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Abstract Let S ⊆ N be a numerical semigroup with multiplicity m, embedding dimension
ν and conductor c = qm − ρ for some q, ρ ∈ N with ρ < m. Let n be the cardinality of the set
of elements x ∈ S;x < c. Wilf conjecture says that c ≤ νn. Despite a lot of activities around
this conjecture, it is still open. The aim of this paper is first to prove that Wilf’s conjecture holds
for S if (2 + 1

q )ν ≥ m. This generalizes the case when 2ν ≥ m, proved by Sammartano in [9].
We also prove the conjecture for m − ν ≤ 5, and also for m = 9. These cases result from the
following: let Ap(S,m) = {w0 < w1 < . . . < wm−1} be the Apéry set of S. The conjecture
holds if wm−1 ≥ w1 + wα and (2 + α−3

q )ν ≥ m for some 1 < α < m− 1 (Theorem 4.1).

1 Introduction and notations

Let N denotes the set of natural numbers, including 0. A numerical semigroup S is an additive
submonoid of (N,+) of finite complement in N, that is 0 ∈ S, if a, b ∈ S then a + b ∈ S, and
N\S is a finite set. The elements of N\S are called the gaps of S and their cardinality is denoted
by g(S) and is called the genus of S. The largest gap is denoted by f = f(S) =max(N \ S)
and is called the Frobenius number of S. The smallest non zero element m = m(S) = min(S∗)
is called the multiplicity of S (S∗ = S \ {0}) and n = |{s ∈ S; s < f(S)}| is also denoted by
n(S). Every numerical semigroup S is minimally generated, i.e.

S =< g1, . . . , gν >= Ng1 + . . .+Ngν
for suitable unique coprime integers g1, . . . , gν . The cardinality of the minimal set of generators
of S is denoted by ν = ν(S) and is called the embedding dimension of S. An integer x ∈ N \ S
is called a pseudo-Frobenius number if x + S∗ ⊆ S. The type of the semigroup, denoted by
t(S) is the cardinality of the set of pseudo-frobenius numbers. The Apéry set of S with respect
to a ∈ S is defined as Ap(S, a) = {s ∈ S; s− a /∈ S}.

The invariants associated with a numerical semigroup S are connected with equalities and in-
equalities. For example, f(S)+ 1 = g(S)+n(S), ν(S) ≤ m(S).... In [10], H. S. Wilf proposed
the following conjecture:

f(S) + 1 ≤ ν(S)n(S).

Suggesting a regularity in the set N \ S. Although the problem has been considered by several
authors (cf. [1], [2], [4], [5], [6], [7], [9]), only special cases have been solved and it remains
wide open. In [4], D. Dobbs and G. Matthews proved Wilf’s conjecture for ν ≤ 3. In [7] N.
Kaplan proved it for f + 1 ≤ 2m and in [5] S. Eliahou extended Kaplan’s work for f + 1 ≤ 3m.

In this paper, we prove Wilf’s conjecture in some relevant cases. More precisely, we prove
that the conjecture holds for numerical semigroups S when (2 + 1

q )ν ≥ m (where f + 1 =
qm − ρ, ρ < m). This generalizes the case proved by A. Sammartano ([9]), who showed that
Wilf’s conjecture holds for 2ν ≥ m. We also prove the conjecture when m − ν = 5, and also
for m = 9. Our main idea is based on counting the elements of S in some intervals of length m.
This gives us an equivalent form of Wilf’s conjecture, and allows us to prove the conjecture in
the cases cited above.
The paper is organized as follows. In section 2 we use some notations and prove some results
in order to give an equivalent form of Wilf’s conjecture. In section 3 we give some technical
results needed in the paper. Section 4 is the heart of the paper. Let Ap(S,m) = {0 = w0 < w1 <
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· · · < wm−1}. First, we show that Wilf’s conjecture holds for numerical semigroups that satisfy
wm−1 ≥ w1 + wα and (2 + α−3

q )ν ≥ m for some 1 < α < m − 1 (see Theorem 4.1). Then we
prove Wilf’s conjecture for numerical semigroups with m− ν ≤ 4. This implies the case where
2ν ≥ m. We also prove that numerical semigroups with m − ν = 5 satisfy Wilf’s conjecture.
This allows us to prove the conjecture for m = 9. Finally we prove, using the previous cases,
that Wilf’s conjecture holds for numerical semigroups with (2 + 1

q )ν ≥ m.

A good reference on numerical semigroups is [8].

2 Equivalent form of Wilf’s conjecture

Let S be a numerical semigroup and the notations be as in the introduction. For the sake of clarity,
we shall use the notations ν, f, n, c,m... for ν(S), f(S), n(S), c(S),m(S).... In this section, we
will introduce some notations and prove some results in order to give an equivalent form of
Wilf’s conjecture. Let q, ρ ∈ N, 0 ≤ ρ < m such that c = f + 1 = qm− ρ. Given a nonnegative
integer k, we define the kth interval Ik of length m as

Ik = [km− ρ, (k + 1)m− ρ[= {km− ρ, km− ρ+ 1, . . . , (k + 1)m− ρ− 1}.

We denote by
nk = |S ∩ Ik|.

For all j ∈ {1, . . . ,m− 1}, we define ηj to be the number of intervals Ik with nk = j.

ηj =
∣∣{k ∈ N; |S ∩ Ik| = j}

∣∣.
Proposition 2.1. Under the previous notations, we have the following:

i) 1 ≤ nk ≤ m− 1 for all 0 ≤ k ≤ q − 1 and nk = m for all k ≥ q.

ii)
∑m−1

j=1 ηj = q.

iii)
∑m−1

j=1 jηj =
∑q−1

k=0 nk = n(S) = n.

Proof. i) obvious. We will prove ii) and iii).

ii)
∑m−1

j=1 ηj =
∑m−1

j=1

∣∣{k ∈ N; |Ik ∩S| = j}
∣∣ = ∑m−1

j=1 |{k ∈ N; nk = j; 0 ≤ k ≤ q−1}| =
q.

iii)
∑m−1

j=1 jηj =
∑m−1

j=1 j
∣∣{k ∈ N; |Ik ∩ S| = j}

∣∣ = ∑m−1
j=1 j|{k ∈ N; nk = j; 0 ≤ k ≤

q − 1}| =
∑q−1

k=0 nk = n. �

Remark: We shall use the notation ⌊x⌋ for the largest integer smaller than or equal to x.

Next, we will express ηj in terms of the Apéry set.

Proposition 2.2. Let Ap(S,m) = {w0 = 0 < w1 < w2 < . . . < wm−1}. Under the previous
notations, for all 1 ≤ j ≤ m− 1 we have

ηj = ⌊wj + ρ

m
⌋ − ⌊wj−1 + ρ

m
⌋.

