# **Edge Connected Domination Polynomial of a Graph**

Nechirvan B. Ibrahim and Asaad A. Jund

Communicated by J. Abuhlail

MSC 2010 Classifications: Primary 05C69, 05C40; Secondary: 05C31, 11B83.

Keywords and phrases: Edge connected dominating sets, Edge connected domination polynomial.

Abstract Let G = (V, E) be a simple connected graph of order n = |V| and size m = |E|. An edge connected dominating sets of G is a set, say F, of edges of G such that every edge in G - F is adjacent to some edges in F and the induced subgraph  $\langle F \rangle$  is connected. The edge connected domination number  $\gamma_{ec}(G)$  is the minimum cardinality of an edge connected domination polynomial of G. The edge connected domination polynomial of a connected graph G of size k is the polynomial  $D_{ec}(G, x) = \sum_{k=\gamma_{ec}(G)}^{m} d_{ec}(G, k)x^k$ , where  $d_{ec}(G, k)$  is the number of edge connected domination polynomial and its roots for some special graphs with some of their basic properties.

## 1 Introduction

In this paper simple connected graphs will be considered. Let G = (V, E), where V is the set of vertices and E is the set of edges and let n = |V| be the order of G and m = |E| be the size of G. Two vertices  $v_1, v_2$  of G, which are connected by an edge, are called adjacent vertices and two edges, having a vertex in common, are also called adjacent edges. An edge dominates its adjacent edges.[3]

An edge dominating sets F of G is called an edge connected dominating sets if the induced subgraph  $\langle F \rangle$  is connected. The minimum cardinality of an edge connected dominating sets of G is called the edge connected domination number of G and it is denoted by  $\gamma_{ec}(G)$ . An edge dominating sets with cardinality  $\gamma_{ec}(G)$  is called  $\gamma_{ec}$ -set, we denote the family of edge dominating sets of a graph G with cardinality k by  $D_{ec}(G, k)$ . The roots of the edge connected domination polynomial are called the edge connected dominating roots of G, which is denoted by  $R(D_{ec}(G, x))$ .

The edge domination was introduced by Mitchell and Hedetniemi [4] and it was studied by Arumugam and Velammal [2]. For more information and motivation of domination polynomial and connected domination polynomial refer to [1,6].

### 2 Edge Connected Domination Polynomial of a Graph

**Definition 2.1.** Let G = (V, E) be a simple connected graph of order n = |V| and size m = |E|. The edge connected domination polynomial of a connected graph G of size k is the polynomial

$$D_{ec}(G, x) = \sum_{k=\gamma_{ec}(G)}^{m} d_{ec}(G, k) x^{k},$$

where  $d_{ec}(G, i)$  is the number of edge connected dominating sets of G of size i and  $\gamma_{ec}(G)$  is the edge connected domination number of G.

**Example 2.2.** Let G be the graph as shown in the figure 1 with  $V(G) = \{v_1, v_2, v_3, v_4, v_5\}$  and  $E(G) = \{e_1, e_2, e_3, e_4, e_5, e_6\}$ . Then the edge connected domination number is two and the edge connected dominating sets of size two are

