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Abstract The goal of this paper is to provide an efficient method for computing the quasi-
arithmetic power means of two positive matrices with parameter (p, α) by using the continued
fractions with matrix arguments. Furthermore, we give some numerical examples which illus-
trated the theoretical results.

1 Introduction

Over the last two centuries, the theory of continued fractions has been a topic of extensive study.
The basic idea of this theory over real numbers is to give an approximation of various real num-
bers by the rational ones. A continued fraction is an expression obtained through an iterative
process of representing a number as the sum of its integer part and the reciprocal of another
number, then writing this other number as the sum of its integer part and another reciprocal,
and so on. One of the main reasons why continued fractions are so useful in computation is that
they often provide representation for transcendental functions that are much more generally valid
than the classical representation by, say, the power series. Further; in the convergent case, the
continued fractions expansions have the advantage that they converge more rapidly than other
numerical algorithms.
Recently, the extension of continued fractions theory from real numbers to the matrix case has
seen several developments and interesting applications. Since calculations involving matrix val-
ued functions with matrix arguments are feasible with large computers, it will be an interesting
attempt to develop such matrix theory.

In mathematics and statistics, the quasi-arithmetic mean or generalized f -mean is one gener-
alization of the more familiar means such as the arithmetic mean and the geometric mean using
a function f . It is also called Kolmogorov mean after Russian scientist Andrey Kolmogorov.
The importance of quasi-arithmetic means has been well understood at least since the 1930s,
and a number of writers have since contributed to their characterisation and to the study of their
properties. Quasi-arithmetic means, in particular, have been applied in several disciplines. Their
functional form has been used in the theory of copulas under the name of Archimedean copulas
[3] and a rich literature can be found under this name. In the theory of aggregation operators and
fuzzy measures, a growing literature related to the use of quasi-arithmetics includes the works of
Frank (1979), Hajek (1998), Kolesarova (2001), Klement et al. (1999), Grabish (1995), Calvo
and Mesiar [2].
The definition of the quasi-arithmetic power mean with parameter (p,α), defined for A > 0 and
B > 0 is given as follows :

fp,α(A,B) = A1/2((1− α)I + α(A−1/2BA−1/2)p)1/pA1/2. (1.1)

In a practical context, the computation of fp,α(A,B) imposes many difficulties by virtue of
the appearance of the rational exponents of matrices. One fundamental motivation and goal of
this paper is to remove this difficulty and reveal a practical method involving matrix continued
fractions, for the computation of fp,α(A,B).
The class of quasi-arithmetic power means contain many kinds of means: the mean f1,α(A,B) is
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the α-weighed arithmetic mean. The case f0,α(A,B) is the α-weighed geometric mean (this case
is understood that we take limit as p−→0). The case f−1,α(A,B) is the α-weighed harmonic
mean. The mean fp,1/2(A,B) is the power mean or binomial mean of order p. However, the
rational exponents of matrices in fp,α(A,B) imposes many difficulties. In this paper we gives a
practical method, involving matrix continued fractions, for the computation of quasi-arithmetic
power mean with parameter (p,α).

2 DEFINITIONS AND NOTATIONS

Throughout this paper, Mm will represent an algebra of real (or complex) matrices of sizes
m×m. Since the complex case can be stated similarly to the real case, then we limit our atten-
tion to the last case.

Let A ∈ Mm, A is said to be positive semidefinite (resp. positive definite) if A is symmet-
ric and

∀x ∈ IRm, (Ax, x) ≥ 0 ( resp. ∀x ∈ IRm, x 6= 0 (Ax, x) > 0)

where (., .) denotes the standard scalar product of IRm.

We observe that positive semidefiniteness induces a partial ordering on the space of symmetric
matrices: if A and B are two symmetric matrices, we write A ≤ B if B −A is positive semidef-
inite. Henceforth, whenever we say that A ∈ Mm is positive semidefinite (or positive definite),
it will be assumed that A is symmetric. It is easy to see that if A ≤ B then CAC ≤ CBC for
any symmetric matrix C.
For any matrices A,B ∈ Mm with B invertible, we write A/B := B−1A, in particular, if A=I,
the identity matrix , then I/B = B−1. It is easy to verify that for any invertible matrix X we
have

A

B
=
XA

XB
.

