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Abstract In this paper we prove that if a uniformly bounded the nonlinear composition op-
erator maps a subset of the space of functions of bounded total φ-bidimensional variation with
weight function in the sense of Riesz, into another space of that type (with the same weight
function), then the generator function of the operator is an affine function in the third variable.
This extends previous results (see [1, 5, 9, 10]) in the one and two-dimensional setting.

1 Introduction

Let a = (a1, a2), b = (b1, b2) points in R2 such that ai < bi, i = 1, 2. In the sequel, we
use the symbol Iba to denote the basic rectangle [a1, b1] × [a2, b2], (X, ∥ · ∥X), (Y, ∥ · ∥Y ) are
real normed spaces and C is closed and convex set in X . We also denote by XIba the algebra
of all functions f : Iba −→ X, and by F the set of all non-decreasing continuous functions
φ : [0,+∞) −→ [0,+∞) such that

(i) φ(t) = 0 if and only if t = 0, and

(ii) lim
t→∞

φ(t) = ∞.

If, in addition, φ ∈ F is a convex map, we say that φ ∈ N (or that φ is an N -function).
Given a function h : Iba ×X −→ Y , the nonlinear composition (Nemytskii or Superposition,

cf. [2, 4]) operator generated by the function h,

H : XIba −→ Y I
b
a ,

is defined as
(Hf)(t, s) := h(t, s, f(t, s)), (t, s) ∈ Iba.

According to a well–known result of Krasnosel’skij, H is a self–map of the set of real con-
tinuous functions into X if and only if its generator h is continuous. In this situation it is rather
unexpected that there are discontinuous function h : Iba × R −→ R generating composition op-
erators H which map the space of continuously differentiable functions C1(Iba,R) into itself (cf.
[2, page 209]). Another interesting (astonishing) property of this nonlinear operator H was in-
troduced by Matkowski in [8] which it say: if H is a Lipschitzian self–map of the Banach space
Lip(I,R), then

h(t, s) = A(t)s+B(t), (t ∈ I, s ∈ R), (1.1)

for some Lipschitz functions A and B, this mean, the generator h of H is affine in the second
variable. This result has been extended to some other function Banach spaces (cf. [2]). But [4, 5]
extended the results for the space of functions of bounded total φ–bidimensional variation in the
sense of Riesz.

In [3] it has been demonstrated that ifH maps the spaceRVφ,α(I, C) of functions of bounded
φ–variation with weight α in the sense of Riesz into the space RVψ,α(I, Y ) and is uniformly
continuous, then h, the generator function of the operator H , is affine in the second variable.
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In [11] it is proved that any uniformly bounded composition operator acting between general
Lipschitz function normed spaces must be of form (1.1).

For φ ∈ F , let (RVφ(Iba, X), ∥ · ∥φ) be the Banach space of all functions f ∈ XIba which are
of bounded total φ-bidimensional variation in the sense of Riesz, (see next section and [4]).

As usual L(X,Y ) denotes the space of all continuous linear operators from a normed space
X into a normed space Y .

The main result of this paper says that, under a weak regularity condition, the generator of
every uniformly bounded-or equidistantly uniformly bounded-composition operator H maps the
set of functions f ∈ RVφ,α(Iba, X) such that f(Iba) ⊂ C φ-bidimensional variation with weight
α in the sense of Riesz into the space RVψ,α(Iba, Y ) is an affine function with respect to the third
variable.

2 Preliminaries

In this section we introduce useful notation and definitions and recall some results concerning
the Riesz φ–bidimensional variation with weight.

Let ξ = {ti}mi=0 and η = {sj}nj=0 be partitions of two intervals [a1, b1] ⊂ R and [a2, b2] ⊂ R,
respectively; i.e., m,n ∈ N,

a1 = t0 < t1 < · · · < tm = b1 and

a2 = s0 < s1 < · · · < sn = b2.