$$\{e_2, e_3\}, \{e_2, e_4\}, \{e_2, e_5\}, \{e_3, e_4\}, \{e_3, e_6\},\$$

the edge connected dominating sets of size three are 14, which are

$$\{e_1, e_2, e_3\}, \{e_1, e_2, e_4\}, \{e_1, e_2, e_5\}, \{e_1, e_3, e_4\}, \{e_1, e_3, e_6\}, \{e_2, e_3, e_4\}, \{e_2, e_3, e_5\}, \{e_2, e_3, e_6\}, \{e_2, e_4, e_6\}, \{e_2, e_4, e_6\}, \{e_2, e_4, e_6\}, \{e_2, e_4, e_6\}, \{e_3, e_4, e_5\}, \{e_3, e_4, e_6\}, \{e_3, e_5, e_6\}, \{e_3, e_4, e_5\}, \{e_3, e_4, e_6\}, \{e_3, e_5, e_6\}, \{e_3, e_4, e_5\}, \{e_3, e_4, e_6\}, \{e_3, e_5, e_6\}, \{e_3, e_4, e_5\}, \{e_3, e_4, e_6\}, \{e_3, e_5, e_6\}, \{e_4, e_5\}, \{e_5, e_6\}, \{e_5, e_6\}, \{e_5, e_6\}, \{e_5, e_6\}, \{e_5, e_6\}, \{e_5, e_6\}, \{e_6, e_6\}, \{e_6$$

the edge connected dominating sets of size four is 14, 6 edge connected dominating sets of size five and one edge connected dominating sets of size six.



Figure 1. Special graph with labelled edges

Hence,  $D_{ec}(G, x) = x^6 + 6x^5 + 14x^4 + 14x^3 + 5x^2$ .

**Theorem 2.3.** Let G be a connected graph with size m. Then

- i)  $d_{ec}(G,m) = 1$  and  $d_{ec}(G,m-1) = m$ .
- ii)  $d_{ec}(G,k) = 0$  iff  $k < \gamma_{ec}(G)$  or k > m.
- iii)  $D_{ec}(G, x)$  has no constant term.
- iv)  $D_{ec}(G, x)$  is a strictly increasing function in  $[0, \infty)$ .
- v) Let G be a connected graph and H be any induced connected subgraph of G. Then,  $deg(D_{ec}(G, x)) \ge deg(D_{ec}(H, x)).$
- vi) Zero is a root of  $D_{ec}(G, x)$  with multiplicity  $\gamma_{ec}(G)$ .
- *Proof.* i) Since G has m edges, there is only one way to choose all these edges which dominates all the edges and vertices. Therefore,  $d_{ec}(G,m) = 1$ . If we delete one edge, e, the remaining m 1 edges dominate all the edges and vertices of G, (This is done in m ways). Therefore,  $d_{ec}(G,m-1) = m$ .
- ii) Since  $D_{ec}(G,k) = \phi$  if  $k < \gamma_{ec}(G)$  or  $D_{ec}(G,m+i) = \phi$ ,  $i \ge 1$ . Therefore, we have  $d_{ec}(G,k) = 0$  if  $k < \gamma_{ec}(G)$  or k > m. Conversely, if  $k < \gamma_{ec}(G)$  or k > m,  $d_{ec}(G,k) = 0$ .
- iii) Since  $\gamma_{ec}(G) \ge 1$ , the edge connected domination polynomial has no term of degree 0. Therefore, there is no constant term.
- iv) The proof follows from the definition of edge connected domination polynomial.
- v) We have deg(D<sub>ec</sub>(H, x)) = Number of edges in H and deg(D<sub>ec</sub>(G, x)) = Number of edges in G. Since number of edges in H ≤ number of edge in G, Thus we have, deg(D<sub>ec</sub>(H, x)) ≤ deg(D<sub>ec</sub>(G, x)).
- vi) The proof follows by part (iii) and Definition 2.1.

**Theorem 2.4.** If G is a connected graph consisting of two connected components  $G_1$  and  $G_2$ , then

$$D_{ec}(G, x) = D_{ec}(G_1, x)D_{ec}(G_2, x).$$

*Proof.* Let  $G_1$  and  $G_2$  be the connected components of a graph G with former of size  $m_1$  and the latter of size  $m_2$ . Let the edge connected domination number of  $G_1$  and  $G_2$  be  $\gamma_{ec}(G_1)$  and  $\gamma_{ec}(G_2).$ 

For any  $k \ge \gamma_{ec}(G)$ , the edge connected dominating sets of k edges, connected in G, arises by choosing an edge connected dominating sets of j edges of  $G_1$  and an edge connected dominating sets of k - j edges of  $G_2$ . The number of edge connected dominating sets in  $G_1 \cup G_2$  is equal to the coefficient of  $x^k$  in  $D_{ec}(G_1, x)D_{ec}(G_2, x)$ . The number of edge connected dominating sets of G is the coefficient of  $x^k$  in  $D_{ec}(G, x)$ .

