfies Wilf's conjecture.
Proof. Since Wilf's conjecture holds for $\nu \leq 3$ ([4]), then we may assume that $\nu \geq 4$. Hence, $\nu \geq m-\nu$. Consequently, $2 \nu \geq m$, and $S$ satisfies Wilf's conjecture by Corollary 4.6.
The following technical Lemma will be used through the paper.
Lemma 4.8. Let the notations be as above. If $m-\nu \geq \frac{\alpha(\alpha-1)}{2}-1$ for some $3 \leq \alpha \leq m-2$, then $w_{m-1} \geq w_{1}+w_{\alpha}$ or $w_{m-1} \geq w_{\alpha-2}+w_{\alpha-1}$.

Proof. Suppose by the way of contradiction that $w_{m-1}<w_{1}+w_{\alpha}$ and $w_{m-1}<w_{\alpha-2}+w_{\alpha-1}$. Let
$w \in \operatorname{Ap}(S, m)^{*} \backslash \min (\operatorname{Ap}(S, m))$, then $w \leq w_{m-1}$ and $w=w_{i}+w_{j}$ for some $w_{i}, w_{j} \in \operatorname{Ap}(S, m)^{*}$ (Corollary $4.2 i$ ). In this case, the only possible values of $w$ are included in $\left\{w_{i}+w_{j} ; 1 \leq i \leq j \leq\right.$ $\alpha-1\} \backslash\left\{w_{\alpha-2}+w_{\alpha-1}, w_{\alpha-1}+w_{\alpha-1}\right\}$. Consequently, $m-\nu=\left|\operatorname{Ap}(S, m)^{*} \backslash \min (\operatorname{Ap}(S, m))\right| \leq$ $\frac{\alpha(\alpha-1)}{2}-2$. But $\frac{\alpha(\alpha-1)}{2}-2<\frac{\alpha(\alpha-1)}{2}-1$, which contradicts the hypothesis. Hence, $w_{m-1} \geq$ $w_{1}+w_{\alpha}$ or $w_{m-1} \geq w_{\alpha-2}+w_{\alpha-1}$.
In the next theorem, we will show that Wilf's conjecture holds for numerical semigroups with $m-\nu=5$.

Theorem 4.9. Let the notations be as above. If $m-\nu=5$, then $S$ satisfies Wilf's conjecture.
Proof. Let $m-\nu=5$. Since Wilf's conjecture holds for $2 \nu \geq m$, then we may assume that $2 \nu<m$. This implies that $\nu<\frac{m}{2}=\frac{\nu+5}{2}$ i.e. $\nu<5$. Since the case $\nu \leq 3$ is known ([4]), then we shall assume that $\nu=4$. This also implies that $m=\nu+5=9$.
Since $m-\nu=5=\frac{4(3)}{2}-1$, by Lemma 4.8, it follows that $w_{8} \geq w_{2}+w_{3}$ or $w_{8} \geq w_{1}+w_{4}$.
i) If $w_{8} \geq w_{2}+w_{3}$. By taking $\alpha=3$ in (3.2) $(m=9, \nu=4)$, we get

$$
\begin{equation*}
\sum_{j=4}^{8}\left(\left\lfloor\frac{w_{j}+\rho}{9}\right\rfloor-\left\lfloor\frac{w_{j-1}+\rho}{9}\right\rfloor\right)(4 j-9) \geq\left(\left\lfloor\frac{w_{8}+\rho}{9}\right\rfloor-\left\lfloor\frac{w_{3}+\rho}{9}\right\rfloor\right)(16-9)=\left(\left\lfloor\frac{w_{8}+\rho}{9}\right\rfloor-\left\lfloor\frac{w_{3}+\rho}{9}\right\rfloor\right)(7) \tag{4.3}
\end{equation*}
$$