For φ ∈ N continuous strictly increasing function α : I ⊂ R −→ R, and for each function
f ∈ XIba , let us introduce the following notation:

∆α(ℓk) := α(ℓk)− α(ℓk−1)

and
∆10f(ti, sj) := f(ti, sj)− f(ti−1, sj)

∆01f(ti, sj) := f(ti, sj)− f(ti, sj−1)

∆11f(ti, sj) := f(ti−1, sj−1)− f(ti−1, sj)− f(ti, sj−1) + f(ti, sj).

Definition 2.1. ([4, 5]) Let φ ∈ F , X be a real normed space and f ∈ XIba and a continuous
strictly increasing function α : I −→ R, we define:

(a) Let x2 ∈ [a2, b2] be fixed. Consider the function f(·, x2) : [a1, b1] × {x2} −→ R defined
as

f(·, x2)(t) := f(t, x2), t ∈ [a1, b1].

Then the (one-dimensional) φ-variation with weight in the sense of Riesz (see [3, 14]) of
the function f(·, x2), on an subinterval [x1, y1] ⊆ [a1, b1], is the quantity

Vφ,α,[x1, y1](f(·, x2)) := sup
Π1

m∑
i=1

φ

[
|∆10f(ti, x2)|

|∆α(ti)|

]
|∆α(ti)|,

where the supremum is taken over all partitions Π1 = {ti}mi=0 (m ∈ N) of the interval
[x1, y1].

(b) A similar argument applies for the variation Vφ,α,[x2,y2], where x1 ∈ [a1, b1] is fixed and
[x2, y2] is a subinterval of [a2, b2]. That is, for the function f(x1, ·) : {x1} × [a2, b2] −→ R
the φ-variation with weight in the sense Riesz, is the quantity

Vφ,α,[x2, y2](f(x1, ·)) := sup
Π2

n∑
j=1

φ

[
|∆01f(x1, sj)|

|∆α(sj)|

]
|∆α(sj)|,

where the supremum is taken over the set of all partitions Π2 = {sj}nj=0 (n ∈ N) of the
interval [x2, y2].
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(c) The φ-bidimensional variation with weight in the sense of Riesz is defined by the formula

Vφ,α(f) := sup
Π1,Π2

m∑
i=1

n∑
j=1

φ

[
|∆11f(ti, sj)|

|∆α(ti)||∆α(sj)|

]
· |∆α(ti)||∆α(sj)|,

where the supremum is taken over the set of all partitions (Π1,Π2) of the rectangle Iba ⊂ R2.

(d) The total φ-bidimensional variation with weight α in the sense of Riesz of the function
f : Iba −→ R is denoted by TV Rφ,α(f) and is defined as:

TV Rφ,α(f) := Vφ,α,[a1,b1](f(·, a2)) + Vφ,α,[a2,b2](f(a1, ·)) + Vφ,α(f).

(e) We say that f ∈ XIba has a bounded Riesz φ-variation with weight α on Iba, if TV Rφ,α(f) <
∞.

Definition 2.2. Let φ ∈ F . We say that φ satisfies condition ∞1 if

lim
t→∞

φ(t)

t
= ∞.

A function φ ∈ F is said to be in the ∆2 class, if there exist a constant t0 ≥ 0 and K > 0 such
that

φ(2t) ≤ K φ(t) for all t > t0.

Remark 2.3. It is easy to show that if φ ∈ N satisfies condition ∞1, then the following equality
holds:

lim
r→0

rφ−1(1/r) = lim
ρ→∞

ρ/φ(ρ) = 0.

For φ ∈ N ∩ ∆2, we denote by RVφ,α(Iba, X) the vector space (see [4])

RVφ,α(I
b
a, X) =

{
f ∈ XIba : ∃λ > 0, TV Rφ,α(λf) <∞

}
.