Hence the coefficient of  $x^k$  in  $D_{ec}(G, x)$  and  $D_{ec}(G_1, x) \cdot D_{ec}(G_2, x)$  are equal. Therefore,  $D_{ec}(G, x) = D_{ec}(G_1, x) . D_{ec}(G_2, x).$ 

**Theorem 2.5.** For any simple connected graph G with n components, say  $G_1, G_2, \dots, G_n$ , then

$$D_{ec}(G, x) = D_{ec}(G_1, x) D_{ec}(G_2, x) \cdots D_{ec}(G_n, x)$$

*Proof.* The proof follows from the Theorem 2.4.

**Theorem 2.6.** For any path  $P_n$  with  $n \ge 4$  (with  $m \ge 3$  edges), then

$$D_{ec}(P_n, x) = x^m + 2x^{m-1} + x^{m-2}$$
, where  $m = n - 1$ .

*Proof.* Let G be path  $P_n$  with  $m \ge 3$  and let  $P_n = v_1 e_1 v_2 e_2 \cdots v_{n-1} e_m v_n$ . The edge connected domination number of  $P_n$  is m-2 and there is only one edge connected domination sets of size m-2. That means,  $d_{ec}(P_n, m-2) = 1$ . Moreover, there are only two edge connected dominating sets of size m - 1 namely  $\{e_2, \dots, e_m\}$  and  $\{e_1, e_2, \dots, e_{m-1}\}$ .

Therefore,  $d_{ec}(P_n, m-1) = 2$  and clearly there is only one edge connected dominating sets of size m. Hence,  $D_{ec}(P_n, x) = x^m + 2x^{m-1} + x^{m-2}$  and it is clear that the roots of  $D_{ec}(P_n, x)$ are 0 with multiplicity m - 2 and -1 with multiplicity 2. 

**Theorem 2.7.** For any cycle graph  $C_n$  with n vertices and m edges, then

$$D_{ec}(C_n, x) = x^m + mx^{m-1} + mx^{m-2}$$
, where  $m = n$ .

*Proof.* Let G be a cycle,  $C_n$ , with n vertices and let  $C_n = v_1 e_1 v_2 e_2 \cdots v_n e_n v_1$ . In a cycle graph the order is equal to the its size, that is n = m. The edge connected domination number of  $C_n$  is m-2 and there are m possibilities for the edge connected dominating sets of size (m-1) and (m-2). That means,  $d_{ec}(C_n, m-1) = d_{ec}(C_n, m-2) = m$ .

Furthermore, there are only one edge connected dominating sets of size m.

Hence, 
$$D_{ec}(C_n, x) = x^m + mx^{m-1} + mx^{m-2}$$
 and  $R(D_{ec}(C_n, x))$  are 0 with multiplicity  $(m-2), \frac{-m + \sqrt{m^2 - 4m}}{2}$  and  $\frac{-m - \sqrt{m^2 - 4m}}{2}$ .

**Theorem 2.8.** For any star graph  $S_{1,n}$  with n + 1 vertices and m edges, where  $n \ge 2$ , then

$$d_{ec}(S_{1,n},k) = \binom{m}{k}$$
, where  $m = n$ .

*Proof.* Let  $S_{1,n}$  be the star graph with n + 1 vertices and m edges, and the edge connected domination number of  $S_{1,n}$  is one,  $\gamma_{ec}(S_{1,n}) = 1$ . Let  $d_{ec}(S_{1,n}, k)$  is a dominating set of  $S_{1,n}$  of size k then there are  $\binom{m}{k}$  possibilities of a connected edge subsets of  $S_{1,n}$  with cardinality k. Therefore  $d_{ec}(S_{1,n},k) = \binom{m}{k}$ , where m = n. 

