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Abstract Let R be a commutative ring with identity, Z(R) its set of all zero-divisors, and
H a nonempty proper multiplicative prime subset of R. The generalized total graph GTH(R)
of R is the simple undirected graph with vertex set R and two distinct vertices x and y are
adjacent if and only if x + y ∈ H. If we take R as the field F and H = {0}, we designate the
graph as the generalized total graph of the field F and denote the same as GT (F ). In this paper,
we investigate several graph theoretical properties of the generalized total graph GT (F ) and its
complement GT (F ). In particular, we discuss about properties like Eulerian and Hamiltonian
for GT (F ).

1 Introduction

Throughout this paper R denotes a commutative ring with identity, Z(R) its set of zero-divisors
and Z∗(R) = Z(R) \ {0}. Anderson and Livingston [4] introduced the zero-divisor graph of R,
denoted by Γ(R), as the simple undirected graph with vertex set Z∗(R) and two distinct vertices
x, y ∈ Z∗(R) are adjacent if and only if xy = 0. Subsequently, Anderson and Badawi [3]
introduced the concept of the total graph of a commutative ring. The total graph TΓ(R) of R
is the undirected graph with vertex set R and for distinct x, y ∈ R are adjacent if and only if
x+ y ∈ Z(R). Tamizh Chelvam and Asir [6, 13, 14, 15, 16] have extensively studied about the
total graph. For a complete detail about total graphs one can refer the survey [7, 12].

Recently, Anderson and Badawi [3] introduced the concept of the generalized total graph of
a commutative ring R. A nonempty proper subset H of R to be a multiplicative prime subset of
R if the following two conditions hold: (i) ab ∈ H for every a ∈ H and b ∈ R; (ii) if ab ∈ H for
a, b ∈ R, then either a ∈ H or b ∈ H. For a multiplicative prime subset H of R, the generalized
total graph GTH(R) of R is the simple undirected graph with vertex set R and two distinct
vertices x and y are adjacent if and only if x+ y ∈ H. For example, every prime ideal, union of
prime ideals and H = R\U(R) are some of the multiplicative-prime subsets of R. If H = Z(R),
then Total graph and Generalized Total graph are one and the same. The unit graph G(R) of R
is the simple graph with vertex set R in which two distinct vertices x and y are adjacent if and
only if x + y ∈ U(R). One may note that generalized total graph gives the scope to associate
graph with even fields and integral domains.

Let G = (V,E) be a graph. We say that G is connected if there is a path between any two
distinct vertices of G. The complement G of the graph G is the simple graph with vertex set
V (G) and two distinct vertices x and y are adjacent in G if and only if they are not adjacent in
G. For a vertex v ∈ V (G), deg(v) is the degree of v. For any graph G, δ(G) and ∆(G) denote the
minimum and maximum degree of vertices in G respectively. Kn denotes the complete graph of
order n and Km,n denotes the complete bipartite graph. For basic definitions in graph theory, we
refer the reader to [10]. For the terms in graph theory which are not explicitly mentioned here,
one can refer [10], for the terms regarding algebra one can refer [9]. Note that if R is finite, then
GTZ(R)(R) is the unit graph [8].
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A nonempty subset S of V is called a dominating set if every vertex in V \ S is adjacent
to at least one vertex in S. A subset S of V is called a total dominating set if every vertex
in V is adjacent to some vertex in S. A dominating set S is called a connected (or clique)
dominating set if the subgraph induced by S is connected (or complete). A dominating set S is
called an independent dominating set if no two vertices of S are adjacent. A dominating set S
is called a perfect dominating set if every vertex in V \ S is adjacent to exactly one vertex in
S. A dominating set S is called an efficient dominating set if S is both independent and perfect
dominating set of G. A dominating set S is called a strong (or weak) dominating set, if for
every vertex u ∈ V \ S there is a vertex v ∈ S with deg(v) ≥ deg(u)(or deg(v) ≤ deg(u))
and u is adjacent to v. A graph G is called excellent if, for every vertex v ∈ V (G), there is a
γ-set S containing v. The domination number γ of G is defined to be the minimum cardinality
of a dominating set in G and the corresponding dominating set is called as a γ-set of G. In
a similar way, we define the total domination number γt, connected domination number γc,
clique domination number γcl, independent domination number γi, perfect domination number
γp, efficient domination number γeff , strong domination number γs and the weak domination
number γw. For all these definitions, one can refer Haynes et al., [11].