By using (4.3), we get

$$
\begin{aligned}
& \sum_{j=1}^{8}\left(\left\lfloor\frac{w_{j}+\rho}{m}\right\rfloor-\left\lfloor\frac{w_{j-1}+\rho}{m}\right\rfloor\right)(4 j-9)+\rho \\
& =\left(\left\lfloor\frac{w_{1}+\rho}{9}\right\rfloor-\left\lfloor\frac{w_{0}+\rho}{9}\right\rfloor\right)(-5)+\left(\left\lfloor\frac{w_{2}+\rho}{9}\right\rfloor-\left\lfloor\frac{w_{1}+\rho}{9}\right\rfloor\right)(-1)+\left(\left\lfloor\frac{w_{3}+\rho}{9}\right\rfloor-\left\lfloor\frac{w_{2}+\rho}{9}\right\rfloor\right)(3) \\
& +\sum_{j=4}^{8}\left(\left\lfloor\frac{w_{j}+\rho}{9}\right\rfloor-\left\lfloor\frac{w_{j-1}+\rho}{9}\right\rfloor\right)(4 j-9)+\rho \\
& \geq\left\lfloor\frac{w_{1}+\rho}{9}\right\rfloor(-4)+\left\lfloor\frac{w_{2}+\rho}{9}\right\rfloor(-4)+\left\lfloor\frac{w_{3}+\rho}{9}\right\rfloor(3)+\left(\left\lfloor\frac{w_{8}+\rho}{9}\right\rfloor-\left\lfloor\frac{w_{3}+\rho}{9}\right\rfloor\right)(7)+\rho \\
& \geq\left(\left\lfloor\frac{w_{2}+\rho}{9}\right\rfloor\left(\left(\frac{-3}{4}\right) 4\right)+\left\lfloor\frac{w_{3}+\rho}{9}\right\rfloor\left(\left(\frac{-1}{4}\right) 4\right)\right)+\left\lfloor\frac{w_{2}+\rho}{9}\right\rfloor(-4)+\left\lfloor\frac{w_{3}+\rho}{9}\right\rfloor(3)+\left(\left\lfloor\frac{w_{8}+\rho}{9}\right\rfloor-\left\lfloor\frac{w_{3}+\rho}{9}\right\rfloor\right)(7) \\
& +\rho \\
& =\left\lfloor\frac{w_{2}+\rho}{9}\right\rfloor(-7)+\left\lfloor\frac{w_{3}+\rho}{9}\right\rfloor(2)+\left(\left\lfloor\frac{w_{8}+\rho}{9}\right\rfloor-\left\lfloor\frac{w_{3}+\rho}{9}\right\rfloor\right)(7)+\rho \\
& =\left\lfloor\frac{w_{3}+\rho}{9}\right\rfloor(2)+\left(\left\lfloor\frac{w_{8}+\rho}{9}\right\rfloor-\left\lfloor\frac{w_{2}+\rho}{9}\right\rfloor-\left\lfloor\frac{w_{3}+\rho}{9}\right\rfloor\right)(7)+\rho .
\end{aligned}
$$

Hence,

$$
\begin{equation*}
\sum_{j=1}^{8}\left(\left\lfloor\frac{w_{j}+\rho}{m}\right\rfloor-\left\lfloor\frac{w_{j-1}+\rho}{m}\right\rfloor\right)(4 j-9)+\rho \geq\left\lfloor\frac{w_{3}+\rho}{9}\right\rfloor(2)+\left(\left\lfloor\frac{w_{8}+\rho}{9}\right\rfloor-\left\lfloor\frac{w_{2}+\rho}{9}\right\rfloor-\left\lfloor\frac{w_{3}+\rho}{9}\right\rfloor\right)(7)+\rho . \tag{4.4}
\end{equation*}
$$

Since $w_{8} \geq w_{2}+w_{3}$, by Lemma 3.2, it follows that $\left\lfloor\frac{w_{8}+\rho}{9}\right\rfloor \geq\left\lfloor\frac{w_{2}+\rho}{9}\right\rfloor+\left\lfloor\frac{w_{3}+\rho}{9}\right\rfloor-1$.

- If $\left\lfloor\frac{w_{8}+\rho}{9}\right\rfloor-\left\lfloor\frac{w_{2}+\rho}{9}\right\rfloor-\left\lfloor\frac{w_{3}+\rho}{9}\right\rfloor \geq 0$, then (4.4) gives

$$
\sum_{j=1}^{8}\left(\left\lfloor\frac{w_{j}+\rho}{9}\right\rfloor-\left\lfloor\frac{w_{j-1}+\rho}{9}\right\rfloor\right)(4 j-9)+\rho \geq 0
$$