Proof. Fix 0 ≤ k ≤ q − 1 and let 1 ≤ j ≤ m − 1. We will show that the interval Ik contains
exactly j elements of S if and only if wj−1 < (k + 1)m− ρ ≤ wj . Recall to this end that for all
s ∈ S, there exist 0 ≤ i ≤ m− 1 and a ∈ N such that s = wi + am.

Suppose that Ik contains exactly j elements of S. Suppose, by contradiction, that wj−1 ≥
(k+ 1)m− ρ. We have wm−1 > . . . > wj−1 ≥ (k+ 1)m− ρ, thus wm−1, . . . , wj−1 ∈ ∪q

t=k+1It.
Hence, Ik contains at most j − 1 elements of S (namely w0 + km = km,w1 + k1m,w2 +
k2m, . . . , wj−2 + kj−2m for some k1, . . . , kj−2 ∈ {0, . . . , k − 1}). This contradicts the fact that
Ik contains exactly j elements of S.
Let us prove that (k+1)m−ρ ≤ wj . If wj < (k+1)m−ρ, then w0 < . . . < wj < (k+1)m−ρ,
thus w0, . . . , wj ∈ ∪k

t=0It. Hence, Ik contains at least j+1 elements of S which are : w0+km =
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km,w1 + k1m,w2 + k2m, . . . , wj + kjm for some k1, . . . , kj ∈ {0, . . . , k − 1}. This is again a
contradiction.

Conversely, suppose that wj−1 < (k + 1)m − ρ ≤ wj . Since wj−1 < (k + 1)m − ρ then
w0 < . . . < wj−1 < (k + 1)m − ρ, whence w0, . . . , wj−1 ∈ ∪k

t=0It. In particular Ik contains
at least j elements of S, namely w0 + km = km,w1 + k1m,w2 + k2m, . . . , wj−1 + kj−1m
for some k1, . . . , kj−1 ∈ {0, . . . , k − 1}. On the other hand wj ≥ (k + 1)m − ρ implies that
wm−1 > . . . > wj ≥ (k + 1)m − ρ, so wm−1, . . . , wj ∈ ∪q

t=k+1It. Thus, Ik contains at most j
elements of S which are: w0 + km = km,w1 + k1m,w2 + k2m, . . . , wj−1 + kj−1m for some
k1, . . . , kj−1 ∈ {0, . . . , k − 1}. Hence, if wj−1 < (k + 1)m− ρ ≤ wj , then Ik contains exactly j
elements of S and this proves our assertion.

We finally have the following:

ηj = |{k ∈ N such that |Ik ∩ S| = j}|

= |{k ∈ N such that wj−1 < (k + 1)m− ρ ≤ wj}|

= |{k ∈ N such that wj−1+ρ
m < (k + 1) ≤ wj+ρ

m }|

= |{k ∈ N such that wj−1+ρ
m − 1 < k ≤ wj+ρ

m − 1}|

= |{k ∈ N such that ⌊wj−1+ρ
m ⌋ ≤ k ≤ ⌊wj+ρ

m ⌋ − 1}|

= ⌊wj+ρ
m ⌋ − ⌊wj−1+ρ

m ⌋.

�
Proposition 2.3 gives an equivalent form of Wilf’s conjecture using Proposition 2.1 and Propo-
sition 2.2.

Proposition 2.3. Let the notations be as above. We have S satisfies Wilf’s conjecture if and only
if

m−1∑
j=1

(⌊wj + ρ

m
⌋ − ⌊wj−1 + ρ

m
⌋)(jν −m) + ρ ≥ 0.

Proof. By Proposition 2.1, we have

f + 1 ≤ nν ⇔ qm− ρ ≤ ν

q−1∑
k=0

nk ⇔
q−1∑
k=0

m− ρ ≤
q−1∑
k=0

nkν ⇔
q−1∑
k=0

(nkν −m) + ρ ≥ 0 ⇔

m−1∑
j=1

ηj(jν −m) + ρ ≥ 0.

And by Proposition 2.2, we get

m−1∑
j=1

ηj(jν −m) + ρ ≥ 0 ⇔
m−1∑
j=1

(⌊wj + ρ

m
⌋ − ⌊wj−1 + ρ

m
⌋)(jν −m) + ρ ≥ 0.

�

3 Technical results

Let S be a numerical semigroup and let the notations be as in sections 1 and 2. In this section,
we give some technical results used through the paper. Recall that Ap(S,m) = {w0 = 0 < w1 <
. . . < wm−1}.
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Remark 3.1. With the notations above, we have the following:

i) ⌊w0+ρ
m ⌋ = 0.

ii) For all 1 ≤ i ≤ m− 1, we have ⌊wi+ρ
m ⌋ ≥ 1 (as wi > m).

iii) For all 1 ≤ i ≤ m− 1, we have ⌊wi+ρ
m ⌋ = ⌊wi

m ⌋ or ⌊wi+ρ
m ⌋ = ⌊wi

m ⌋+ 1.

iv) If ⌊wi+ρ
m ⌋ = ⌊wi

m ⌋+ 1, then ⌊wi+ρ
m ⌋ ≥ 2 and ρ ≥ 1.

v) For all 0 ≤ i < j ≤ m− 1, we have ⌊wi+ρ
m ⌋ ≤ ⌊wj+ρ

m ⌋.

vi) ⌊wm−1+ρ
m ⌋ = ⌊ qm−ρ−1+m+ρ

m ⌋ = q (as wm−1 = f +m). �

Let 1 < α < m−1. Using Remark 3.1 we get the following inequalities which will be used later
in the paper:

α∑
j=1

(⌊
wj + ρ

m
⌋ − ⌊

wj−1 + ρ

m
⌋)(jν −m) =

α∑
j=1

⌊
wj + ρ

m
⌋(jν −m)−

α∑
j=1

⌊
wj−1 + ρ

m
⌋(jν −m)

=
α∑

j=1

⌊
wj + ρ

m
⌋(jν −m)−

α−1∑
j=0

⌊
wj + ρ

m
⌋((j + 1)ν −m)

= ⌊
wα + ρ

m
⌋(αν −m)− ⌊

w0 + ρ

m
⌋(ν −m)−

α−1∑
j=1

⌊
wj + ρ

m
⌋ν

= ⌊
wα + ρ

m
⌋(αν −m)− ⌊

w1 + ρ

m
⌋ν −

α−1∑
j=2

⌊
wj + ρ

m
⌋ν

≥ ⌊
wα + ρ

m
⌋(αν −m)− ⌊

w1 + ρ

m
⌋ν −

α−1∑
j=2

⌊
wα + ρ

m
⌋ν

= ⌊
wα + ρ

m
⌋(αν −m)− ⌊

w1 + ρ

m
⌋ν − ⌊

wα + ρ

m
⌋(α− 2)ν

= −⌊
w1 + ρ

m
⌋ν + ⌊

wα + ρ

m
⌋(2ν −m).