Throughout this paper F denotes a finite field. In a field F, {0} is the only prime ideal. When
R is the field F and H = {0}, we designate the graph as the generalized total graph of the field F
and denote the same as GT (F ). In this paper, we investigate several graph theoretical properties
of the generalized total graph GT (F ) and its complement GT (F ). In particular, we investigate
the structure of GT (F ) and GT (F ). More specifically, we determine the domination number of
GT (F ) and GT (F ). Having determined the domination number, we characterize all gamma sets
in GT (F ) and GT (F ).

In Section 2, we study the graph theoretical properties namely clique, chromatic, indepen-
dence and covering numbers of GT (F ), and the various domination parameters of GT (F ). In
Section 3, we study the graph theoretical properties namely diameter, girth, radius, clique num-
ber, chromatic number, Eulerian and Hamiltonian of GT (F ). In Section 4, we study about the
independence and covering numbers of GT (F ). In Section 5, we study about the various domi-
nation parameters of GT (F ) and further obtain domatic number of GT (F ).

2 Properties of GT (F )

In this section, we discuss about some special graph theoretical properties like clique, chro-
matic, independence, covering numbers and the various domination parameters of GT (F ). We
make use the following Theorem, which gives the structure for the generalized total graph of a
commutative ring.

Theorem 2.1. ([3, Theorem 2.2]) Let P be a prime ideal of a finite commutative ring R, and let
|P | = λ and |R/P | = µ.

(i) If 2 ∈ H , then GTH(R \ P ) is the union of µ− 1 disjoint Kλ’s;

(ii) If 2 /∈ H , then GTH(R \ P ) is the union of µ−1
2 disjoint Kλ,λ’s.

Note that GT (F ) is the generalized total graph of the field F with the unique multiplicative
prime subset {0}. If F is a field with of characteristic 2, then x+ x = 0 for every x ∈ F. When
the characteristic of the field F is greater than 2, for any 0 ̸= x ∈ F, x ̸= −x and x+ (−x) = 0.
In view of these, one can have the following structure for GT (F ).

Lemma 2.2. Let F be a finite field. Then

GT (F ) =


K1 ∪ · · · ∪K1︸ ︷︷ ︸

|F | copies

if char(F ) = 2;

K1 ∪K1,1 ∪ · · · ∪K1,1︸ ︷︷ ︸
|F |−1

2 copies

if char(F ) > 2.

Recall that, a clique in a graph G is a complete subgraph of G. The order of the largest clique
in a graph G is its clique number, which is denoted by ω(G). An assignment of colors to the
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vertices of a graph G so that adjacent vertices are assigned different colors is called a coloring
of G. The smallest number of colors in any coloring of a graph G is called the chromatic number
of G and is denoted by χ(G).

The following Lemma follows from Lemma 2.2.

Lemma 2.3. Let F be a finite field. Then the following are true:

(i) ω(GT (F )) =

{
1 if char(F ) = 2;
2 if char(F ) > 2.

(ii) χ(GT (F )) =

{
1 if char(F ) = 2;
2 if char(F ) > 2.

Note that, a set of vertices in a graph is independent if no two vertices in the set are adjacent.
The vertex independence number (or the independence number) β(G) of a graph G is the max-
imum cardinality of an independent set of vertices in G. A vertex cover in a graph G is a set of
vertices that covers all the edges of G. The minimum number of vertices in a vertex cover of G
is the vertex covering number α(G) of G. The edge independence number β1(G) of a graph G is
the maximum cardinality of an independent set of edges. The edge covering number α1(G) of a
graph G is the minimum cardinality of an edge cover of G. A graph G is said to be well-covered
if γi(G) = β(G). In the following lemma, we obtain the vertex independence number of the
generalized total graph GT (F ).

Lemma 2.4. Let F be a finite field. Then

(i) The vertex independence number

β(GT (F )) =

{
|F | if char(F ) = 2;
|F |+1

2 if char(F ) > 2.

(ii) If char(F ) > 2, then the edge independence number, β1(GT (F )) = |F |−1
2 .

In the following Lemma, we obtain the vertex covering number of the generalized total graph
GT (F ).

Lemma 2.5. Let F be a finite field. Then the following are true:

(i) The vertex covering number α(GT (F )) =

{
0 if char(F ) = 2;
|F |−1

2 if char(F ) > 2.

(ii) The edge covering number, α1(GT (F )) = 0.

In the following Lemma, we obtain the domination number of the generalized total graph
GT (F ).

Lemma 2.6. Let F be a finite field. Then the following are true:

(i) γ(GT (F )) =

{
|F | if char(F ) = 2;
|F |+1

2 if char(F ) > 2.

(ii) GT (F ) is an excellent graph;

(iii) γi(GT (F )) = γp(GT (F )) = γeff (GT (F )) =

{
|F | if char(F ) = 2;
|F |+1

2 if char(F ) > 2.