Now, we introduce some topological notions of continued fractions with matrix arguments.

We provideMm with the standard induced norm(Definition 5.6.1 in [5]):

∀A ∈Mm, ‖A‖ = Supx 6=0
‖Ax‖
‖x‖

= Sup‖x‖=1‖Ax‖.

Let {An} be a sequence of matrices inMm. We say that {An} converges inMm if there exists
a matrix A ∈ Mm such that ‖An − A‖ tends to 0 when n tends to +∞. In this case we write,
An −→ A or limn→+∞An = A.

Definition 2.1. ([9, p.116]) Let {An}n≥0 and {Bn}n≥1 be two sequences of matrices in Mm.
We denote the continued fraction expansion by

A0 +
B1

A1 +
B2

A2 + ....

:=
[
A0;

B1

A1
,
B2

A2
, ...

]
.

Sometimes, we denote this continued fraction by
[
A0;

Bn
An

]+∞
n=1

or K (Bn/An), where

[
A0;

Bi
Ai

]n
i=1

=

[
A0;

B1

A1
, ...,

Bn
An

]
= A0 +

B1

A1 +
B2

A2 + ....+
Bn
An

The fractions
Bn
An

and
Pn
Qn

:=
[
A0;

Bi
Ai

]n
i=1

are called, respectively, the nth partial quotient and
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the nth convergent
of the continued fraction K (Bn/An).

The continued fraction
[
A0,

Bk
Ak

]+∞
k=1

is said to be convergent inMm if the sequence {Pn/Qn}n =

{Q−1
n Pn}n

converges inMm in the sense that there exists a matrix F ∈Mm such that limn→+∞ ‖Fn−F‖ =
0.
In this case, we denote

F =

[
A0;

Bn
An

]+∞
n=1

.

If Ak = A and Bk = B for all k ≥ 1, then we abbreviate[
A0;

Bk
Ak

]+∞
k=1

=

[
A0;

B

A

]+∞
1

.

We note that the evaluation of nth convergent according to Definition 2.1 is not practical because
we have to repeatedly invert matrices. The following proposition gives an adequate method to
calculate K (Bn/An).

Proposition 2.2. ([8]) For the continued fraction K (Bn/An), define{
P−1 = I, P0 = A0

Q−1 = 0, Q0 = I
and

{
Pn = An Pn−1 +BnPn−2

Qn = An Qn−1 +BnQn−2
n ≥ 1. (2.1)

Then the matrix Pn/Qn is the nth convergent of K (Bn/An).

Proof. The proof of the next proposition is elementary and we leave it to the reader.

Proposition 2.3. For any two matrices C and D with C invertible, we have

C

[
A0;

Bk
Ak

]n
k=1

D =

[
CA0D;

B1D

A1C−1 ,
B2C

−1

A2
,
Bk
Ak

]n
k=3

.

Definition 2.4. Let {An}, {Bn} {Cn} and {Dn} be four sequences of matrices. We say that the
continued fractionsK(Bn/An) andK(Dn/Cn) are equivalent if we have Fn = Gn for all n ≥ 1,
where Fn and Gn are the nth convergents of K(Bn/An) and K(Dn/Cn) respectively.

In order to simplify the statements on some partial quotients of continued fractions with ma-
trix arguments, we need the following proposition which is an example of equivalent continued
fractions.

Proposition 2.5. ([10]) Let b
[
A0;

Bk
Ak

]+∞
k=1

be a given continued fraction. Then

Pn
Qn

:=
[
A0;

Bk
Ak

]n
k=1

=

[
A0;

XkBkX
−1
k−2

XkAkX
−1
k−1

]n
k=1

,

where X−1 = X0 = I and X1, X2, ..., Xn are arbitrary invertible matrices.

Now, we end this section by giving a continued fraction expansion of the matrix Aα.

