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Abstract We define the classes of invo-nil and weakly invo-nil unital rings and explore their
algebraic structure. Our achieved results somewhat supply and continue the study of fine rings,
introduced by Cǎlugǎreanu-Lam (J. Algebra Appl., 2016).

1 Introduction and Background

Everywhere in the text of the present article, all our rings R are assumed to be associative,
containing the identity element 1, which differs from the zero element 0. Our terminology and
notations are mainly in agreement with [12]. For instance, Nil(R) denotes the set of all nilpotent
elements in R, and Nil2(R) is its subset consisting of all nilpotents of order ≤ 2 – thus 0 ∈
Nil2(R) (cf. [5] and [6]). Likewise, U(R) stands for the unit group of R with a subset Inv(R)
consisting of all invertible elements of order ≤ 2 – thus 1 ∈ Inv(R). As usual, J(R) designates
the Jacobson radical of R and Id(R) designates the set of all idempotents in R. We shall say that
a ring R is strongly indecomposable, provided Id(R) = {0, 1}.

On the one side, as defined in [13] and [1], respectively, a ring R is said to be clean if
R = U(R) + Id(R) and weakly clean if R = U(R) ± Id(R). In this way, as stated in [7] and
[8], respectively, a ring R is said to be invo-clean if R = Inv(R)+ Id(R) and weakly invo-clean
if R = Inv(R)± Id(R).

Similarly, a ring R is said to be nil-clean in [11] if R = Nil(R)+Id(R) and weakly nil-clean
in [2] if R = Nil(R)± Id(R).

The next relationships hold:

{nil-clean} ⇒ {weakly nil-clean} ⇒ {clean} ⇒ {weakly clean}

On the other side, imitating [3], a ring R is called fine if the equality R\{0} = U(R)+Nil(R)
holds (a significant generalization was done in [4]). However, this class of rings is quite large
and so difficult for a structural characterization. That is why, mimicking [5] or [6], a ring R is
called invo-fine if the equality R\{0} = Inv(R)+Nil(R) holds. Contrasting, this class of rings
is rather small because they are isomorphic to either Z2 or Z3. Nevertheless, this result allows us
to consider the ring Z4 which is then not invo-fine and hence not fine since U(Z4) = Inv(Z4).

In order to include this ring somewhere, of some interest is to consider those rings whose
elements are expressed as special sums of units and nilpotents. So, we are now in a position
to state the following new notion in the manner that the next ring class properly encompasses
the class of fine rings introduced in [3] (for an other significant generalization of fine rings the
interested reader can see also [4]).

Definition 1.1. We call a ring R unit-nil if, for each r ∈ R, there exist u ∈ U(R) and q ∈ Nil(R)
such that r = u+ q or r = u+ q + 1.

Definition 1.2. We call a ring R weakly unit-nil if, for each r ∈ R, there exist u ∈ U(R) and
q ∈ Nil(R) such that r = u+ q or r = u+ q + 1 or r = u+ q − 1.

Expectingly, these two classes of rings remain extremely big, so that we will restrict our
attention to the examination of the following two other expansions of invo-fine rings.
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Definition 1.3. We call a ring R invo-nil if, for each r ∈ R, there exist v ∈ Inv(R) and q ∈
Nil(R) such that r = v + q or r = v + q + 1.

Definition 1.4. We call a ring R weakly invo-nil if, for each r ∈ R, there exist v ∈ Inv(R) and
q ∈ Nil(R) such that r = v + q or r = v + q + 1 or r = v + q − 1.

Certainly, if 2 is a nilpotent, then these two concepts do coincide.
It is also readily seen that Z2, Z3 and Z4 are invo-nil rings, while Z5, Z6 ∼= Z2 × Z3 and

Z3 × Z3 are weakly invo-nil but not invo-nil. Besides, it is not too hard to check that Z2 × Z2
and Z5 × Z5 are not weakly invo-nil. In this direction, the element (1, 2) manifestly shows that
the direct products Z2 × Z4, Z3 × Z4 and Z4 × Z4 need not be weakly invo-nil, too. So, the
question of finding a suitable criterion when the direct product of two weakly invo-nil rings is
again a weakly invo-nil ring is worthwhile. These examples will be substantiated in the sequel
by the utilization of some statement (see, e.g., Lemma 2.1).

Our motivation for writing up the current paper is to try to describe the isomorphic struc-
ture of these two ring types, stated in Definitions 1.3 and 1.4. However, we have not done this
completely, because of the very intricate situation when the element 2 is nilpotent. Neverthe-
less some basic affirmations are proved, which allow us to obtain a more close look into the
substantial properties of these newly defined rings.

2 Main Results

The next technicality is useful as a starting point of view.