(iv) GT (F ) is well-covered;

(v) γs(GT (F )) = γw(GT (F )) =

{
|F | if char(F ) = 2;
|F |+1

2 if char(F ) > 2.
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3 Properties of GT (F )

In this section, we discuss about some graph theoretical properties like diameter, girth, radius,
Eulerian and Hamiltonian of GT (F ). In view of the Lemma 2.2, we have the following structure
Lemma for the complement GT (F ).

Lemma 3.1. Let F be a finite field. Then the following are true:

(i) If char(F ) = 2, then GT (F ) = K|F |;

(ii) If char(F ) > 2, then GT (F ) is a connected bi-regular graph with ∆ = |F | − 1 and
δ = |F | − 2.

In the following results, we discuss about the girth, clique and chromatic numbers of GT (F ).
The length of a smallest cycle in a graph is called as the girth. Note that if G contains a cycle,
then gr(G) ≤ 2 diam(G) + 1. Using the result on diameter, we obtain the girth of GT (F ).

Lemma 3.2. Let F be a finite field. Then gr(GT (F )) =

{
∞ if |F | = 2, 3;
3 if |F | ≥ 5.

Proof. If |F | = 2, then F ∼= Z2 and so GT (F ) = K2. If |F | = 3, then F ∼= Z3 and so
GT (F ) = P3. Therefore gr(GT (F )) = ∞ for both cases. Assume that |F | ≥ 5. Suppose
char(F ) = 2. By Lemma 3.1(i), GT (F ) = K|F | and so gr(GT (F )) = 3. Suppose char(F ) > 2.
Consider the set S = {0, x, y} where x ̸= y and x+ y ̸= 0. Clearly the subgraph induced by the
set S is C3 and so gr(GT (F )) = 3.

In the following Lemma, we obtain the clique number of GT (F ).

Lemma 3.3. Let F be a finite field.

Then ω(GT (F )) =

{
|F | if char(F ) = 2;
|F |+1

2 if char(F ) > 2.

Proof. Suppose char(F ) = 2. Then by Lemma 3.1(i), GT (F ) = K|F | and so ω(GT (F )) = |F |.
Suppose char(F ) > 2. Let S = {0, x1, . . . , x |F |−1

2
} ⊂ V (GT (F )), where no two non zero

vertices are additive inverses. Then the subgraph induced by S is K |F |+1
2

in GT (F ). Let T ⊆
V (GT (F )) with |T | > |S|. Then there exists two distinct vertices a, b in T such that a+ b = 0.
Since a, b are adjacent in GT (F ), < T > is not a complete subgraph in GT (F ). Therefore
ω(GT (F )) = |F |+1

2 .

In the following Lemma, we obtain the chromatic number of GT (F ).

Lemma 3.4. Let F be a finite field.

Then χ(GT (F )) =

{
|F | if char(F ) = 2;
|F |+1

2 if char(F ) > 2.

Proof. If char(F ) = 2, then, by Lemma 3.1(i) GT (F ) = K|F | and so χ(GT (F )) = |F |.

Suppose char(F ) > 2. Consider the partition F = {0}
|F |−1

2∪
i=1

{xi}
|F |−1

2∪
i=1

{yi}, where each xi is

the additive inverse of yi for 1 ≤ i ≤ |F |−1
2 .

Note that <
|F |−1

2∪
i=1

{xi} >=<

|F |−1
2∪

i=1
{yi} >= K |F |−1

2
and xi, yi are not adjacent in GT (F ).

Assign a color to xi and yi. Since 0 is adjacent to every element in V (GT (F )) \ {0}, we require
|F |−1

2 + 1 colors for coloring the vertices of GT (F ). Thus, χ(GT (F )) = |F |+1
2 .

Note that, a graph G is said to be weakly perfect if χ(G) = ω(G). The following Corollary
follows from Lemma 3.3 and Lemma 3.4.
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Corollary 3.5. Let F be a finite field. Then GT (F ) is weakly perfect.

In the following results, we discuss about some graph theoretical properties of GT (F ) namely
Eulerian and Hamiltonian. Recall that, a circuit in a graph G is a closed trail of length 3 or more.
Hence a circuit begins and ends at the same vertex but no repeat of edges. A circuit C is called
an Eulerian circuit if C contains every edge of G. A connected graph G is said to be Eulerian if
it contains an Eulerian circuit. A characterization for a Eulerian graph is recited below.

Corollary 3.6. ([10, Theorem 6.1]) A nontrivial connected graph G is Eulerian if and only if
every vertex of G has even degree.