Lemma 2.6. ([9]) Let A ∈Mm be a positive definite matrix and α a positive real number. Then,
Aα can be written as follows

Aα =

[
I;

2αΦ(A)

−I − αΦ(A)
,
(α2 − k2)(Φ(A))2

−(2k + 1)I

]+∞
k=1

, (2.2)

where, by definition, we put Φ(A) =
I −A
I +A

.
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3 MAIN RESULTS

This section is devoted to give a continued fraction expansion of the quasi-arithmetic power
mean with parameter (p, α) of two postive matrices A and B given by fp,α(A,B) = A1/2((1 −
α)I + α(A−1/2BA−1/2)p)1/pA1/2.
We can easily verify that f1,α(A,B) = (1 − α)A+ αB. Then, we restrict ourselves to the case
where p 6= 1

Lemma 3.1. Let A,B ∈Mm be a positive definite matrices, α a real number such that 0 ≤ α ≤
1 and p 6= 1 be a strictly positive integer. Then

((1− α)I + α(A−1/2BA−1/2)p)1/p =

[
I;
Bn
An

]+∞
n=1

,
B1 = 2

α

p
A1/2 L

K
A−1/2,

A1 = −I −
α

p
A1/2 L

K
A−1/2,

(3.1)

and 

B2 = α2( 1
p2 − 1)A1/2

(
L

K

)2

A−1/2, ,

Bn = α2( 1
p2 − (n− 1)2)A1/2

(
L

K

)2

A−1/2, for all n ≥ 3,

An = −(2n− 1)I, for all n ≥ 2.

(3.2)

where L = A−B(A−1B)p−1 and K = (2− α)A+ αB(A−1B)p−1.

Proof. According to Lemma 2.6, we have

((1−α)I+α(A−1/2BA−1/2)p)1/p =

[
I;

2Φ(C)

−pI −Φ(C)
,
(1/p− p)(Φ(C))2

−3I
,
(1/p2 − k2)(Φ(C))2

−(2k + 1)I

]+∞
k=2

,

(3.3)
where C = (1− α)I + α(A−1/2BA−1/2)p) and Φ(C) = I−C

I+C .
But

Φ(C) = α(I−(A−1/2BA−1/2)p)
(2−α)I+(A−1/2BA−1/2)p

= αA−1/2(A−B(A−1B)p−1)A−1/2

A−1/2((2−α)A+B(A−1B)p−1)A−1/2

= αA1/2 L
KA
−1/2,

where L = A−B(A−1B)p−1 and K = (2− α)A+B(A−1B)p−1.
This completes the proof.

Theorem 3.2. Let A,B ∈ Mm be two positive definite matrices, α be a real number such that
0 ≤ α ≤ 1 and p be a strictly positive integer. Then a continued fraction expansion of fα,p(A,B)
is given by:

fp,α(A,B) =

[
A;

Bn
An

]+∞
n=1

,

where we set 
B1 = 2

α

p

L

K
,

A1 = −A−1 − α

p

L

K
A−1,

(3.4)
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and 

B2 = α2(1/p2 − 1)
(
L

K

)2

A−1,

Bn = α2(1/p2 − (n− 1)2)

(
L

K

)2

, for all n ≥ 3,

An = −(2n− 1)I, for every n ≥ 2,

(3.5)

where L = A−B(A−1B)p−1 and K = (2− α)A+ αB(A−1B)p−1.

Proof. We have

A−1/2fp,α(A,B)A
−1/2 = ((1− α)I + α(A−1/2BA−1/2)p)1/p

Defining the sequences (P̃n)n≥−1 and (Q̃n)n≥−1 as follows


P̃0 = I, P̃−1 = I, P̃1 = −I +

α

p

I − (A−1/2BA−1/2)p

(2− α)I + α(A−1/2BA−1/2)p

P̃n = −(2n− 1)P̃n−1 + α2(1/p2 − (n− 1)2)

(
I − (A−1/2BA−1/2)p

(2− α)I + α(A−1/2BA−1/2)p

)2

P̃n−2, for n ≥ 2,

(3.6)

and


Q̃0 = I, Q̃−1 = 0, Q̃1 = −I −

α

p

I − (A−1/2BA−1/2)p

(2− α)I + α(A−1/2BA−1/2)p

Q̃n = −(2n− 1)Q̃n−1 + α2(1/p2 − (n− 1)2)

(
I − (A−1/2BA−1/2)p

(2− α)I + α(A−1/2BA−1/2)p

)2

Q̃n−2, for n ≥ 2.