Lemma 2.1. The following three items are valid:
(i) Invo-nil rings are strongly indecomposable, whereas weakly invo-nil rings may be not.
(ii) In invo-nil rings either 2 or 3 are nilpotent elements.
(iii) In weakly invo-nil rings either 2 or 3 or 15 are nilpotent elements.

Proof. Point (i) follows thus: For an arbitrary e ∈ Id(R) we write e = v + q or e = v + q + 1
for some involution v and nilpotent q. Since v = (−q) + e or −v = q + (1 − e), the lemma
on involutions from ([4], [5], [6], [7]) applies to get that e = 1 or e = 0, as required. In this
direction, plain calculations show that the direct product Z3 × Z3 is weakly invo-nil.

Point (ii) has an analogous treatment to that of point (iii) below.
Point (iii) follows thus: Writing 3 = v+q or 3 = v+q+1 or 3 = v+q−1, we subsequently

deduce that 3−q = v or 2−q = v or 4−q = v. By squaring both sides, we have that 8 ∈ Nil(R)
or 3 ∈ Nil(R) or 15 ∈ Nil(R), i.e., 2 ∈ Nil(R) or 3 ∈ Nil(R) or 15 ∈ Nil(R), as stated.

This lemma exhibits some new non-commutative examples and relations as follows: Each
strongly indecomposable nil-clean ring is obviously invo-nil – in fact, R/J(R) ∼= Z2 and J(R)
is nil. Reversibly, the matrix ring M2(Z2) and its triangular subring T2(Z2) are both nil-clean but
not invo-nil since they contain non trivial, non central idempotents. Moreover, as already noticed
above, Z3 ×Z3 is a weakly invo-nil ring which is not weakly nil-clean (see [10]). However, easy
computations demonstrate that the ring Z3 × Z3 × Z3 is not weakly invo-nil. In fact, in this ring
the only nilpotent is the zero one. Considering the non-involution element (−1, 1, 0), it follows
that (−1, 1, 0) − (1, 1, 1) = (1, 0,−1) and that (−1, 1, 0) + (1, 1, 1) = (0,−1, 1) are not both
involutions, so that the direct product in question need not be weakly invo-nil, as asserted.

The following comments could be helpful.

Remark 2.2. In weakly invo-nil rings there exist non-trivial idempotents. In fact, if 3 = 0,
then one checks that −w − 1 is always a non-trivial idempotent whenever w2 = 1. Thus the
nonstandard presentation e = −w+0−1 is fulfilled when e ∈ Id(R) \ {0, 1} and w ∈ Inv(R) \
{−1, 1}.

We have now accumulated all the ingredients necessary to proceed by proving the following
central statement.

Theorem 2.3. Suppose that R is a ring. Then R is invo-nil with 3 ∈ Nil(R) if, and only if, J(R)
is nil and R/J(R) ∼= Z3. In particular, invo-nil rings having 3 as nilpotent are weakly nil-clean.
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Proof. "Necessity". We will show that each element in R is either a nilpotent or a unit. First,
we claim that all involutions are the trivial ones −1 and 1. In fact, since 2 ∈ U(R), it follows by
a direct check that v+1

2 is always an idempotent whenever v2 = 1. Employing now Lemma 2.1
(i), it must be that either v+1

2 = 0 or v+1
2 = 1. Therefore, either v = −1 or v = 1. So, for all

r ∈ R, we have four possibilities r = q ∈ Nil(R), r = −1 + q ∈ U(R), r = 1 + q ∈ U(R) and
r = 2+ q ∈ U(R), as promised. Notice that 2+ q ∈ −1+Nil(R). It is now clear that J(R) has
to be nil. Also, it is obvious that the ring R is local, that is, R/J(R) is a division ring. Since this
quotient does not have non-trivial nilpotents, it follows at once that it must contain only three
elements, as pursued.

"Sufficiency". It follows immediately that 3 ∈ J(R) ⊆ Nil(R) and thus 3 ∈ Nil(R).
Letting r ∈ R, we can write r+J(R) = J(R) or r+J(R) = −1+J(R) or r+J(R) = 1+J(R).
Hence r ∈ J(R) or r ∈ −1 + J(R) or r ∈ 1 + J(R), as wanted.

By what we have proved so far, the second part is now immediate.

The nil property of the Jacobson radical can be strengthened by the following observation.

Proposition 2.4. Let R be a weakly invo-nil ring such that 2 ∈ U(R). Then J(R) is nil.