- If $\left\lfloor\frac{w_{8}+\rho}{9}\right\rfloor-\left\lfloor\frac{w_{2}+\rho}{9}\right\rfloor-\left\lfloor\frac{w_{3}+\rho}{9}\right\rfloor=-1$. By Lemma 3.2, we have $\rho \geq 1$. Since for $q \leq 3$ Wilf's conjecture is solved ([5], [7]), then may assume that $q \geq 4$. Since $\left\lfloor\frac{w_{2}+\rho}{9}\right\rfloor \leq\left\lfloor\frac{w_{3}+\rho}{9}\right\rfloor$ and $\left\lfloor\frac{w_{2}+\rho}{9}\right\rfloor+\left\lfloor\frac{w_{3}+\rho}{9}\right\rfloor=\left\lfloor\frac{w_{8}+\rho}{9}\right\rfloor+1=q+1$, in this case it follows that $\left\lfloor\frac{w_{3}+\rho}{9}\right\rfloor+\left\lfloor\frac{w_{3}+\rho}{9}\right\rfloor \geq\left\lfloor\frac{w_{2}+\rho}{9}\right\rfloor+\left\lfloor\frac{w_{3}+\rho}{9}\right\rfloor=q+1 \geq 5$. Hence, $\left\lfloor\frac{w_{3}+\rho}{9}\right\rfloor \geq 3$. Now (4.4) gives, $\sum_{j=1}^{8}\left(\left\lfloor\frac{w_{j}+\rho}{9}\right\rfloor-\left\lfloor\frac{w_{j-1}+\rho}{9}\right\rfloor\right)(4 j-9)+\rho \geq 3(2)-7+1 \quad \geq 0$.

Using Proposition 2.3, we get that $S$ satisfies Wilf's conjecture in this case.
ii) If $w_{8} \geq w_{1}+w_{4}$. We may assume that $w_{8}<w_{2}+w_{3}$, since otherwise we are back to case $i$ ). Hence, the possible values of $w \in \operatorname{Ap}(S, 9)^{*} \backslash \min (\operatorname{Ap}(S, 9))$ are included in $\left\{w_{1}+w_{j} ; 1 \leq j \leq 7\right\} \cup\left\{w_{2}+w_{2}\right\}$.

- If $\operatorname{Ap}(S, 9)^{*} \backslash \min (\operatorname{Ap}(S, 9)) \subseteq\left\{w_{1}+w_{j} ; 1 \leq j \leq 7\right\}$. Then $5=m-\nu=$ $\left|\operatorname{Ap}(S, 9)^{*} \backslash \min (\operatorname{Ap}(S, 9))\right|$. By using Corollary 4.2 (i) and (ii)), it follows that there exists at least five elements in $\operatorname{Ap}(S, 9)^{*}$ that are not maximal (five elements from $\left.\left\{w_{1} \ldots, w_{7}\right\}\right)$, hence $t(S)=|\{\max (\operatorname{Ap}(S, 9))\}| \leq 8-5=3=\nu-1$. Consequently, $S$ satisfies Wilf's conjecture ([4] Proposition 2.3).
- If $w_{2}+w_{2} \in \operatorname{Ap}(S, 9)^{*} \backslash \min (\operatorname{Ap}(S, 9))$, then $w_{2}+w_{2} \in \operatorname{Ap}(S, 9)$ namely $w_{8} \geq w_{2}+w_{2}$. By Lemma 3.2 we have $\left\lfloor\frac{w_{8}+\rho}{9}\right\rfloor \geq 2\left\lfloor\frac{w_{2}+\rho}{9}\right\rfloor-1$. In particular,

$$
\begin{equation*}
\left\lfloor\frac{w_{2}+\rho}{9}\right\rfloor \leq \frac{q+1}{2} \tag{4.5}
\end{equation*}
$$

By taking $\alpha=4$ in (3.2) ( $m=9, \nu=4$ ), we get

$$
\begin{equation*}
\sum_{j=5}^{8}\left(\left\lfloor\frac{w_{j}+\rho}{9}\right\rfloor-\left\lfloor\frac{w_{j-1}+\rho}{9}\right\rfloor\right)(4 j-9) \geq\left(\left\lfloor\frac{w_{8}+\rho}{9}\right\rfloor-\left\lfloor\frac{w_{4}+\rho}{9}\right\rfloor\right)(11) . \tag{4.6}
\end{equation*}
$$