(3.7)

A slight modification in (3.6) and (3.7) gives


P̃0 = I, P̃−1 = I, P̃1 = −I +

α

p
A1/2 L

K
A−1/2

P̃n = −(2n− 1)P̃n−1 + α2(1/p2 − (n− 1)2)A1/2
(
L

K

)2

A−1/2P̃n−2, for n ≥ 2.

(3.8)

and


Q̃0 = I, Q̃−1 = 0, Q̃1 = −I −

α

p
A1/2 L

K
A−1/2

Q̃n = −(2n− 1)Q̃n−1 + α2( 1
p2 − (n− 1)2)A1/2

(
L

K

)2

A−1/2Q̃n−2, for n ≥ 2,

(3.9)

respectively, where L = A−B(A−1B)p−1 and K = (2− α)A+ αB(A−1B)p−1.
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Proposition 2.1 gives that the ratio
P̃n

Q̃n
is the nth convergent of the continued fraction

I;

2α
p

∆

−I − α

p
∆

,
α2(1/p2 − n2)∆2

−(2n+ 1)I


+∞

n=1

where ∆ = A1/2 L

K
A−1/2 and

P̃n

Q̃n
converges to ((1− α)I + α(A−1/2BA−1/2)p)1/p.

Considering now the following sequences (Pn)n≥−1 and (Qn)n≥−1 such that


P−1 = 0, P0 = A, Pn = ÂnPn−1 + B̂nPn−2,

Q−1 = 0, Q0 = I, Qn = ÂnQn−1 + B̂nQn−2,

where 

Â0 = A, Â1 = −A−1/2 − 1
pA

1/2DA−1,

Ân = −(2n− 1)I, for each n ≥ 2

B̂1 =
2
pA

1/2D, B̂2 = ( 1
p2 − 1)A1/2D2A−1,

B̂n = ( 1
p2 − (n− 1)2)A1/2D2A−1/2, for all n ≥ 3

D = α
L

K
.

Using Proposition 2.2 together with (3.5) and (3.6), we conclude that
Pn
Qn

is the nth conver-

gent of

A1/2

I;

2α
p

∆

−I − α

p
∆

,
α2(1/p2 − n2)∆2

−(2n+ 1)I


+∞

n=1

A1/2

and for all n ≥ 0, we have
Pn
Qn

= A1/2 P̃n

Q̃n
A1/2.

Hence,
(
Pn
Qn

)
converges to A1/2((1− α)I + α(A−1/2BA−1/2)p)1/pA1/2 = fp,α(A,B).

Let us take

{
X−1 = X0 = I,

Xn = A−1/2, for every n ≥ 1.

Then we obtain

X1B̂1X
−1
−1

X1Â1X
−1
0

=
2
pD

−A−1 − 1
pDA

−1
,

X2B̂2X
−1
0

X2Â2X
−1
1

=
( 1
p2 − 1)D2A−1

−3I
,

XnB̂nX
−1
n−2

XnÂnX
−1
n−1

=
( 1
p2 − (n− 1)2)D2

−(2n− 1)I
for all n ≥ 3.
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Using Proposition 2.3, we conclude that

Pn
Qn

=

[
Â0,

B̂k

Âk

]n
k=1

=

[
A,

Bk
Ak

]n
k=1

.

Remark 3.3. Let A,B ∈ Mm be two positive definite matrices, α a real number such that
0 ≤ α ≤ 1 and p 6= 1 be a strictly positive integer.

1) If p = 2 we have

f2,α(A,B) = A1/2(A−1/2((1− α)A+ αBA−1B)A−1/2)1/2A1/2.

Accordingly
f2,α(A,B) = A1/2(A−1/2C1A

−1/2)1/2A1/2,

where C1 = (1 − α)A + αBA−1B. It follows that f2,α(A,B) = g2(A,C1) is the geometric
matrix mean of the matrices A and C1. Hence f2,α(A,B) is the unique solution of the matrix
equation

XA−1X = (1− α)A+ αBA−1B. (3.10)

2) If p = 3 we have

f3,α(A,B) = A1/2(A−1/2((1− α)A+ αB(A−1B)2)A−1/2)1/3A1/2.