**Theorem 2.9.** For any star graph  $S_{1,n}$  with n + 1 vertices and m edges, where  $n \ge 2$ ,

$$D_{ec}(S_{1,n}, x) = (x+1)^m - 1.$$

*Proof.* By Definition 2.1, we have:  $D_{ec}(S_{1,n}, x) = \sum_{k=\gamma_{ec}(S_{1,n})}^{m} d_{ec}(S_{1,n}, k)x^{k}$  and by Theorem 2.4, we have:

$$D_{ec}(S_{1,n}, x) = \sum_{k=1}^{m} {\binom{m}{k}} x^{k}$$
  
=  ${\binom{m}{1}} x + {\binom{m}{2}} x^{2} + \dots + {\binom{m}{m}} x^{m}$   
=  $[{\binom{m}{1}} x + {\binom{m}{2}} x^{2} + \dots + {\binom{m}{m}} x^{m} + 1] - 1$   
=  $\sum_{k=0}^{m} {\binom{m}{k}} x^{k} - 1$   
=  $(x+1)^{m} - 1.$ 

Hence,  $D_{ec}(S_{1,n}, x) = (x+1)^m - 1$ .

**Theorem 2.10.** The bi-star graph  $B_{n_1,n_2}$  with  $n_1 + n_2$  vertices and  $m_1 + m_2 + 1$  edges, where  $n_1, n_2 \geq 2$ , then

$$d_{ec}(B_{n_1,n_2},k) = \begin{pmatrix} m_1 + m_2 \\ k - 1 \end{pmatrix}.$$

Where  $n_1 - 1 = m_1$ ,  $n_2 - 1 = m_2$  and  $\gamma_{ec}(B_{n_1,n_2}) = 1$ .

*Proof.* Let  $B_{n_1,n_2}$  be the bi-star graph of order  $n_1 + n_2$  and size  $n_1 + n_2 + 1$ . The edge connected domination number of  $B_{n_1,n_2}$  is one as there is one edge between  $n_1$  and  $n_2$  which dominated all the edges of  $B_{n_1,n_2}$ . The number of edge connected dominating sets of size two is  $\binom{m_1 + m_2}{1}$ and of size three is  $\binom{m_1+m_2}{2}$  and so on.

In general, we have  $\binom{m_1 + m_2}{k - 1}$  edge connected dominating sets of size k. 

**Theorem 2.11.** Let G be a bi-star graph  $B_{n_1,n_2}$ , then

$$D_{ec}(B_{n_1,n_2},x) = x(1+x)^{m_1+m_2}.$$

*Proof.* By Definition 2.1, we have:  $D_ec(B_{n_1,n_2}, x) = \sum_{k=\gamma_{ec}(B_{n_1,n_2})}^m d_{ec}(B_{n_1,n_2}, k)x^k$  and by Theorem 2.10, we have:

$$D_e c(B_{n_1,n_2}, x) = \sum_{k=1}^{m=m_1+m_2+1} \binom{m_1+m_2}{k-1} x^k$$
  

$$= \binom{m_1+m_2}{0} x + \binom{m_1+m_2}{1} x^2 + \binom{m_1+m_2}{2} x^3 + \cdots$$
  

$$+ \binom{m_1+m_2}{m_1+m_2} x^{m_1+m_2+1}$$
  

$$= x[1 + \binom{m_1+m_2}{1} x + \binom{m_1+m_2}{2} x^2 + \cdots + \binom{m_1+m_2}{m_1+m_2} x^{m_1+m_2}]$$
  

$$= x[\sum_{k=0}^{m_1+m_2} \binom{m_1+m_2}{k} x^k]$$
  

$$= x(x+1)^{m_1+m_2}.$$

Hence,  $D_{ec}(B_{n_1,n_2}, x) = x(1+x)^{m_1+m_2}$  and  $R(D_{ec}(B_{n_1,n_2}, x))$  are 0 with multiplicity 1 and -1 with multiplicity  $m_1 + m_2$ .