Now using $m=9, \nu=4$, (4.5) and (4.6), we get

$$
\begin{aligned}
& \sum_{j=1}^{8}\left(\left\lfloor\frac{w_{j}+\rho}{9}\right\rfloor-\left\lfloor\frac{w_{j-1}+\rho}{9}\right\rfloor\right)(4 j-9)+\rho \\
&=\left(\left\lfloor\frac{w_{1}+\rho}{9}\right\rfloor-\left\lfloor\frac{w_{0}+\rho}{9}\right\rfloor\right)(-5)+\left(\left\lfloor\frac{w_{2}+\rho}{9}\right\rfloor-\left\lfloor\frac{w_{1}+\rho}{9}\right\rfloor\right)(-1)+\left(\left\lfloor\frac{w_{3}+\rho}{9}\right\rfloor-\left\lfloor\frac{w_{2}+\rho}{m}\right\rfloor\right)(3) \\
&+\left(\left\lfloor\frac{w_{4}+\rho}{9}\right\rfloor-\left\lfloor\frac{w_{3}+\rho}{9}\right\rfloor\right)(7)+\sum_{j=5}^{8}\left(\left\lfloor\frac{w_{j}+\rho}{9}\right\rfloor-\left\lfloor\frac{w_{j-1}+\rho}{9}\right\rfloor\right)(4 j-9)+\rho \\
& \geq\left\lfloor\frac{w_{1}+\rho}{9}\right\rfloor(-4)+\left\lfloor\frac{w_{2}+\rho}{9}\right\rfloor(-4)+\left\lfloor\frac{w_{3}+\rho}{9}\right\rfloor(-4)+\left\lfloor\frac{w_{4}+\rho}{9}\right\rfloor(7)+\left(\left\lfloor\frac{w_{8}+\rho}{9}\right\rfloor-\left\lfloor\frac{w_{4}+\rho}{9}\right\rfloor\right)(11)+\rho \\
& \geq\left\lfloor\frac{w_{1}+\rho}{9}\right\rfloor(-4)+\left(\frac{q+1}{2}\right)(-4)+\left\lfloor\frac{w_{4}+\rho}{9}\right\rfloor(-4)+\left\lfloor\frac{w_{4}+\rho}{9}\right\rfloor(7)+\left(\left\lfloor\frac{w_{8}+\rho}{9}\right\rfloor-\left\lfloor\frac{w_{4}+\rho}{9}\right\rfloor\right)(11)+\rho \\
&=\left\lfloor\frac{w_{1}+\rho}{9}\right\rfloor(-4)-2(q+1)+\left\lfloor\frac{w_{4}+\rho}{9}\right\rfloor(3)+\left(\left\lfloor\frac{w_{8}+\rho}{9}\right\rfloor-\left\lfloor\frac{w_{4}+\rho}{9}\right\rfloor\right)(11)+\rho \\
&=\left\lfloor\frac{w_{1}+\rho}{9}\right\rfloor(-4+11-11)-2(q+1)+\left\lfloor\frac{w_{4}+\rho}{9}\right\rfloor(3)+\left(\left\lfloor\frac{w_{8}+\rho}{9}\right\rfloor-\left\lfloor\frac{w_{4}+\rho}{9}\right\rfloor\right)(11)+\rho \\
&=\left\lfloor\frac{w_{1}+\rho}{9}\right\rfloor(7)-2(q+1)+\left\lfloor\frac{w_{4}+\rho}{9}\right\rfloor(3)+\left(\left\lfloor\frac{w_{8}+\rho}{9}\right\rfloor-\left\lfloor\frac{w_{4}+\rho}{9}\right\rfloor-\left\lfloor\frac{w_{1}+\rho}{9}\right\rfloor\right)(11)+\rho \\
&=\left(\left\lfloor\frac{w_{1}+\rho}{9}\right\rfloor+\left\lfloor\frac{w_{4}+\rho}{9}\right\rfloor\right)(3)+\left\lfloor\frac{w_{1}+\rho}{9}\right\rfloor(4)-2(q+1)+\left(\left\lfloor\frac{w_{8}+\rho}{9}\right\rfloor-\left\lfloor\frac{w_{1}+\rho}{9}\right\rfloor-\left\lfloor\frac{w_{4}+\rho}{9}\right\rfloor\right)(11) \\
&+\rho .
\end{aligned}
$$

Therefore,

$$
\begin{gather*}
\sum_{j=1}^{8}\left(\left\lfloor\frac{w_{j}+\rho}{m}\right\rfloor-\left\lfloor\frac{w_{j-1}+\rho}{m}\right\rfloor\right)(4 j-9)+\rho \geq \\
\left(\left\lfloor\frac{w_{1}+\rho}{9}\right\rfloor+\left\lfloor\frac{w_{4}+\rho}{9}\right\rfloor\right)(3)+\left\lfloor\frac{w_{1}+\rho}{9}\right\rfloor(4)-2(q+1)+\left(\left\lfloor\frac{w_{8}+\rho}{9}\right\rfloor-\left\lfloor\frac{w_{1}+\rho}{9}\right\rfloor-\left\lfloor\frac{w_{4}+\rho}{9}\right\rfloor\right)(11)+\rho . \tag{4.7}
\end{gather*}
$$

We have $w_{8} \geq w_{1}+w_{4}$, then by Lemma 3.2 (i) $\left\lfloor\frac{w_{8}+\rho}{9}\right\rfloor \geq\left\lfloor\frac{w_{1}+\rho}{9}\right\rfloor+\left\lfloor\frac{w_{4}+\rho}{9}\right\rfloor-1$.