Consequently,
α∑

j=1

(⌊
wj + ρ

m
⌋ − ⌊

wj−1 + ρ

m
⌋)(jν −m) ≥ −⌊

w1 + ρ

m
⌋ν + ⌊

wα + ρ

m
⌋(2ν −m). (3.1)

On the other hand,
m−1∑
j=α+1

(⌊
wj + ρ

m
⌋ − ⌊

wj−1 + ρ

m
⌋)(jν −m) ≥

m−1∑
j=α+1

(⌊
wj + ρ

m
⌋ − ⌊

wj−1 + ρ

m
⌋)((α + 1)ν −m)

= ((α + 1)ν −m)(

m−1∑
j=α+1

⌊
wj + ρ

m
⌋ −

m−1∑
j=α+1

⌊
wj−1 + ρ

m
⌋)

= ((α + 1)ν −m)(

m−1∑
j=α+1

⌊
wj + ρ

m
⌋ −

m−2∑
j=α

⌊
wj + ρ

m
⌋)

= (⌊
wm−1 + ρ

m
⌋ − ⌊

wα + ρ

m
⌋)((α + 1)ν −m).

Hence,
m−1∑
j=α+1

(⌊
wj + ρ

m
⌋ − ⌊

wj−1 + ρ

m
⌋)(jν −m) ≥

(
⌊
wm−1 + ρ

m
⌋ − ⌊

wα + ρ

m
⌋
)(
(α + 1)ν −m

)
. (3.2)

Lemma 3.2. Suppose that wi ≥ wj + wk. We have the following:

i) ⌊wi+ρ
m ⌋ ≥ ⌊wj+ρ

m ⌋+ ⌊wk+ρ
m ⌋ − 1.

ii) If ⌊wi+ρ
m ⌋ = ⌊wj+ρ

m ⌋+ ⌊wk+ρ
m ⌋ − 1, then

⌊
wj + ρ

m
⌋ = ⌊

wj

m
⌋ + 1, ⌊

wk + ρ

m
⌋ = ⌊

wk

m
⌋ + 1 and ρ ≥ 1.

In particular, ⌊wj+ρ
m ⌋ ≥ 2, ⌊wk+ρ

m ⌋ ≥ 2 and ρ ≥ 1.
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Proof. i) Since wi ≥ wj +wk, then wi+ρ
m ≥ wj+wk+ρ

m . Consequently, ⌊wi+ρ
m ⌋ ≥ ⌊wj+ρ

m ⌋+ ⌊wk

m ⌋.
By Remark 3.1 (iii), ⌊wk

m ⌋ ≥ ⌊wk+ρ
m ⌋ − 1. Hence, ⌊wi+ρ

m ⌋ ≥ ⌊wj+ρ
m ⌋+ ⌊wk+ρ

m ⌋ − 1.

ii) Suppose by the way of contradiction that ⌊wj+ρ
m ⌋ ̸= ⌊wj

m ⌋+1 or ⌊wk+ρ
m ⌋ ̸= ⌊wk

m ⌋+1 or ρ < 1.
By Remark 3.1 (iii) and that ρ ≥ 0, it follows that ⌊wj+ρ

m ⌋ = ⌊wj

m ⌋ or ⌊wk+ρ
m ⌋ = ⌊wk

m ⌋ or ρ = 0.
Since wi ≥ wj + wk, we have

⌊
wi + ρ

m
⌋ ≥ ⌊

wj + wk + ρ

m
⌋.

Since ⌊wj+ρ
m ⌋ = ⌊wj

m ⌋ or ⌊wk+ρ
m ⌋ = ⌊wk

m ⌋ or ρ = 0, it follows that ⌊wi+ρ
m ⌋ ≥ ⌊wj+ρ

m ⌋+ ⌊wk+ρ
m ⌋,

which contradicts the hypothesis. Hence,

⌊
wj + ρ

m
⌋ = ⌊

wj

m
⌋ + 1, ⌊

wk + ρ

m
⌋ = ⌊

wk

m
⌋ + 1 and ρ ≥ 1.

Using Remark 3.1 (ii), it follows that ⌊wj+ρ
m ⌋ = ⌊wj

m ⌋ + 1 ≥ 2, ⌊wk+ρ
m ⌋ = ⌊wk

m ⌋ + 1 ≥ 2 and
ρ ≥ 1. �

4 Main Results

Let S be a numerical semigroup and let the notations be as in sections 1, 2 and 3. The aim of
this section is to prove that Wilf’s conjecture holds for S in the following cases:

(i) wm−1 ≥ w1 + wα and (2 + α−3
q )ν ≥ m for some 1 < α < m− 1.

(ii) m− ν ≤ 5. (Note that the case m− ν ≤ 4 results from the fact that Wilf’s conjecture holds
for 2ν ≥ m. This case has been proved in [9]), however we shall give a proof in order to
cover it through our techniques).

We shall then deduce the conjecture when (2 + 1
q )ν ≥ m, and also when m = 9.

Next, we will show that Wilf’s conjecture holds if wm−1 ≥ w1 + wα and (2 + α−3
q )ν ≥ m.

Theorem 4.1. Let the notations be as above. In particular S is a numerical semigroup with
multiplicity m, embedding dimension ν and conductor f + 1 = qm − ρ for some q, ρ ∈ N;
0 ≤ ρ ≤ m − 1, and Ap(S,m) = {w0 = 0 < w1 < w2 < . . . < wm−1}. Suppose that
wm−1 ≥ w1 + wα for some 1 < α < m − 1. If (2 + α−3

q )ν ≥ m, then S satisfies Wilf’s
conjecture.

Proof. We are going to use the equivalent form of Wilf’s conjecture given in Proposition 2.3.
Since wm−1 ≥ w1 + wα, Lemma 3.2 (i) implies that ⌊wm−1+ρ

m ⌋ ≥ ⌊w1+ρ
m ⌋ + ⌊wα+ρ

m ⌋ − 1. Let
x = ⌊wm−1+ρ

m ⌋ − ⌊w1+ρ
m ⌋ − ⌊wα+ρ

m ⌋. Then, x ≥ −1 and ⌊w1+ρ
m ⌋+ ⌊wα+ρ

m ⌋ = q − x. Now using
(3.1) and (3.2), we have

m−1∑
j=1

(⌊
wj + ρ

m
⌋ − ⌊

wj−1 + ρ

m
⌋)(jν −m) + ρ

≥ −⌊
w1 + ρ

m
⌋ν + ⌊

wα + ρ

m
⌋(2ν −m)+(⌊

wm−1 + ρ

m
⌋ − ⌊

wα + ρ

m
⌋)
(
(α + 1)ν −m

)
+ ρ

= ⌊
w1 + ρ

m
⌋
(

− ν +
(
(α + 1)ν −m

)
−

(
(α + 1)ν −m

))
+⌊

wα + ρ

m
⌋(2ν −m)