Proof. For an arbitrary element z ∈ J(R), we write 2z = q+v+1 or 2z = q+v−1 for some q ∈
Nil(R) and v ∈ Inv(R) since one sees that the representation 2z = q+ v is impossible because
2z − v = q ∈ Nil(R) ∩ U(R) = ∅. Therefore, one writes that z = q

2 + v+1
2 ∈ Nil(R) + Id(R)

or z = q
2 − 1−v

2 ∈ Nil(R) − Id(R). Thus writing z = t+ e or z = t − f for some t ∈ Nil(R)
and e, f ∈ Id(R), we deduce that (z − e)n = 0 or (z + f)n = 0 for some n ∈ N. Consequently,
by expanding these two binomials, we get that e ∈ J(R) or f ∈ J(R). So, in both cases, e = 0
or f = 0 giving us that z = t, as required.

In closing our investigation whether or not J(R) is nil in general, one may state a few more
comments concerning that theme for invo-nil rings in the case when eventually 2 ∈ Nil(R).

Remark 2.5. We shall now discuss invo-nil rings and will illustrate that even in the case when
the index of nilpotence is at most 2 the situation is rather complicated. In fact, for such a ring R,
we will prove now that J(R) is nil if, and only if, for each its element z the record z = v+ q+ 1
for some v ∈ Inv(R) and q ∈ Nil(R) with q2 = 0 implies that vq is a nilpotent (note that the
presentation z = v + q is impossible, because z − v = q ∈ U(R) ∩Nil(R) = ∅). To that goal,
suppose first that z ∈ J(R) ⊆ Nil(R) with z = v + q + 1. Squaring z − 1 = v + q, we get
that vq + qv ∈ Nil(R). Since vq and qv are orthogonal elements, there exists i ∈ N such that
(vq)i + (qv)i = 0, i.e., (vq)i = −(qv)i. The multiplication of both sides by vq on the left allows
us to establish that (vq)i+1 = 0, which means that vq ∈ Nil(R), thus substantiating our claim.
Next, to treat the reverse, assume that for each element z = v + q + 1 in J(R) the product vq
is a nilpotent. Hence it is straightforward that qv is a nilpotent as well and, consequently, by
squaring z − 1 = v + q we deduce that z2 − 2z = vq + qv ∈ Nil(R) for all z ∈ J(R), since
(vq).(qv) = (qv).(vq) = 0. Replacing subsequently z by 2z and by z2 in the above containment,
we derive that 4z(z − 1) ∈ Nil(R), whence 4z ∈ Nil(R) because z − 1 ∈ U(R) and so
2z2 − 4z ∈ Nil(R) assures that 2z2 ∈ Nil(R), as well as that z4 − 2z3 ∈ Nil(R), whence
z4 ∈ Nil(R) because 2z3 ∈ Nil(R). We finally conclude that z ∈ Nil(R), as desired.

Finally, one may observe that the record z = v+q+1 forces that z is a sum of two nilpotents
whenever 2 is a nilpotent, because (v + 1)2 = 2(v + 1) ∈ Nil(R).

As noted above, because of the existence of non-trivial idempotents, the situation when 3 is
nilpotent in weakly invo-nil rings seems to be more complicated. Nevertheless the following is
true:

Proposition 2.6. If R is a weakly invo-nil ring with 3 ∈ Nil(R), then J(R) is nil and each
element in R is either clean or nil-clean. In particular, R is weakly clean.

Proof. Since 3 is a nilpotent, it follows that 2 is an invertible, so that J(R) is nil follows at once
owing to Proposition 2.4. For any r ∈ R writing 2r − 3 = v + q or 2r − 3 = v + q − 1 or
2r − 3 = v + q + 1, where q ∈ Nil(R), we obtain respectively that

• r = v+1
2 + q+2

2 ∈ Id(R) + U(R);
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• r = v+1
2 + q+1

2 ∈ Id(R) + U(R);

• r = v+1
2 + q+3

2 ∈ Id(R) +Nil(R), which can also be interpreted as r ∈ −(1 − Id(R)) +
(1 +Nil(R)) ⊆ −Id(R) + U(R).

The second part-half is now immediate.

A little more additional information is provided in the next commentary.

Remark 2.7. Similarly to Theorem 2.3 and bearing in mind Remark 2.2, what can be happen is
that if R is a weakly invo-nil ring with 3 ∈ Nil(R), then J(R) is nil and R/J(R) ∼= Z3 ×Z3. In
particular, is is well known that then R/J(R) has to be a clean ring which will enable us by [13]
that R is a clean ring, too.

What we can offer now for weakly invo-nil rings in the case when 5 is a nilpotent is the
following one:

Proposition 2.8. Let R be a weakly invo-nil ring in which 5 ∈ Nil(R). Then J(R) is nil and R
is clean. In addition, if R is with index of nilpotence ≤ 2, then R/J(R) ∼= Z5.