- If $\left\lfloor\frac{w_{8}+\rho}{9}\right\rfloor-\left\lfloor\frac{w_{1}+\rho}{9}\right\rfloor-\left\lfloor\frac{w_{4}+\rho}{9}\right\rfloor \geq 0$. Let $x=\left\lfloor\frac{w_{8}+\rho}{9}\right\rfloor-\left\lfloor\frac{w_{1}+\rho}{9}\right\rfloor-\left\lfloor\frac{w_{4}+\rho}{9}\right\rfloor$. Hence,
$\quad x \geq 0$ and $\left\lfloor\frac{w_{1}+\rho}{9}\right\rfloor+\left\lfloor\frac{w_{4}+\rho}{}\right\rfloor=\left\lfloor\frac{w_{8}+\rho}{9}\right\rfloor-x=q-x$ (Remark 3.1 vi). Then (4.7) $x \geq 0$ and $\left\lfloor\frac{w_{1}+\rho}{9}\right\rfloor+\left\lfloor\frac{w_{4}+\rho}{9}\right\rfloor=\left\lfloor\frac{w_{8}+\rho}{9}\right\rfloor-x=q-x$ (Remark 3.1 vi). Then (4.7) gives,

$$
\begin{aligned}
\sum_{j=1}^{8}\left(\left\lfloor\frac{w_{j}+\rho}{9}\right\rfloor-\left\lfloor\frac{w_{j-1}+\rho}{9}\right\rfloor\right)(4 j-9)+\rho & \geq(q-x)(3)+4-2(q+1)+11 x+\rho \\
& =q+8 x+2+\rho \geq 0
\end{aligned}
$$

- If $\left\lfloor\frac{w_{8}+\rho}{9}\right\rfloor-\left\lfloor\frac{w_{1}+\rho}{9}\right\rfloor-\left\lfloor\frac{w_{4}+\rho}{9}\right\rfloor=-1$. Then $\left\lfloor\frac{w_{1}+\rho}{m}\right\rfloor+\left\lfloor\frac{w_{4}+\rho}{9}\right\rfloor=\left\lfloor\frac{w_{8}+\rho}{9}\right\rfloor+1=q+1$ (Remark 3.1 vi). By Lemma 3.2, we have $\left\lfloor\frac{w_{1}+\rho}{9}\right\rfloor \geq 2$ and $\rho \geq 1$. Since $q \geq 1$ $(S \neq \mathbb{N})$, then (4.7) gives,

$$
\sum_{j=1}^{8}\left(\left\lfloor\frac{w_{j}+\rho}{9}\right\rfloor-\left\lfloor\frac{w_{j-1}+\rho}{9}\right\rfloor\right)(4 j-9)+\rho \geq(q+1)(3)+8-2(q+1)-11+1=q-1 \geq 0
$$

By Proposition 2.3, $S$ satisfies Wilf's conjecture in this case.

Thus, Wilf's conjecture holds if $m-\nu=5$.

In the next corollary, we will deduce the conjecture for $m=9$.

Corollary 4.10. If $m=9$, then $S$ satisfies Wilf's conjecture.

Proof. By Lemma 4.5, Corollary 4.7 and Theorem 4.9, we may assume that $m-\nu>5$, hence $\nu<m-5=4$. By ([4]) $S$ satisfies Wilf's conjecture.

The following Lemma will enable us later to show that Wilf's conjecture holds for numerical semigroups with $\left(2+\frac{1}{q}\right) \nu \geq m$.

Lemma 4.11. Let the notations be as above. If $m-\nu=6$ and $\left(2+\frac{1}{q}\right) \nu \geq m$, then $S$ satisfies Wilf's conjecture.