**Definition 2.12.** Let  $Y_t$  be a graph obtained from  $Y_1 = K_{1,3}$  by identifying each end vertex of  $Y_{t-1}$  with the central vertex of  $K_{1,2}$ . There exist  $3(2^{t-1})$  end vertices which forms  $3(2^{t-2})$  pairs for  $t \ge 2$ . The order of  $Y_t$  is  $n(Y_t) = 3(2^t) - 2$  and size  $m(Y_t) = 3(2^t) - 3$ . [5]

The radius of  $Y_t$  is t, while the diameter of  $Y_t$  is 2t, moreover, it is a unicentral tree.



**Figure 2.** The graph of  $Y_t$ 

Theorem 2.13. The edge connected dominating sets and the edge connected domination number

of 
$$Y_t$$
 is given by  $d_{ec}(Y_t, k) = \begin{pmatrix} 3(2^{t-1}) \\ k+3-3(2^{t-1}) \end{pmatrix}$  and  $\gamma_{ec}(Y_t) = 3(2^t) - 3$ , for all  $t \ge 2$ .

*Proof.* Let t = 1, we have 3 edges connected dominating sets of size one, 3 edge connected dominating sets of size two and one edge connected dominating sets of size 3.

In general, we have  $d_{ec}(Y_1) = \begin{pmatrix} 3 \\ k \end{pmatrix}$ , for k = 1, 2 and 3.

Let t = 2, we have one edge connected dominating sets of size 3, 6 edge connected dominating sets of size four and so on. Therefore, we have  $d_{ec}(Y_2) = \begin{pmatrix} 6 \\ k-3 \end{pmatrix}$ , for  $k = 3, 4, \dots, 9$ , with  $\gamma_{ec}(Y_2) = 3$ .

For  $t \ge 3$ , the  $Y_t$  graph has  $3(2^t - 1)$  edges and  $3(2^t) - 3$  end edges. Thus by calculating, we have one edge connected dominating set of size  $3(2^{t-1})$ , in general  $\gamma_{ec}(Y_t) = 3(2^{t-1} - 1)$ .

Hence, we have:

$$\begin{aligned} d_{ec}(Y_t,k) &= \begin{pmatrix} 3(2^t-1) - (3(2^{t-1}-1)) \\ k - (3(2^{t-1}-1)) \end{pmatrix} \\ &= \begin{pmatrix} 3(2^t) - 3(2^{t-1}) \\ k - 3(2^{t-1}-1) \end{pmatrix} \\ &= \begin{pmatrix} 3(2^{t-1})(2-1) \\ k - 3(2^{t-1}-1) \end{pmatrix} \\ d_{ec}(Y_t,k) &= \begin{pmatrix} 3(2^{t-1}) \\ k - 3(2^{t-1}-1) \end{pmatrix} \text{ and } \gamma_{ec}(Y_t) = 3(2^{t-1}-1). \end{aligned}$$

**Theorem 2.14.** The edge connected domination polynomial of  $Y_t$  is given by

$$D_{ec}(Y_t, x) = x^{3(2^{t-1}-1)}(x+1)^{3(2^{t-1})}.$$

*Proof.* By Definition 2.1, we have  $D_{ec}(Y_t, x) = \sum_{k=\gamma_{ec}(Y_t)}^m d_{ec}(Y_t, k) x^k$ , and by Theorem 2.13, we have:

$$\begin{split} D_{ec}(Y_t, x) &= \sum_{k=3(2^{t-1}-1)}^{3(2^{t-1})} \binom{3(2^{t-1})}{k+3(1-2^{t-1})} x^k \\ &= \binom{3(2^{t-1})}{0} x^{3(2^{t-1}-1)} + \binom{3(2^{t-1})}{1} x^{3(2^{t-1}-1)+1} + \binom{3(2^{t-1})}{2} x^{3(2^{t-1}-1)+2} + \cdots \\ &+ \binom{3(2^{t-1})}{3(2^{t-1})} x^{3(2^{t-1})} \\ &= x^{3(2^{t-1})} [1 + \binom{3(2^{t-1})}{1} x + \binom{3(2^{t-1})}{2} x^2 + \cdots + \binom{3(2^{t-1})}{3(2^{t-1})} x^{3(2^{t-1})}] \\ &= x^{3(2^{t-1}-1)} [\sum_{k=0}^{3(2^{t-1})} \binom{3(2^{t-1})}{k} x^k]. \end{split}$$