Proof. First of all, that J(R) is nil follows from Proposition 2.4.
For any r ∈ R one writes that 2r − 3 = v + q or 2r − 3 = v + q + 1 or 2r − 3 = v + q − 1

for some involution v and nilpotent q. Thus 2r = (v+ 1) + (q+ 2) or 2r = (v+ 1) + (q+ 3) or
2r = (v+1)+(q+1). Since 1+Nil(R) ⊆ U(R), one infers that 6 ∈ U(R), i.e., both 2 ∈ U(R)

and 3 ∈ U(R). Finally, one has that r = v+1
2 + q+2

2 or r = v+1
2 + q+3

2 or r = v+1
2 + q+1

2 . But
one follows that v+1

2 ∈ Id(R) and q+2
2 , q+3

2 , q+1
2 ∈ U(R), which substantiates our claim.

Assume now that all nilpotents in R are of order at most 2. Since 5 ∈ J(R) and R/J(R)
is obviously weakly invo-nil of characteristic 5, we may without loss of generality assume that
5 = 0 in R. We will show that R is strongly indecomposable. Given e ∈ Id(R), we write that
e = v + q or e = v + q + 1 or e = v + q − 1 for some v ∈ Inv(R) and q ∈ Nil2(R). In the first
two cases, as observed above, the involution lemma from ([4], [5], [6], [7]) can be applied to get
that either e = 0 or e = 1. As for the third case, writing e = v+q−1, we have 1+e = v+q and
by squaring both cases we obtain that 3e = vq+qv. Therefore, 3eq = qvq = 3qe and so eq = qe
because 3 ∈ U(R) with the inverse 2. That is why, ev = ve and qv = vq. But one verifies that
1 + e is a unit with the inverse 1 + 2e, say (1 + e)(1 + 2e) = 1 = (1 + 2e)(1 + e), and so by
substituting we deduce that (v+ q)(2v+ 2q− 1) = 1 which is equivalent to −vq− v− q = −1,
i.e., −vq = e ∈ Nil(R) ∩ Id(R) = {0}. Finally, Id(R) = {0, 1}, as asserted.

Since 2 ∈ U(R), as in the proof of Theorem 2.3, one derives that v = {−1, 1} and hence
all elements of R are of the kind 1 + q, −1 + q, 2 + q, q, −2 + q, so that they are either units
or nilpotents. But thereby R/J(R) must be a local rings, that is, R/J(R) has to be a division
ring. That is why in R/J(R) there are no non-zero nilpotent elements, whence all elements in
this factor-ring are the fifth different elements {−2,−1, 0, 1, 2}. This observation leads us to
R/J(R) is necessarily isomorphic to the five element field, as stated.

As an immediate consequence, combining Propositions 2.6 and 2.8, we can deduce:

Corollary 2.9. If R is a weakly invo-nil ring with 15 ∈ Nil(R), then J(R) is nil and R is weakly
clean.

Summarizing all of the above structural statements, one can state the following unifiable
result.

Theorem 2.10. A ring R is weakly invo-nil ⇐⇒ R ∼= R1 × R2, where either R1 = {0} or R1
is an invo-nil ring in which 2 is a nilpotent and either R2 = {0} or R2 is a weakly invo-nil ring
that is a weakly clean ring in which J(R) is nil and 15 is a nilpotent.

Proof. It follows at once in virtue of a subsequent application of Lemma 2.1 (iii), the Chinese
Reminder Theorem and the previous corollary.
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3 Left-Open Problems

We finish off our work with the next two questions of some importance, which treat a common
generalization of the rings from Definitions 1.3 and 1.4.

Problem 3.1. Classify invo-nil-clean rings, that are rings R for which each element r ∈ R
satisfies the equality r = v + q + e for some v ∈ Inv(R), q ∈ Nil(R) and e ∈ Id(R).

Apparently, invo-clean rings defined as in [7] are invo-nil-clean when q = 0. Moreover, invo-
fine rings from ([5], [6]) are invo-nil-clean by taking e = 0 for r ̸= 0, and v = −1, q = 0, e = 1
for r = 0. Besides, nil-clean rings as stated in [11] are invo-nil-clean; in fact, r = q− e could be
written like this r = (−1) + q + (1 − e), as needed.

In a way of similarity, we may state:

Problem 3.2. Classify weakly invo-nil-clean rings, that are rings R for which each element r ∈ R
satisfies the equalities r = v + q + e or r = v + q − e for some v ∈ Inv(R), q ∈ Nil(R) and
e ∈ Id(R).

Evidently, weakly invo-clean rings defined as in [8] are weakly invo-nil-clean when q = 0.
Likewise, weakly nil-clean rings as posed in [2] are weakly invo-nil-clean; indeed, r = q + e
could be written like this r = 1 + q − (1 − e), as required.
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