Proof. Since $m-\nu=6 \geq \frac{4(3)}{2}-1$, by Lemma 4.8, it follows that $w_{m-1} \geq w_{1}+w_{4}$ or $w_{m-1} \geq w_{2}+w_{3}$.
i) If $w_{m-1} \geq w_{1}+w_{4}$. By hypothesis $\left(2+\frac{1}{q}\right) \nu \geq m$ and Theorem 4.1 Wilf's conjecture holds in this case.
ii) If $w_{m-1} \geq w_{2}+w_{3}$. We may assume that $w_{m-1}<w_{1}+w_{4}$, since otherwise we are back to case $i$ ). Hence, $\operatorname{Ap}(S, m)^{*} \backslash \min (\operatorname{Ap}(S, m))=\left\{w_{1}+w_{1}, w_{1}+w_{2}, w_{1}+w_{3}, w_{2}+w_{2}, w_{2}+\right.$ $\left.w_{3}, w_{3}+w_{3}\right\}\left(\right.$ as $\left.6=m-\nu=\left|\operatorname{Ap}(S, m)^{*} \backslash \min (\operatorname{Ap}(S, m))\right|\right)$.
By taking $\alpha=3$ in (3.2), we get
$\sum_{j=4}^{m-1}\left(\left\lfloor\frac{w_{j}+\rho}{m}\right\rfloor-\left\lfloor\frac{w_{j-1}+\rho}{m}\right\rfloor\right)(j \nu-m) \geq\left(\left\lfloor\frac{w_{m-1}+\rho}{m}\right\rfloor-\left\lfloor\frac{w_{3}+\rho}{m}\right\rfloor\right)(4 \nu-m)$. Hence,

$$
\begin{aligned}
& \sum_{j=1}^{m-1}\left(\left\lfloor\frac{w_{j}+\rho}{m}\right\rfloor-\left\lfloor\frac{w_{j-1}+\rho}{m}\right\rfloor\right)(j \nu-m)+\rho \\
& =\left(\left\lfloor\frac{w_{1}+\rho}{m}\right\rfloor-\left\lfloor\frac{w_{0}+\rho}{m}\right\rfloor\right)(\nu-m)+\left(\left\lfloor\frac{w_{2}+\rho}{m}\right\rfloor-\left\lfloor\frac{w_{1}+\rho}{m}\right\rfloor\right)(2 \nu-m)+\left(\left\lfloor\frac{w_{3}+\rho}{m}\right\rfloor-\left\lfloor\frac{w_{2}+\rho}{m}\right\rfloor\right)(3 \nu-m) \\
& +\sum_{j=4}^{m-1}\left(\left\lfloor\frac{w_{j}+\rho}{m}\right\rfloor-\left\lfloor\frac{w_{j-1}+\rho}{m}\right\rfloor\right)(j \nu-m)+\rho \\
& \geq\left\lfloor\frac{w_{1}+\rho}{m}\right\rfloor(-\nu)+\left\lfloor\frac{w_{2}+\rho}{m}\right\rfloor(-\nu)+\left\lfloor\frac{w_{3}+\rho}{m}\right\rfloor(3 \nu-m)+\left(\left\lfloor\frac{w_{m-1}+\rho}{m}\right\rfloor-\left\lfloor\frac{w_{3}+\rho}{m}\right\rfloor\right)(4 \nu-m)+\rho \\
& \geq\left(\left\lfloor\frac{w_{2}+\rho}{m}\right\rfloor\left(\frac{-\nu}{2}\right)+\left\lfloor\frac{w_{3}+\rho}{m}\right\rfloor\left(\frac{-\nu}{2}\right)\right)+\left\lfloor\frac{w_{2}+\rho}{m}\right\rfloor(-\nu)+\left\lfloor\frac{w_{3}+\rho}{m}\right\rfloor(3 \nu-m) \\
& \\
& +\left(\left\lfloor\frac{w_{m-1}+\rho}{m}\right\rfloor-\left\lfloor\frac{w_{3}+\rho}{m}\right\rfloor\right)(4 \nu-m)+\rho \\
& =\left\lfloor\frac{w_{2}+\rho}{m}\right\rfloor\left(\frac{-3 \nu}{2}\right)+\left\lfloor\frac{w_{3}+\rho}{m}\right\rfloor\left(\frac{5 \nu}{2}-m\right)+\left(\left\lfloor\frac{w_{m-1}+\rho}{m}\right\rfloor-\left\lfloor\frac{w_{3}+\rho}{m}\right\rfloor\right)(4 \nu-m)+\rho \\
& =\left\lfloor\frac{w_{2}+\rho}{m}\right\rfloor\left(\frac{-3 \nu}{2}+(4 \nu-m)-(4 \nu-m)\right)+\left\lfloor\frac{w_{3}+\rho}{m}\right\rfloor\left(\frac{5 \nu}{2}-m\right)+\left(\left\lfloor\frac{w_{m-1}+\rho}{m}\right\rfloor-\left\lfloor\frac{w_{3}+\rho}{m}\right\rfloor\right)(4 \nu-m)+\rho \\
& =\left\lfloor\frac{w_{2}+\rho}{m}\right\rfloor\left(\frac{5 \nu}{2}-m\right)+\left\lfloor\frac{w_{3}+\rho}{m}\right\rfloor\left(\frac{5 \nu}{2}-m\right)+\left(\left\lfloor\frac{w_{m-1}+\rho}{m}\right\rfloor-\left\lfloor\frac{w_{2}+\rho}{m}\right\rfloor-\left\lfloor\frac{w_{3}+\rho}{m}\right\rfloor\right)(4 \nu-m)+\rho \\
& =\left\lfloor\frac{w_{2}+\rho}{m}\right\rfloor\left(\frac{3 \nu}{2}-6\right)+\left\lfloor\frac{w_{3}+\rho}{m}\right\rfloor\left(\frac{3 \nu}{2}-6\right)+\left(\left\lfloor\frac{w_{m-1}+\rho}{m}\right\rfloor-\left\lfloor\frac{w_{2}+\rho}{m}\right\rfloor-\left\lfloor\frac{w_{3}+\rho}{m}\right\rfloor\right)(3 \nu-6)+\rho .
\end{aligned}
$$