Using Corollary 3.6, we obtain the following Lemma.

Lemma 3.7. Let F be a finite field. Then GT (F ) is not Eulerian.

Proof. Suppose char(F ) = 2. By Lemma 3.1(i), GT (F ) = K|F |. Since F is a finite field and
char(F ) = 2, |F | = 2n for some n ∈ Z+. From this, deg(v) = 2n − 1 is odd for every
v ∈ V (GT (F )) and so GT (F ) is not Eulerian. When char(F ) > 2, proof follows from Lemma
3.1(ii).

The following is a known characterization for Hamiltonian graphs and the same given below
for ready reference.

Corollary 3.8. ([10, Corollary 6.7]) Let G be a graph of order n ≥ 3. If deg(v) ≥ n
2 for each

vertex of G, then G is Hamiltonian.

Lemma 3.9. Let F be a finite field and |F | > 3. Then GT (F ) is Hamiltonian.

Proof. Since |F | > 3, we have |F | − 2 ≥
⌊
|F |
2

⌋
.

If char(F ) = 2, then by Lemma 3.1(i), δ = |F | − 1. Now the proof follows from the Corollary
3.8.
If char(F ) > 2, then by Lemma 3.1(ii), δ = |F |−2. Once again the proof follows from Corollary
3.8.

The following theorems are cited to obtain the vertex covering number and edge covering
number of GT (F ).

Theorem 3.10. ([10, Theorem 8.8]) For every graph G of order n containing no isolated ver-
tices, α(G) + β(G) = n.

Theorem 3.11. ([10, Theorem 8.7]) For every graph G of order n containing no isolated ver-
tices, α1(G) + β1(G) = n.

Now let us obtain the vertex independence number β, vertex covering number α, edge inde-
pendence number β1 and edge covering number α1 of GT (F ).

Lemma 3.12. Let F be a finite field. Then β(GT (F )) =

{
1 if char(F ) = 2;
2 if char(F ) > 2.

Proof. Suppose char(F ) = 2. Then GT (F ) = K|F |. Hence β(GT (F )) = 1.
Let char(F ) > 2. Suppose β(GT (F )) ≥ 3. This gives that there exists a complete subgraph of
order ≥ 3 in GT (F ) = K1

∪
|F |−1

2

K2, which is a contradiction. Hence β(GT (F )) ≤ 2. For any

v ∈ V (GT (F )), v and its additive inverse are only adjacent in GT (F ). Therefore β(GT (F )) =
2.

Using Theorem 3.10, we obtain the following Corollary.

Corollary 3.13. Let F be a finite field. Then

α(GT (F )) =

{
|F | − 1 if char(F ) = 2;
|F | − 2 if char(F ) > 2.
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Lemma 3.14. Let F be a finite field. Then the edge independence number
β1(GT (F )) =

⌊
|F |
2

⌋
.

Proof. Suppose char(F ) = 2. By Lemma 3.1(i), GT (F ) = K|F | and so β1(GT (F )) =
⌊
|F |
2

⌋
.

Suppose char(F ) > 2. If F ∼= Z3, then GT (F ) = P3 and so β1(GT (F )) = 1. Assume that
|F | ≥ 5. List the elements of F as F = {0, x1, · · · , x |F |−1

2
, y1, · · · , y |F |−1

2
} where each xi is

the additive inverse of yi. Let E = {x |F |−1
2

y1} ∪ {xi yi+1 : i ∈ {1, 2, . . . , |F |−3
2 }}. Then E is

a maximal edge independent set of order |F |−1
2 in GT (F ). Therefore β1(GT (F )) = |F |−1

2 =⌊
|F |
2

⌋
.

Using Theorem 3.11, we obtain the following Corollary.

Corollary 3.15. Let F be a finite field. Then the edge covering number
α1(GT (F )) = |F | −

⌊
|F |
2

⌋
.

4 Domination Parameters of GT (F )

In the following results, we discuss about various domination parameters of GT (F ). More
specifically, we discuss about γt, γc, γcl, γp, γeff , γs, γw and independence domination number
of GT (F ). In the following Lemma, we obtain the domination number of GT (F ).

Lemma 4.1. Let F be a finite field. Then γ(GT (F )) = 1.

Proof. Assume that F is a finite field. By Lemma 3.1(i) and (ii), GT (F ) contains a vertex of
degree |F | − 1 and so γ(GT (F )) = 1.

Using Lemma 4.1, we have the following characterization of γ-sets in GT (F ).