+
(
⌊
wm−1 + ρ

m
⌋ − ⌊

wα + ρ

m
⌋
)(
(α + 1)ν −m

)
+ρ

= ⌊
w1 + ρ

m
⌋(αν −m) + ⌊

wα + ρ

m
⌋(2ν −m)+

(
⌊
wm−1 + ρ

m
⌋ − ⌊

wα + ρ

m
⌋ − ⌊

w1 + ρ

m
⌋
)(
(α + 1)ν −m

)
+ρ

= (⌊
w1 + ρ

m
⌋ + ⌊

wα + ρ

m
⌋)(2ν −m) + ⌊

w1 + ρ

m
⌋(α− 2)ν

+
(
⌊
wm−1 + ρ

m
⌋ − ⌊

wα + ρ

m
⌋ − ⌊

w1 + ρ

m
⌋
)(
(α + 1)ν −m

)
+ρ

= (q − x)(2ν −m) + ⌊
w1 + ρ

m
⌋(α− 2)ν+x

(
(α + 1)ν −m

)
+ ρ.

Consequently,
m−1∑
j=1

(⌊
wj + ρ

m
⌋ − ⌊

wj−1 + ρ

m
⌋)(jν −m) + ρ≥ (q − x)(2ν −m) + ⌊

w1 + ρ

m
⌋(α− 2)ν+x

(
(α + 1)ν −m

)
+ ρ.

(4.1)
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Since x = ⌊wm−1+ρ
m ⌋ − ⌊w1+ρ

m ⌋ − ⌊wα+ρ
m ⌋ ≥ −1, then we have two cases:

• If x = −1, then by Lemma 3.2 (ii), we have ⌊w1+ρ
m ⌋ ≥ 2. From (4.1), it follows that

m−1∑
j=1

(⌊
wj + ρ

m
⌋ − ⌊

wj−1 + ρ

m
⌋)(jν −m) + ρ ≥ (q + 1)(2ν −m) + 2(α− 2)ν −

(
(α + 1)ν −m

)
+ ρ

= ν(2q + α− 3)− qm + ρ

= q
(
ν(2 +

α− 3
q

)−m
)
+ ρ ≥ 0.

• If x ≥ 0, then by Remark 3.1 (ii), we have ⌊w1+ρ
m ⌋ ≥ 1. From (4.1), it follows that

m−1∑
j=1

(⌊
wj + ρ

m
⌋ − ⌊

wj−1 + ρ

m
⌋)(jν −m) + ρ ≥ (q − x)(2ν −m) + (α− 2)ν + x

(
(α + 1)ν −m

)
+ ρ

= ν
(
2q + (α− 2)(x + 1) + x

)
− qm + ρ

> ν(2q + α− 3)− qm + ρ

= q
(
ν(2 +

α− 3
q

)−m
)
+ ρ ≥ 0.

Using Proposition 2.3, we get that S satisfies Wilf’s conjecture. �
Theorem 4.1 will give us some cases where Wilf’s conjecture holds. We shall need the following
notations. Let ≤S be the partial order defined by a ≤S b if and only if b − a ∈ S. Then define
the following sets:

min(Ap(S,m)) = {w ∈ Ap(S,m)∗ such that w is minimal with respect to ≤S}.

max(Ap(S,m)) = {w ∈ Ap(S,m)∗ such that w is maximal with respect to ≤S}.

If S is minimally generated by m, g2, . . . , gν then, by [3] Lemma 3.2

(i) min(Ap(S,m))={g2, ..., gν}.

(ii) max(Ap(S,m))={w such that w −m is a pseudo-frobenius number of S}.

In particular

i) | Ap(S,m)∗\min(Ap(S,m))| = m− ν.

ii) | max(Ap(S,m))| = t(S) (where t(S) denotes the type of S).

Note that (see [6], Lemma 6, for example), if w ∈ Ap(S,m) and u ≤S w with u ∈ S, then
u ∈ Ap(S,m). This implies the following:

Corollary 4.2. Let x ∈ Ap(S,m)∗. We have the following:

i) x ∈ min(Ap(S,m)) if and only if x ̸= wi + wj for all wi, wj ∈ Ap(S,m)∗.

ii) x ∈ max(Ap(S,m)) if and only if wi ̸= x+ wj for all wi, wj ∈ Ap(S,m)∗.

The results above imply also the following:

Lemma 4.3. Let the notations be as in Theorem 4.1. If m− ν > α(α−1)
2 for some α ∈ N∗, then

wm−1 ≥ w1 + wα.

Proof. Suppose by the way of contradiction that wm−1 < w1 + wα and let w be such that
w ∈ Ap(S,m)∗\min(Ap(S,m)) (such an element exists because m > ν). Hence, w ≤ wm−1 <
w1 + wα and from Corollary 4.2 (i), it follows that w = wi + wj for some wi, wj ∈ Ap(S,m)∗.
Thus the only possible values for w are included in {wi + wj ; 1 ≤ i ≤ j ≤ α − 1}. It follows
that | Ap(S,m)∗\min(Ap(S,m))| = m− ν ≤ α(α−1)

2 , which contradicts the hypothesis. �

Next, we will deduce Wilf’s conjecture for numerical Semigroups with m − ν > α(α−1)
2 and

(2 + α−3
q )ν ≥ m for some α > 1 in N. This will be used later in order to show that the

conjecture holds for numerical semigroups with (2 + 1
q )ν ≥ m, and also to cover the result in

[9] saying that the conjecture is true for 2ν ≥ m.
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Corollary 4.4. Let the notations be as above. Suppose that m − ν > α(α−1)
2 for some 1 < α <

m− 1. If (2 + α−3
q )ν ≥ m, then S satisfies Wilf’s conjecture.

Proof. If m− ν > α(α−1)
2 , then, by Lemma 4.3, wm−1 ≥ w1 + wα. Now use Theorem 4.1. �

In the following Lemma, we will show that Wilf’s conjecture holds for numerical semigroups
with m− ν ≤ 3. This will enable us later to prove the conjecture for numerical semigroups with
(2 + 1

q )ν ≥ m and to cover the result in [9] saying that the conjecture is true for 2ν ≥ m.

Lemma 4.5. Let the notations be as above. If m− ν ≤ 3, then S satisfies Wilf’s conjecture.