Hence,

$$
\begin{gather*}
\sum_{j=1}^{m-1}\left(\left\lfloor\frac{w_{j}+\rho}{m}\right\rfloor-\left\lfloor\frac{w_{j-1}+\rho}{m}\right\rfloor\right)(j \nu-m)+\rho \geq  \tag{4.8}\\
\left\lfloor\frac{w_{2}+\rho}{m}\right\rfloor\left(\frac{3 \nu}{2}-6\right)+\left\lfloor\frac{w_{3}+\rho}{m}\right\rfloor\left(\frac{3 \nu}{2}-6\right)+\left(\left\lfloor\frac{w_{m-1}+\rho}{m}\right\rfloor-\left\lfloor\frac{w_{2}+\rho}{m}\right\rfloor-\left\lfloor\frac{w_{3}+\rho}{m}\right\rfloor\right)(3 \nu-6)+\rho .
\end{gather*}
$$

We have $w_{m-1} \geq w_{2}+w_{3}$, by Lemma 3.2, it follows that $\left\lfloor\frac{w_{m-1}+\rho}{m}\right\rfloor \geq\left\lfloor\frac{w_{2}+\rho}{m}\right\rfloor+\left\lfloor\frac{w_{3}+\rho}{m}\right\rfloor-1$.

- If $\left\lfloor\frac{w_{m-1}+\rho}{m}\right\rfloor-\left\lfloor\frac{w_{2}+\rho}{m}\right\rfloor-\left\lfloor\frac{w_{3}+\rho}{m}\right\rfloor \geq 0$, using $\nu \geq 4$ in (4.8) ( $\nu \leq 3$ is solved [4]), we
get $\sum_{j=1}^{m-1}\left(\left\lfloor\frac{w_{j}+\rho}{m}\right\rfloor-\left\lfloor\frac{w_{j-1}+\rho}{m}\right\rfloor\right)(j \nu-m)+\rho \geq 0$.
- If $\left\lfloor\frac{w_{m-1}+\rho}{m}\right\rfloor-\left\lfloor\frac{w_{2}+\rho}{m}\right\rfloor-\left\lfloor\frac{w_{3}+\rho}{m}\right\rfloor=-1$. Then, $\left\lfloor\frac{w_{2}+\rho}{m}\right\rfloor+\left\lfloor\frac{w_{3}+\rho}{m}\right\rfloor=\left\lfloor\frac{w_{m-1}+\rho}{m}\right\rfloor+1$, that is

$$
\begin{equation*}
\left\lfloor\frac{w_{2}+\rho}{m}\right\rfloor+\left\lfloor\frac{w_{3}+\rho}{m}\right\rfloor=q+1 \tag{4.9}
\end{equation*}
$$

We have $w_{3}+w_{3} \in \operatorname{Ap}(S, m)^{*} \backslash \min (\operatorname{Ap}(S, m))$ namely $w_{3}+w_{3} \in \operatorname{Ap}(S, m)$, then $w_{m-1} \geq w_{3}+w_{3}$. By Lemma 3.2, we have $\left\lfloor\frac{w_{m-1}+\rho}{m}\right\rfloor \geq 2\left\lfloor\frac{w_{3}+\rho}{m}\right\rfloor-1$. In particular,

$$
\begin{equation*}
\left\lfloor\frac{w_{3}+\rho}{m}\right\rfloor \leq \frac{q+1}{2} \tag{4.10}
\end{equation*}
$$