Lemma 4.2. Let F be a finite field.Then the following hold:

(i) The set S = {v}, v ∈ V (GT (F )) is a γ-set in GT (F ) if and only if char(F ) = 2.

(ii) The set S = {0}, is the γ-set in GT (F ) if and only if char(F ) > 2.

Recall that when char(F ) = 2, GT (F ) = K|F |. Using this along with Lemma 4.2, we have
the following result.

Lemma 4.3. Let F be a finite field. Then GT (F ) is excellent if and only if char(F ) = 2.
Proof. Assume that char(F ) = 2, GT (F ) = K|F | and hence it is excellent. Conversely suppose
GT (F ) is excellent for char(F ) > 2. By Lemma 4.1, γ(GT (F )) = 1. Let v ∈ V (GT (F ))\{0}.
By Lemma 4.2(ii), there is no γ-set containing v in GT (F ), which is a contradiction.

Lemma 4.4. Let F be a finite field. Then the following are true:

(i) γp(GT (F )) = γi(GT (F )) = 1.

(ii) If char(F ) = 2, then γs(GT (F )) = γw(GT (F )) = 1;

(iii) If char(F ) > 2, then γs(GT (F )) = 1 and γt(GT (F )) = γc(GT (F )) = γcl(GT (F )) =

γw(GT (F )) = 2.
Proof. (i) is trivial.
(ii) If char(F ) = 2, then GT (F ) = K|F | and so γs(GT (F )) = γw(GT (F )) = 1.
(iii) Suppose char(F ) > 2. By Lemma 4.2(ii), S = {0} is the γ-set in GT (F ).

In GT (F ), we have deg(v) =

{
|F | − 1 if v = 0;
|F | − 2 if v ̸= 0.

Therefore γs(GT (F )) = 1.
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Consider the set S = {x, y} ⊂ V (GT (F )) \ {0} where x+ y ̸= 0. Let z ∈ V (GT (F )) \S. If
x+z = 0, then y, z are adjacent in GT (F ). If x+z ̸= 0, then x, z are adjacent in GT (F ). Hence
S is a dominating set in GT (F ). Note that x and y are adjacent in GT (F ). Hence γt(GT (F )) =

γc(GT (F )) = γcl(GT (F )) = γw(GT (F )) = 2.

Corollary 4.5. Let F be a finite field . Then γeff (GT (F )) = 1.

Proof. Suppose char(F ) = 2. By Lemma 4.2(i),The set S = {v}, v ∈ V (GT (F )) is a γ-set
in GT (F ). Suppose char(F ) > 2. By Lemma 4.2(ii), S = {0} is the γ-set in GT (F ). In both
cases, clearly S is both independent and perfect dominating set and so γeff (GT (F )) = 1.

Lemma 4.6. Let F be a finite field.Then GT (F ) is well-covered if and only if char(F ) = 2.

Proof. Proof of (i) follows from Lemma 3.12 and Lemma 4.4(i).

Lemma 4.7. Let F be a finite field. Then

d(GT (F )) =

{
F if char(F ) = 2;
|F |+1

2 if char(F ) > 2.

Proof. If char(F ) = 2, then GT (F ) = K|F | and hence d(GT (F )) = |F |.

Suppose char(F ) > 2. Consider the partition F = {0}
|F |−1

2∪
i=1

{xi}
|F |−1

2∪
i=1

{yi}, where each xi is

the additive inverse of yi for 1 ≤ i ≤ |F |−1
2 . Let Si = {xi, yi} ⊆ V (GT (F )) for every

i ∈ {1, 2, . . . , |F |−1
2 }. Clearly, each Si is a dominating set in GT (F ). Hence V (GT (F )) =

{0}
|F |−1

2∪
i=1

Si is a maximal domatic partition of GT (F ). This gives that d(GT (F )) = |F |+1
2 .

A graph G is called domatically full if d(G) = δ(G) + 1, which is the maximum possible
order of a domatic partition of V.

Lemma 4.8. Let F be a finite field. Then the following are true:

(i) If char(F ) = 2, then GT (F ) is domatically full.

(ii) If char(F ) > 2, then GT (F ) is domatically full if and only if |F | = 3.

Proof. (i)Proof follows from Lemma 3.1(i) and Lemma 4.7.
(ii) Proof for if part follows from Lemma 3.1(ii) and Lemma 4.7.
Conversely assume that GT (F ) is domatically full. Suppose char(F ) > 2. Then, by Lemma
3.1(ii), δ(GT (F )) = |F | − 2 and again by Lemma 4.7, d(GT (F )) = |F |+1

2 . By the assumption,
|F | − 2 + 1 = |F |+1

2 , which in turn implies that |F | = 3.
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