Accordingly
f3,α(A,B) = A1/2(A−1/2C2A

−1/2)1/3A1/2 = g3(A,C2),

where C2 = (1− α)A+ αB(A−1B)2.

By virtue of Theorem 3.2, we conclude that f3,α(A,B) is the unique positive definite solution of

XA−1XA−1X = (1− α)A+ αB(A−1B)2. (3.11)

3) If A and B are two positive definite matrices such that AB = BA, then

fp,α(A,B) = ((1− α)Ap + αBp)
1
p .

Therefore
fp,α(A,A) = A

4 NUMERICAL APPLICATIONS

In this section, we present some numerical experiments of our theoretical results. We will deal
with two cases:

1) The real case. Let us consider the function f(x) = f2,1/2(x, 1) =
√

1
2x

2 + 1
2 . Using

Theorem 3.2 in real case, the first convergents of f(x) are given by:

f1(x) =
P1

Q1
(x) =

(5x2 + 3)x
7x2 + 1

f2(x) =
P2

Q2
(x) =

(29x4 + 30x2 + 5)x
41x4 + 22x2 + 1

f3(x) =
P3

Q3
(x) =

(169x6 + 245x4 + 91x2 + 7)x
232x6 + 227x4 + 45x2 + 1

.
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The following graphics illustrate the approximation of f(x) in terms of continued fractions.

Iteration 1:

Iteration 2:
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Iteration 3:

The graphics C(fi) represent Pi

Qi
(x). It can be seen that the curves C(f) and (Cfi) are close

to each other from the first values of x. Then we deduce that good approximations of f(x) are
obtained from the first iterations.

2)The matrix case.

Let A =

 3 1 1
1 3 1
1 1 3

 and B =

 4 1 1
1 4 1
1 1 4


The solution of the equation

XA−1X =
1
2
(A+BA−1B)

is X =


1
6

√
61
√

2 + 1
3

√
13
√

2 1
6

√
61
√

2− 1
6

√
13
√

2 1
6

√
61
√

2− 1
6

√
13
√

2
1
6

√
61
√

2− 1
6

√
13
√

2 1
6

√
61
√

2 + 1
3

√
13
√

2 1
6

√
61
√

2− 1
6

√
13
√

2
1
6

√
61
√

2− 1
6

√
13
√

2 1
6

√
61
√

2− 1
6

√
13
√

2 1
6

√
61
√

2 + 1
3

√
13
√

2

 ,

and thus

X =

 3.54056667400999991 0.991056918009999954 0.991056918029999956
0.991056918009999954 3.54056667400999991 0.991056918029999956
0.991056917999999953 0.991056917999999953 3.54056667399999991


According to remark 3.4, it is clear that X = f2,1/2(A,B)

Using Theorem 3.2, we can obtain the following approximations of this solution

F1 =

 3.53413603176636304 0.993595491225823247 0.993595491225823247
0.993595491225822913 3.53413603176636393 0.993595491225823024
0.993595491225823024 0.993595491225823135 3.53413603176636393
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F2 =

 3.54047817549171473 0.991099496616634212 0.99109949661663410
0.991099496616633657 3.54047817549171562 0.991099496616633990
0.991099496616633768 0.991099496616633879 3.54047817549171562



F3 =

 3.54056539643065093 0.991057551961279093 0.991057551961279204
0.991057551961278760 3.54056539643065138 0.991057551961278982
0.991057551961278871 0.991057551961278871 3.54056539643065138



F4 =

 3.54056665545622806 0.991056926558535056 0.991056926558534945
0.991056926558534501 3.54056665545622895 0.991056926558534834
0.991056926558534834 0.991056926558534945 3.54056665545622939



F5 =

 3.54056667379078149 0.991056917401399673 0.991056917401399784
0.991056917401399451 3.54056667379078149 0.991056917401399673
0.991056917401399562 0.991056917401399562 3.54056667379078149


We can see that the speed of convergence is quick from the first iterations.
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