Since Wilf's conjecture holds for $q \leq 3$ ([5], [7]), so we may assume that $q \geq 4$. Since $\left\lfloor\frac{w_{2}+\rho}{m}\right\rfloor \leq\left\lfloor\frac{w_{3}+\rho}{m}\right\rfloor$, by (4.9) and (4.10), it follows that $\left\lfloor\frac{w_{2}+\rho}{m}\right\rfloor=\left\lfloor\frac{w_{3}+\rho}{m}\right\rfloor=\frac{q+1}{2}$, in particular $q$ is odd, so we have to assume that $q \geq 5$. Now using Now using (4.9), $q \geq 5$ and the hypothesis $\left(2+\frac{1}{q}\right) \nu \geq m=\nu+6$ (in particular $-6 q \geq-q \nu-\nu$ ) in (4.8), we get

$$
\begin{aligned}
\sum_{j=1}^{m-1}\left(\left\lfloor\frac{w_{j}+\rho}{m}\right\rfloor-\left\lfloor\frac{w_{j-1}+\rho}{m}\right\rfloor\right)(j \nu-m)+\rho & \geq(q+1)\left(\frac{3 \nu}{2}-6\right)-(3 \nu-6)+\rho \\
& =\nu\left(\frac{3 q}{2}+\frac{3}{2}-3\right)-6 q+\rho \\
& \geq \nu\left(\frac{3 q}{2}-\frac{3}{2}\right)-q \nu-\nu+\rho \\
& =\nu\left(\frac{q}{2}-\frac{5}{2}\right)+\rho \geq 0 .
\end{aligned}
$$

By Proposition 2.3, $S$ satisfies Wilf's conjecture in this case.
By the results above we get that Wilf conjecture holds for numerical semigroups satisfying $(2+$ $\left.\frac{1}{q}\right) \nu \geq m$. More precisely we have the following.

Theorem 4.12. Let the notations be as above. If $\left(2+\frac{1}{q}\right) \nu \geq m$, then $S$ satisfies Wilf's conjecture.
Proof. If $m-\nu \leq 3$, then by Lemma 4.5 Wilf's conjecture holds.
If $m-\nu=4$, then by Corollary 4.7 Wilf's conjecture holds.
If $m-\nu=5$, then by Theorem 4.9 Wilf's conjecture holds.
If $m-\nu=6$ and $\left(2+\frac{1}{q}\right) \nu \geq m$, then by Lemma 4.11 Wilf's conjecture holds.
If $m-\nu>6=\frac{4(3)}{2}$ and $\left(2+\frac{1}{q}\right) \nu \geq m$, then by Corollary 4.4 Wilf's conjecture holds.

## References

[1] V. Barucci, On propinquity of numerical semigroups and one-dimensional local Cohen Macaulay rings, Journal of Commutative algebra and its applications, Proceedings of the Fifth International Fez Conference on Commutative Algebra and Applications (2009), pp. 49-60.
[2] M. Bras-Amorós, Fibonacci-like behavior of the number of numerical semigroups of a given genus, Semigroup Forum, vol 76, n ${ }^{\circ} 2$ (2008), pp. 379-384.
[3] L. Bryant, Goto numbers of a numerical semigroup ring and the Gorensteiness of associated graded rings, Communications in Algebra®, vol 38, $\mathrm{n}^{\circ} 6$ (2010), pp. 2092-2128.
[4] D. Dobbs, G. Matthews, On a question of Wilf concerning numerical semigroups, Focus on commutative rings research (2006), pp. 193-202.
[5] S. Eliahou, Wilf's conjecture and Macaulay's theorem, arXiv:1703.01761 (2017).
[6] R. Fröberg, C. Gottlieb, R. Häggkvist, On numerical semigroups, Semigroup forum, vol 35 (1986-1987) pp. 63-83.
[7] N. Kaplan, Counting numerical semigroups by genus and some cases of a question of Wilf, J. Pure and Applied Algebra, vol 216, n ${ }^{\circ} 5$ (2012), pp. 1016-1032.
[8] P.A. García-Sánchez, J. C. Rosales, Numerical semigroups, Developments in Mathematics, 20. Springer, New York, (2009).
[9] A. Sammartano, Numerical semigroups with large embedding dimension satisfy Wilf's conjecture, Semigroup Forum, vol $85 \mathrm{n}^{\circ} 3$ (2012), pp. 439-447.
[10] H. S. Wilf, A circle-of-lights algorithm for the "money-changing problem", The Amer. Math. Monthly, vol 85, n ${ }^{\circ} 7$ (1978) pp. 562-565.

## Author information

Mariam Dhayni, Department of Mathematics, Université d'Angers, 49045 Angers cedex 01, France.
E-mail: dhayni@math.univ-angers.fr
Received: July 12, 2017.

Accepted: December 17, 2017.