Proof. We shall assume that ν ≥ 4 (the case ν ≤ 3 is solved in [4]).

i) If m− ν = 1, then m = ν + 1 ≥ 5 (ν ≥ 4). We are going to show Wilf’s conjecture holds
by using Proposition 2.3. By taking α = 1 in (3.2), we get
m−1∑
j=2

(⌊
wj + ρ

m
⌋ − ⌊

wj−1 + ρ

m
⌋)(jν −m) ≥ (⌊

wm−1 + ρ

m
⌋ − ⌊

w1 + ρ

m
⌋)(2ν −m). Hence,

m−1∑
j=1

(⌊
wj + ρ

m
⌋ − ⌊

wj−1 + ρ

m
⌋)(jν −m) + ρ

= (⌊
w1 + ρ

m
⌋ − ⌊

w0 + ρ

m
⌋)(ν −m) +

m−1∑
j=2

(⌊
wj + ρ

m
⌋ − ⌊

wj−1 + ρ

m
⌋)(jν −m) + ρ

≥ ⌊
w1 + ρ

m
⌋(ν −m) + (⌊

wm−1 + ρ

m
⌋ − ⌊

w1 + ρ

m
⌋)(2ν −m) + ρ

= ⌊
w1 + ρ

m
⌋
(
ν −m + (2ν −m)− (2ν −m)

)
+ (⌊

wm−1 + ρ

m
⌋ − ⌊

w1 + ρ

m
⌋)(2ν −m) + ρ

= ⌊
w1 + ρ

m
⌋(3ν − 2m) + (⌊

wm−1 + ρ

m
⌋ − ⌊

w1 + ρ

m
⌋ − ⌊

w1 + ρ

m
⌋)(2ν −m) + ρ

= ⌊
w1 + ρ

m
⌋(m− 3) + (⌊

wm−1 + ρ

m
⌋ − ⌊

w1 + ρ

m
⌋ − ⌊

w1 + ρ

m
⌋)(m− 2) + ρ.

Therefore,
m−1∑
j=1

(⌊
wj + ρ

m
⌋ − ⌊

wj−1 + ρ

m
⌋)(jν −m) + ρ ≥ (⌊

wm−1 + ρ

m
⌋ − ⌊

w1 + ρ

m
⌋ − ⌊

w1 + ρ

m
⌋)(m− 2) + ρ

+⌊
w1 + ρ

m
⌋(m− 3).

(4.2)
Since m − ν = 1 > 0 = 1.0

2 , then by Lemma 4.3, it follows that wm−1 ≥ w1 + w1.
Consequently, by Lemma 3.2 (i), we have ⌊wm−1+ρ

m ⌋ ≥ ⌊w1+ρ
m ⌋+ ⌊w1+ρ

m ⌋ − 1.

• If ⌊wm−1+ρ
m ⌋ − ⌊w1+ρ

m ⌋ − ⌊w1+ρ
m ⌋ = −1. Then by Lemma 3.2, we have ⌊w1+ρ

m ⌋ ≥ 2.
By using (4.2) and m ≥ 5, then
m−1∑
j=1

(⌊
wj + ρ

m
⌋ − ⌊

wj−1 + ρ

m
⌋)(jν −m) + ρ ≥ 2(m− 3)− (m− 2) + ρ ≥ 0.

• If ⌊wm−1+ρ
m ⌋ − ⌊w1+ρ

m ⌋ − ⌊w1+ρ
m ⌋ ≥ 0. By using (4.2) and m ≥ 5, then

m−1∑
j=1

(⌊
wj + ρ

m
⌋ − ⌊

wj−1 + ρ

m
⌋)(jν −m) + ρ ≥ (m− 3) + ρ ≥ 0.

Now the assertion results from Proposition 2.3.

ii) If m − ν ∈ {2, 3}. We have m − ν > 1 = 2(1)
2 . If (2 − 1

q )ν ≥ m, then by Corollary 4.4 S

satisfies Wilf’s conjecture. Now suppose that (2− 1
q )ν < m. Since Wilf’s conjecture holds

for q ≤ 3 (see [7], [5]), we may assume that q ≥ 4.

• If m − ν = 2. Then (2 − 1
q )ν < ν + 2. Hence, ν < 2( q

q−1) ≤
8
3 . By [4], S satisfies

Wilf’s conjecture.
• If m − ν = 3. Then (2 − 1

q )ν < ν + 3. Hence, ν < 3( q
q−1) ≤ 4. By [4], S satisfies

Wilf’s conjecture.
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Thus Wilf’s conjecture holds if m− ν ≤ 3. �
The next Corollary covers the result of Sammartano for numerical semigroups with 2ν ≥ m ([9])
using Corollary 4.4 and Lemma 4.5.

Corollary 4.6. Let the notations be as above. If 2ν ≥ m, then S satisfies Wilf’s conjecture.

Proof. If m − ν > 3 = 3(2)
2 and 2ν ≥ m, then by Corollary 4.4 Wilf’s conjecture holds. If

m− ν ≤ 3, then, by Lemma 4.5, S satisfies Wilf’s conjecture. �
In the following Corollary, we will deduce Wilf’s conjecture for numerical semigroups with
m− ν = 4. This will enable us later to prove the conjecture for those with (2 + 1

q )ν ≥ m.

Corollary 4.7. Let the notations be as above. If m− ν = 4, then S satisfies Wilf’s conjecture.

Proof. Since Wilf’s conjecture holds for ν ≤ 3 ([4]), then we may assume that ν ≥ 4. Hence,
ν ≥ m− ν. Consequently, 2ν ≥ m, and S satisfies Wilf’s conjecture by Corollary 4.6. �
The following technical Lemma will be used through the paper.

Lemma 4.8. Let the notations be as above. If m − ν ≥ α(α−1)
2 − 1 for some 3 ≤ α ≤ m − 2,

then wm−1 ≥ w1 + wα or wm−1 ≥ wα−2 + wα−1.

Proof. Suppose by the way of contradiction that wm−1 < w1 + wα and wm−1 < wα−2 + wα−1.
Let
w ∈ Ap(S,m)∗\min(Ap(S,m)), then w ≤ wm−1 and w = wi+wj for some wi, wj ∈Ap(S,m)∗

(Corollary 4.2 i). In this case, the only possible values of w are included in {wi+wj ; 1 ≤ i ≤ j ≤
α−1} \ {wα−2 +wα−1, wα−1 +wα−1}. Consequently, m− ν = |Ap(S,m)∗\min(Ap(S,m))| ≤
α(α−1)

2 − 2. But α(α−1)
2 − 2 < α(α−1)

2 − 1, which contradicts the hypothesis. Hence, wm−1 ≥
w1 + wα or wm−1 ≥ wα−2 + wα−1. �
In the next theorem, we will show that Wilf’s conjecture holds for numerical semigroups with
m− ν = 5.

Theorem 4.9. Let the notations be as above. If m− ν = 5, then S satisfies Wilf’s conjecture.