Hence,  $D_{ec}(Y_t, x) = x^{3(2^{t-1}-1)}(x+1)^{3(2^{t-1})}$  and  $R(D_{ec}(Y_t, x))$  are 0 and -1 with multiplicity  $3(2^{t-1}-1)$  and  $3(2^{t-1})$ , respectively.

**Definition 2.15.** Let  $Y_t^*$  be a graph obtained from  $Y_1 = K_{1,3}$  by identifying each end vertex of  $Y_{t-1}^*$  with an end vertex of  $Y_1 = K_{1,3}$ . The order of  $Y_t^*$  is  $n(Y_t^*) = 9(2^{t-1}) - 5$  and its size is  $m(Y_t^*) = 9(2^{t-1} - 6)$ . The number of end vertices in  $Y_t^*$  is  $3(2^{t-1})$ . [5]



**Figure 3.** For example, when t = 3, this is the graph of  $Y_3^*$ 

Moreover, the radius of  $Y_t^*$  is  $1+2^{t-1}$  and diameter  $2+2^t$  for  $t \ge 2$ , which is also a unicentral tree.

**Theorem 2.16.** The edge connected dominating sets and the edge connected domination number of  $Y_t^*$  is given by  $d_{ec}(Y_t^*, k) = \begin{pmatrix} 3(2^{t-1}) \\ k+6-3(2^t) \end{pmatrix}$ , and  $\gamma_{ec}(Y_t^*) = 3(2^t) - 6$ , for all  $t \ge 2$ .

*Proof.* For n = 1, the proof is similar to the same case of  $d_{ec}(Y_t, k)$ .

Let n = 2, we have one edge connected dominating sets of size 6, 15 edge connected dominating sets of size 8 and so on. In general, we have  $d_{ec}(Y_2^*, k) = \begin{pmatrix} 6 \\ k-6 \end{pmatrix}$  for  $k = 6, 7, \cdots, 9$ and  $\gamma_{ec}(Y_2^*) = 6.$ 

By calculating, we have  $d_{ec}(Y_3^*, k) = \begin{pmatrix} 12 \\ k-18 \end{pmatrix}$  for  $k = 18, 19, \cdots, 30$  $d_{ec}(Y_4^*,k) = \binom{24}{k-42}$  for  $k = 42, 43, \cdots, 66$ 

The  $Y_t^*$  graph have  $9(2^{t-1}) - 6$  edges and the edge connected dominating number of  $Y_t^*$  is  $3(2^t) - 6.$ 

Thus, we have:

$$d_{ec}(Y_t^*, k) = \begin{pmatrix} 9(2^{t-1}) - 6 - (3(2^t) - 6) \\ k - (3(2^t) - 6) \end{pmatrix}$$
$$= \begin{pmatrix} 9(2^{t-1}) - 3(2^t) \\ k - 3(2^t) + 6 \end{pmatrix}$$
Hence,  $d_{ec}(Y_t^*, k) = \begin{pmatrix} 3(2^{t-1})(3-2) \\ k - 3(2^t) + 6 \end{pmatrix} = \begin{pmatrix} 3(2^{t-1}) \\ k - 3(2^t) + 6 \end{pmatrix}$  and  $\gamma_{ec}(Y_t^*) = 3(2^t) - 6$ .