Proof. Let m − ν = 5. Since Wilf’s conjecture holds for 2ν ≥ m, then we may assume that
2ν < m. This implies that ν < m

2 = ν+5
2 i.e. ν < 5. Since the case ν ≤ 3 is known ([4]), then

we shall assume that ν = 4. This also implies that m = ν + 5 = 9.
Since m− ν = 5 = 4(3)

2 − 1, by Lemma 4.8, it follows that w8 ≥ w2 + w3 or w8 ≥ w1 + w4.

i) If w8 ≥ w2 + w3. By taking α = 3 in (3.2) (m = 9, ν = 4), we get
8∑

j=4

(⌊
wj + ρ

9
⌋ − ⌊

wj−1 + ρ

9
⌋)(4j − 9) ≥ (⌊

w8 + ρ

9
⌋ − ⌊

w3 + ρ

9
⌋)(16 − 9) = (⌊

w8 + ρ

9
⌋ − ⌊

w3 + ρ

9
⌋)(7).

(4.3)
By using (4.3), we get

8∑
j=1

(⌊
wj + ρ

m
⌋ − ⌊

wj−1 + ρ

m
⌋)(4j − 9) + ρ

= (⌊
w1 + ρ

9
⌋ − ⌊

w0 + ρ

9
⌋)(−5)+(⌊

w2 + ρ

9
⌋ − ⌊

w1 + ρ

9
⌋)(−1)+(⌊

w3 + ρ

9
⌋ − ⌊

w2 + ρ

9
⌋)(3)

+
8∑

j=4

(⌊
wj + ρ

9
⌋ − ⌊

wj−1 + ρ

9
⌋)(4j − 9) + ρ

≥ ⌊
w1 + ρ

9
⌋(−4) + ⌊

w2 + ρ

9
⌋(−4)+⌊

w3 + ρ

9
⌋(3)+(⌊

w8 + ρ

9
⌋ − ⌊

w3 + ρ

9
⌋)(7) + ρ

≥
(
⌊
w2 + ρ

9
⌋
(
(
−3
4

)4
)
+ ⌊

w3 + ρ

9
⌋
(
(
−1
4

)4
))

+⌊
w2 + ρ

9
⌋(−4)+⌊

w3 + ρ

9
⌋(3)+(⌊

w8 + ρ

9
⌋ − ⌊

w3 + ρ

9
⌋)(7)

+ρ

= ⌊
w2 + ρ

9
⌋(−7) + ⌊

w3 + ρ

9
⌋(2) + (⌊

w8 + ρ

9
⌋ − ⌊

w3 + ρ

9
⌋)(7) + ρ

= ⌊
w3 + ρ

9
⌋(2) + (⌊

w8 + ρ

9
⌋ − ⌊

w2 + ρ

9
⌋ − ⌊

w3 + ρ

9
⌋)(7) + ρ.
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Hence,
8∑

j=1

(⌊
wj + ρ

m
⌋ − ⌊

wj−1 + ρ

m
⌋)(4j − 9) + ρ ≥ ⌊

w3 + ρ

9
⌋(2) + (⌊

w8 + ρ

9
⌋ − ⌊

w2 + ρ

9
⌋ − ⌊

w3 + ρ

9
⌋)(7) + ρ.

(4.4)
Since w8 ≥ w2 + w3, by Lemma 3.2, it follows that ⌊w8+ρ

9 ⌋ ≥ ⌊w2+ρ
9 ⌋+ ⌊w3+ρ

9 ⌋ − 1.

• If ⌊w8+ρ
9 ⌋ − ⌊w2+ρ

9 ⌋ − ⌊w3+ρ
9 ⌋ ≥ 0, then (4.4) gives

8∑
j=1

(⌊
wj + ρ

9
⌋ − ⌊

wj−1 + ρ

9
⌋)(4j − 9) + ρ ≥ 0.

• If ⌊w8+ρ
9 ⌋ − ⌊w2+ρ

9 ⌋ − ⌊w3+ρ
9 ⌋ = −1. By Lemma 3.2, we have ρ ≥ 1. Since for

q ≤ 3 Wilf’s conjecture is solved ([5], [7]), then may assume that q ≥ 4. Since
⌊w2+ρ

9 ⌋ ≤ ⌊w3+ρ
9 ⌋ and ⌊w2+ρ

9 ⌋+ ⌊w3+ρ
9 ⌋ = ⌊w8+ρ

9 ⌋+ 1 = q+ 1, in this case it follows
that ⌊w3+ρ

9 ⌋ + ⌊w3+ρ
9 ⌋ ≥ ⌊w2+ρ

9 ⌋ + ⌊w3+ρ
9 ⌋ = q + 1 ≥ 5. Hence, ⌊w3+ρ

9 ⌋ ≥ 3. Now

(4.4) gives,
8∑

j=1

(⌊
wj + ρ

9
⌋ − ⌊

wj−1 + ρ

9
⌋)(4j − 9) + ρ ≥ 3(2)− 7 + 1 ≥ 0.

Using Proposition 2.3, we get that S satisfies Wilf’s conjecture in this case.

ii) If w8 ≥ w1 + w4. We may assume that w8 < w2 + w3, since otherwise we are back
to case i). Hence, the possible values of w ∈ Ap(S, 9)∗\min(Ap(S, 9)) are included in
{w1 + wj ; 1 ≤ j ≤ 7} ∪ {w2 + w2}.

• If Ap(S, 9)∗\min(Ap(S, 9)) ⊆ {w1 + wj ; 1 ≤ j ≤ 7}. Then 5 = m − ν =
|Ap(S, 9)∗\min(Ap(S, 9))|. By using Corollary 4.2 (i) and (ii)), it follows that there
exists at least five elements in Ap(S, 9)∗ that are not maximal (five elements from
{w1 . . . , w7}), hence t(S) = |{max(Ap(S, 9))}| ≤ 8 − 5 = 3 = ν − 1. Consequently,
S satisfies Wilf’s conjecture ([4] Proposition 2.3).