**Theorem 2.17.** The edge connected domination polynomial of  $Y_t^*$  is given by

$$D_{ec}(Y_t^*, x) = x^{3(2^{t-1})-6}(x+1)^{3(2^{t-1})}.$$

*Proof.* By Definition 2.1, we have:  $D_{ec}(Y_t^*, x) = \sum_{k=\gamma_{ec}(Y_t^*)}^{9(2^{t-1})-6} d_{ec}(Y_t^*, k)x^k$  and by Theorem 2.16, we have:

$$\begin{split} D_{ec}(Y_t^*,x) &= \sum_{k=3(2^{t-1})-6}^{9(2^{t-1})-6} \binom{3(2^{t-1})}{k+6-3(2^t)} x^k \\ &= \binom{3(2^{t-1})}{0} x^{3(2^t)-6} + \binom{3(2^{t-1})}{1} x^{3(2^t)-6+1} + \binom{3(2^{t-1})}{2} x^{3(2^t)-6+2} + \cdots \\ &+ \binom{3(2^{t-1})}{3(2^{t-1})} x^{9(2^t)-6} \\ &= x^{3(2^{t-1})-6} [1 + \binom{3(2^{t-1})}{1} x + \binom{3(2^{t-1})}{2} x^2 + \cdots + \binom{3(2^{t-1})}{3(2^{t-1})} x^{3(2^{t-1})}] \\ &= x^{3(2^{t-1})-6} [\sum_{k=0}^{3(2^{t-1})} \binom{3(2^{t-1})}{k} x^k] \end{split}$$

Hence,  $D_{ec}(Y_t^*, x) = x^{3(2^{t-1})-6}(x+1)^{3(2^{t-1})}$ . In addition,  $R(D_{ec}(Y_t^*, x))$  are 0 and -1 with multiplicity  $3(2^{t-1}) - 6$  and  $3(2^{t-1})$ , respectively. tively. 

#### **3** Edge Connected Domination Polynomial of Spider Graph

In this section, we determine the edge connected dominating sets and edge connected domination polynomial of the spider and bispider graphs.

**Definition 3.1.** The spider graph is a graph obtained from a star graph by introducing each end vertex by one vertex, in other word, a tree with at most one vertex of degree more than two is called a spider graph and denoted by  $S_p$ , for all  $p \ge 2$  of size m = 2p.

**Example 3.2.** Here are some examples of spider graphs:



Figure 7.  $S_p$ 

**Theorem 3.3.** The edge connected dominating sets of size k for spider graph is  $\binom{p}{k-p}$  and  $\gamma_{ec}(S_p) = p.$ 

*Proof.* Let  $E_1 = \{e_1, e_2, e_3, \dots, e_p\}$  and  $E_2 = \{e_{p+1}, e_{p+2}, e_{p+3}, \dots, e_{2p}\}$ . There is one edge connected dominating sets of size  $p, E_1$ , which is the minimum ones, i.e.,  $d_{ec}(S_p, p) = 1$  and  $\gamma_{ec}(S_p) = p$ .

There are  $\binom{p}{1}$  ways to extend the edge connected dominating sets of size p + 1, i.e.,  $d_{ec}(S_p, p+1) = \binom{p}{1}$  and there are  $\binom{p}{2}$  edge connected dominating sets of size p+2, that is  $d_{ec}(S_p, p+2) = \binom{p}{2}$ , and so on.

In general, we have  $d_{ec}(S_p, k) = \binom{p}{k-p}$  where  $p \le k \le 2p$ . 

**Theorem 3.4.** The edge connected dominating polynomial of  $S_p$  is

$$D_{ec}(S_p, x) = \sum_{k=p}^{2p} {p \choose k-p} x^k.$$

*Proof.* By Definition 2.1 and Theorem 3.3, we have:

$$D_{ec}(S_p, x) = \sum_{k=p}^{2p} {p \choose k-p} x^k$$
  
=  ${p \choose 0-p} x^p + {p \choose p+1-p} x^{p+1} + \dots + {p \choose 2p-p} x^{2p}$   
=  ${p \choose 0} x^p + {p \choose 1} x^{p+1} + \dots + {p \choose p} x^{2p}$   
=  $x^p [1 + {p \choose 1} x + {p \choose 2} x^2 + \dots + {p \choose p} x^p]$   
=  $x^p [\sum_{k=0}^p {p \choose k} x^p]$   
=  $x^p (x+1)^p$ .