• If w2+w2 ∈ Ap(S, 9)∗\min(Ap(S, 9)), then w2+w2 ∈ Ap(S, 9) namely w8 ≥ w2+w2.
By Lemma 3.2 we have ⌊w8+ρ

9 ⌋ ≥ 2⌊w2+ρ
9 ⌋ − 1. In particular,

⌊
w2 + ρ

9
⌋ ≤

q + 1
2

. (4.5)

By taking α = 4 in (3.2) (m = 9, ν = 4), we get
8∑

j=5

(⌊
wj + ρ

9
⌋ − ⌊

wj−1 + ρ

9
⌋)(4j − 9) ≥ (⌊

w8 + ρ

9
⌋ − ⌊

w4 + ρ

9
⌋)(11). (4.6)

Now using m = 9, ν = 4, (4.5) and (4.6), we get
8∑

j=1

(⌊
wj + ρ

9
⌋ − ⌊

wj−1 + ρ

9
⌋)(4j − 9) + ρ

= (⌊
w1 + ρ

9
⌋ − ⌊

w0 + ρ

9
⌋)(−5)+(⌊

w2 + ρ

9
⌋ − ⌊

w1 + ρ

9
⌋)(−1)+(⌊

w3 + ρ

9
⌋ − ⌊

w2 + ρ

m
⌋)(3)

+(⌊
w4 + ρ

9
⌋ − ⌊

w3 + ρ

9
⌋)(7)+

8∑
j=5

(⌊
wj + ρ

9
⌋ − ⌊

wj−1 + ρ

9
⌋)(4j − 9) + ρ

≥ ⌊
w1 + ρ

9
⌋(−4) + ⌊

w2 + ρ

9
⌋(−4)+⌊

w3 + ρ

9
⌋(−4) + ⌊

w4 + ρ

9
⌋(7)+(⌊

w8 + ρ

9
⌋ − ⌊

w4 + ρ

9
⌋)(11) + ρ

≥ ⌊
w1 + ρ

9
⌋(−4) + (

q + 1
2

)(−4)+⌊
w4 + ρ

9
⌋(−4) + ⌊

w4 + ρ

9
⌋(7)+(⌊

w8 + ρ

9
⌋ − ⌊

w4 + ρ

9
⌋)(11) + ρ

= ⌊
w1 + ρ

9
⌋(−4)− 2(q + 1) + ⌊

w4 + ρ

9
⌋(3)+(⌊

w8 + ρ

9
⌋ − ⌊

w4 + ρ

9
⌋)(11) + ρ

= ⌊
w1 + ρ

9
⌋(−4 + 11 − 11)− 2(q + 1)+⌊

w4 + ρ

9
⌋(3) + (⌊

w8 + ρ

9
⌋ − ⌊

w4 + ρ

9
⌋)(11)+ρ

= ⌊
w1 + ρ

9
⌋(7)− 2(q + 1) + ⌊

w4 + ρ

9
⌋(3)+(⌊

w8 + ρ

9
⌋ − ⌊

w4 + ρ

9
⌋ − ⌊

w1 + ρ

9
⌋)(11) + ρ

= (⌊
w1 + ρ

9
⌋ + ⌊

w4 + ρ

9
⌋)(3) + ⌊

w1 + ρ

9
⌋(4)− 2(q + 1) + (⌊

w8 + ρ

9
⌋ − ⌊

w1 + ρ

9
⌋ − ⌊

w4 + ρ

9
⌋)(11)

+ρ.
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Therefore,

8∑
j=1

(⌊
wj + ρ

m
⌋ − ⌊

wj−1 + ρ

m
⌋)(4j − 9) + ρ ≥

(⌊
w1 + ρ

9
⌋ + ⌊

w4 + ρ

9
⌋)(3) + ⌊

w1 + ρ

9
⌋(4)− 2(q + 1) + (⌊

w8 + ρ

9
⌋ − ⌊

w1 + ρ

9
⌋ − ⌊

w4 + ρ

9
⌋)(11) + ρ.

(4.7)

We have w8 ≥ w1 + w4, then by Lemma 3.2 (i) ⌊w8+ρ
9 ⌋ ≥ ⌊w1+ρ

9 ⌋+ ⌊w4+ρ
9 ⌋ − 1.

– If ⌊w8+ρ
9 ⌋ − ⌊w1+ρ

9 ⌋ − ⌊w4+ρ
9 ⌋ ≥ 0. Let x = ⌊w8+ρ

9 ⌋ − ⌊w1+ρ
9 ⌋ − ⌊w4+ρ

9 ⌋. Hence,
x ≥ 0 and ⌊w1+ρ

9 ⌋+ ⌊w4+ρ
9 ⌋ = ⌊w8+ρ

9 ⌋ − x = q − x (Remark 3.1 vi). Then (4.7)
gives,

8∑
j=1

(⌊
wj + ρ

9
⌋ − ⌊

wj−1 + ρ

9
⌋)(4j − 9) + ρ ≥ (q − x)(3) + 4 − 2(q + 1) + 11x + ρ

= q + 8x + 2 + ρ ≥ 0.

– If ⌊w8+ρ
9 ⌋−⌊w1+ρ

9 ⌋−⌊w4+ρ
9 ⌋ = −1. Then ⌊w1+ρ

m ⌋+⌊w4+ρ
9 ⌋ = ⌊w8+ρ

9 ⌋+1 = q+1
(Remark 3.1 vi). By Lemma 3.2, we have ⌊w1+ρ

9 ⌋ ≥ 2 and ρ ≥ 1. Since q ≥ 1
(S ̸= N), then (4.7) gives,

8∑
j=1

(⌊
wj + ρ

9
⌋ − ⌊

wj−1 + ρ

9
⌋)(4j − 9) + ρ ≥ (q + 1)(3) + 8 − 2(q + 1)− 11 + 1 = q − 1 ≥ 0.

By Proposition 2.3, S satisfies Wilf’s conjecture in this case.

Thus, Wilf’s conjecture holds if m− ν = 5. �

In the next corollary, we will deduce the conjecture for m = 9.

Corollary 4.10. If m = 9, then S satisfies Wilf’s conjecture.

Proof. By Lemma 4.5, Corollary 4.7 and Theorem 4.9, we may assume that m − ν > 5, hence
ν < m− 5 = 4. By ([4]) S satisfies Wilf’s conjecture. �

The following Lemma will enable us later to show that Wilf’s conjecture holds for numerical
semigroups with (2 + 1

q )ν ≥ m.

Lemma 4.11. Let the notations be as above. If m − ν = 6 and (2 + 1
q )ν ≥ m, then S satisfies

Wilf’s conjecture.

Proof. Since m − ν = 6 ≥ 4(3)
2 − 1, by Lemma 4.8, it follows that wm−1 ≥ w1 + w4 or

wm−1 ≥ w2 + w3.

i) If wm−1 ≥ w1 +w4. By hypothesis (2+ 1
q )ν ≥ m and Theorem 4.1 Wilf’s conjecture holds

in this case.

ii) If wm−1 ≥ w2 +w3. We may assume that wm−1 < w1 +w4, since otherwise we are back to
case i). Hence, Ap(S,m)∗\min(Ap(S,m)) = {w1 + w1, w1 + w2, w1 + w3, w2 + w2, w2 +
w3, w3 + w3} (as 6 = m− ν = |Ap(S,m)∗\min(Ap(S,m))|).
By taking α = 3 in (3.2), we get
m−1∑
j=4

(⌊
wj + ρ

m
⌋ − ⌊

wj−1 + ρ

m
⌋)(jν −m) ≥ (⌊

wm−1 + ρ

m
⌋ − ⌊

w3 + ρ

m
⌋)(4ν −m). Hence,
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m−1∑
j=1