 $R(D_{ec}(S_p, x))$  are 0 and -1 with multiplicity p.

**Definition 3.5.** The bispider graph is a graph obtained by edge introducing between two star graphs and the introducing is the rooted vertices, which is denoted by  $S_{p_1,p_2}$  of order  $2p_1+2p_2+2$  and size  $2p_1 + 2p_2 + 1$ .



**Theorem 3.6.** The edge connected dominating sets of bispider graph is

$$\binom{p_1+p_2}{k-(p_1+p_2+1)}$$
 and  $\gamma_{ec}(S_{p_1,p_2}) = p_1+p_2+1$ 

*Proof.* The proof is similar to Theorem 3.3.

**Theorem 3.7.** The edge connected dominating polynomial of  $S_{p_1,p_2}$  is

$$D_{ec}(S_{p_1,p_2},x) = \sum_{k=p_1,p_2+1}^{2p_1+2p_2+1} {p_1+p_2 \choose k-(p_1+p_2+1)} x^k.$$

*Proof.* By Definition 2.1 and Theorem 3.4, we have:

$$\begin{aligned} D_{ec}(S_{p_1,p_2},x) &= \sum_{k=p_1,p_2+1}^{2p_1+2p_2+1} {p_1+p_2 \choose k-(p_1+p_2+1)} x^k \\ &= {p_1+p_2 \choose 0} x^{p_1+p_2+1} + {p_1+p_2 \choose 1} x^{p_1+p_2+2} + \cdots \\ &+ {p_1+p_2 \choose 2p_1+2p_2+1-p_1-p_2-1} x^{2p_1+2p_2+1} \\ &= x^{p_1+p_2+1} [1 + {p_1+p_2 \choose 1} x + {p_1+p_2 \choose 2} x^2 + \cdots + {p_1+p_2 \choose p_1+p_2} x^{p_1+p_2}] \\ &= x^{p_1+p_2+1} (x+1)^{p_1+p_2}. \end{aligned}$$

 $R(D_{ec}(S_{p_1,p_2},x))$  are 0 and -1 with multiplicity  $p_1 + p_2 + 1$  and  $p_1 + p_2$ , respectively.

## References

- [1] Saeid Alikhani and Yee-hock Peng, Introduction to domination polynomial of a graph *arXiv preprint arXiv:0905.2251*, (2009).
- [2] S. Arumugam and S. Velammal. Edge domination in graphs, *Taiwanese journal of Mathematics* 51, 173– 179 (1998).
- [3] Frank Harary, Graph theory, Addison-Wesley, Reading, MA, Vol. 9, (1969).
- [4] S. T. Hedetniemi and S. Mitchell, Edge domination in trees, *Proc. 8th SE Conf. Combin., Graph Theory and Computing, Congr. Numer.* Vol. 19, (1977).
- [5] N. B. Ibrahim, On the Nullity of Some Sequential Element Identified, Element Introduced Graphs, MSc. Thesis, (2013)
- [6] E. Sampathkumar and H. B. Walikar, The connected domination number of a graph, J. Math. Phys, (1979).

#### **Author information**

Nechirvan B. Ibrahim, Department of Mathematics, College of Science, University of Duhok, Duhok-Iraq, Iraq. E-mail: nechirvan.badal@uod.ac

Asaad A. Jund, Department of Mathematics, Faculty of Science, Soran University, Soran, Erbil-Iraq, Iraq. E-mail: asaad.jund@soran.edu.iq

Received: April 24, 2017. Accepted: December 17, 2017.