(⌊
wj + ρ

m
⌋ − ⌊

wj−1 + ρ

m
⌋)(jν −m) + ρ

= (⌊
w1 + ρ

m
⌋ − ⌊

w0 + ρ

m
⌋)(ν −m)+(⌊

w2 + ρ

m
⌋ − ⌊

w1 + ρ

m
⌋)(2ν −m)+(⌊

w3 + ρ

m
⌋ − ⌊

w2 + ρ

m
⌋)(3ν −m)

+

m−1∑
j=4

(⌊
wj + ρ

m
⌋ − ⌊

wj−1 + ρ

m
⌋)(jν −m) + ρ

≥ ⌊
w1 + ρ

m
⌋(−ν)+⌊

w2 + ρ

m
⌋(−ν) + ⌊

w3 + ρ

m
⌋(3ν −m)+(⌊

wm−1 + ρ

m
⌋ − ⌊

w3 + ρ

m
⌋)(4ν −m) + ρ

≥
(
⌊
w2 + ρ

m
⌋(

−ν

2
) + ⌊

w3 + ρ

m
⌋(

−ν

2
)
)
+⌊

w2 + ρ

m
⌋(−ν)+⌊

w3 + ρ

m
⌋(3ν −m)

+(⌊
wm−1 + ρ

m
⌋ − ⌊

w3 + ρ

m
⌋)(4ν −m) + ρ

= ⌊
w2 + ρ

m
⌋(

−3ν
2

) + ⌊
w3 + ρ

m
⌋(

5ν
2

−m)+(⌊
wm−1 + ρ

m
⌋ − ⌊

w3 + ρ

m
⌋)(4ν −m) + ρ

= ⌊
w2 + ρ

m
⌋
(−3ν

2
+ (4ν −m)− (4ν −m)

)
+⌊

w3 + ρ

m
⌋(

5ν
2

−m)+(⌊
wm−1 + ρ

m
⌋ − ⌊

w3 + ρ

m
⌋)(4ν −m) + ρ

= ⌊
w2 + ρ

m
⌋(

5ν
2

−m) + ⌊
w3 + ρ

m
⌋(

5ν
2

−m) + (⌊
wm−1 + ρ

m
⌋ − ⌊

w2 + ρ

m
⌋ − ⌊

w3 + ρ

m
⌋)(4ν −m) + ρ

= ⌊
w2 + ρ

m
⌋(

3ν
2

− 6) + ⌊
w3 + ρ

m
⌋(

3ν
2

− 6) + (⌊
wm−1 + ρ

m
⌋ − ⌊

w2 + ρ

m
⌋ − ⌊

w3 + ρ

m
⌋)(3ν − 6) + ρ.

Hence,
m−1∑
j=1

(⌊
wj + ρ

m
⌋ − ⌊

wj−1 + ρ

m
⌋)(jν −m) + ρ ≥

⌊
w2 + ρ

m
⌋(

3ν
2

− 6) + ⌊
w3 + ρ

m
⌋(

3ν
2

− 6) + (⌊
wm−1 + ρ

m
⌋ − ⌊

w2 + ρ

m
⌋ − ⌊

w3 + ρ

m
⌋)(3ν − 6) + ρ.

(4.8)

We have wm−1 ≥ w2+w3, by Lemma 3.2, it follows that ⌊wm−1 + ρ

m
⌋ ≥ ⌊

w2 + ρ

m
⌋ + ⌊

w3 + ρ

m
⌋ − 1.

• If ⌊
wm−1 + ρ

m
⌋ − ⌊

w2 + ρ

m
⌋ − ⌊

w3 + ρ

m
⌋ ≥ 0, using ν ≥ 4 in (4.8) (ν ≤ 3 is solved [4]), we

get
m−1∑
j=1

(⌊
wj + ρ

m
⌋ − ⌊

wj−1 + ρ

m
⌋)(jν −m) + ρ ≥ 0.

• If ⌊
wm−1 + ρ

m
⌋ − ⌊

w2 + ρ

m
⌋ − ⌊

w3 + ρ

m
⌋ = −1. Then, ⌊

w2 + ρ

m
⌋ + ⌊

w3 + ρ

m
⌋ = ⌊

wm−1 + ρ

m
⌋ + 1,

that is
⌊
w2 + ρ

m
⌋ + ⌊

w3 + ρ

m
⌋ = q + 1. (4.9)

We have w3 + w3 ∈ Ap(S,m)∗\min(Ap(S,m)) namely w3 + w3 ∈ Ap(S,m), then
wm−1 ≥ w3 + w3. By Lemma 3.2, we have ⌊wm−1+ρ

m ⌋ ≥ 2⌊w3+ρ
m ⌋ − 1. In particular,

⌊
w3 + ρ

m
⌋ ≤

q + 1
2

. (4.10)

Since Wilf’s conjecture holds for q ≤ 3 ([5], [7]), so we may assume that q ≥ 4. Since
⌊w2+ρ

m ⌋ ≤ ⌊w3+ρ
m ⌋, by (4.9) and (4.10), it follows that ⌊w2+ρ

m ⌋ = ⌊w3+ρ
m ⌋ = q+1

2 , in
particular q is odd, so we have to assume that q ≥ 5. Now using Now using (4.9),
q ≥ 5 and the hypothesis (2 + 1

q )ν ≥ m = ν + 6 (in particular −6q ≥ −qν − ν) in
(4.8), we get
m−1∑
j=1

(⌊
wj + ρ

m
⌋ − ⌊

wj−1 + ρ

m
⌋)(jν −m) + ρ ≥ (q + 1)(

3ν
2

− 6)− (3ν − 6) + ρ

= ν(
3q
2

+
3
2
− 3)− 6q + ρ

≥ ν(
3q
2

−
3
2
)− qν − ν + ρ

= ν(
q

2
−

5
2
) + ρ ≥ 0.

By Proposition 2.3, S satisfies Wilf’s conjecture in this case.

By the results above we get that Wilf conjecture holds for numerical semigroups satisfying (2 +
1
q )ν ≥ m. More precisely we have the following.
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Theorem 4.12. Let the notations be as above. If (2+ 1
q )ν ≥ m, then S satisfies Wilf’s conjecture.

Proof. If m− ν ≤ 3, then by Lemma 4.5 Wilf’s conjecture holds.
If m− ν = 4, then by Corollary 4.7 Wilf’s conjecture holds.
If m− ν = 5, then by Theorem 4.9 Wilf’s conjecture holds.
If m− ν = 6 and (2 + 1

q )ν ≥ m, then by Lemma 4.11 Wilf’s conjecture holds.

If m− ν > 6 = 4(3)
2 and (2 + 1

q )ν ≥ m, then by Corollary 4.4 Wilf’s conjecture holds. �
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