Just as in the one dimensional situation (cf. [1]), in RVφ,α(Iba, X) one can define the so called
Luxemburg-Nakano-Orlicz seminorm [7, 12, 13, 4]

pφ,α(f) := inf
{
ϵ > 0 : TV Rφ,α

(
f/ϵ

)
≤ 1

}
,

and we define in RV Rφ,α(Iba, X) the norm

∥f∥φ,α := |f(a)|+ pφ,α(f).

Also, if C ⊆ X we use the notation RVφ,α(Iba, C) for the set{
f ∈ RVφ,α(I

b
a, X) : f(Iba) ⊂ C

}
.

For (t, s), (t′, s′) ∈ Iba, let we put

Ωt,t′,s,s′ :=
{
|α(t)− α(t′)|, |α(s)− α(s′)|, |α(t)− α(t′)||α(s)− α(a2)|,

|α(a1)− α(t′)||α(s)− α(s′)|
}
.

The following lemma exhibits some properties of pφ,α.

Lemma 2.4. ([4]) For φ ∈ F and f ∈ RVφ,α(Iba;X), we have

(a) If (t, s), (t′, s′) ∈ Iba, then

|f(t, s)− f(t′, s′)| ≤ 4Mφ−1(1/m)pφ,α(f)

where M := max Ωt,t′,s,s′ y m := min Ωt,t′,s,s′ .

(b) If pφ,α(f) > 0, then TV Rφ,α(f/pφ,α(f)) ≤ 1.

(c) If r > 0, then TV Rφ,α(f/r) ≤ 1 if, and only if, pφ,α(f) ≤ r.

(d) If r > 0 y TV Rφ,α(f/pφ,α(f)) = 1, then pφ,α(f) = r.

Theorem 2.5. ([4]) If φ ∈ F ∩ ∆2, α : I −→ R a fixed continuous strictly increasing function
and X is a Banach space, then

(
RVφ,α(Iba, X), ∥ · ∥φ,α

)
is a Banach space.
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3 Main result

In this section, we begin with an important result and get immediate a consequences as the main
results of the paper, which extend the results of Matkowski and others (see [1, 9]) in the case
when the Nemytskii operator is defined on the space RVφ,α([a, b];R). The technics used for the
proof are based on those of [11].

Theorem 3.1. Assume that Iba ⊂ R2 is a rectangle, α : I −→ R a fixed continuous strictly
increasing function (sometimes it is called weight function) and φ,ψ are N -functions that satisfy
the ∞1 condition, (X, ∥ · ∥

X
) is a real normed space, (Y, ∥ · ∥

Y
) is a real Banach space and

C is a closed and convex set in X , and the function h : Iba × C −→ Y is continuous with
respect to the third variable. If there exists a function ϱ : [0,+∞) −→ [0,+∞) such that the
nonlinear composition operator H of the generator by h maps the set RVφ,α(Iba, C) into the
space RVψ,α(Iba, Y ) and satisfies the inequality

∥H(f1)−H(f2)∥ψ,α ≤ ϱ (∥f1 − f2∥φ,α) , f1, f2 ∈ RVφ,α(I
b
a, C), (3.1)

then there exist functions A,B : Iba −→ Y such that

h(t, s, u) = A(t, s)u+B(t, s), (t, s) ∈ Iba, u ∈ C.

Moreover, if 0 ∈ C and intC ̸= ∅, then A : Iba −→ L(X,Y ) and B ∈ RVψ,α(Iba, Y ).

Proof. It is readily seen that for each u ∈ C, the constant function f(t, s) := u belongs to
RVφ,α(Iba, C); thus, since H maps RVφ,α(Iba, C) into RVψ,α(Iba, Y ), it follows that, for each
u ∈ C, the function hu : Iba −→ Y defined as

hu(t, s) := h(t, s, u)

belongs to RVψ,α(Iba, Y ).
From the definition of the norm ∥ · ∥ψ,α, we obtain

pψ,α (H(f1)−H(f2)) ≤ ∥H(f1)−H(f2)∥ψ,α , for f1, f2 ∈ RVφ,α(I
b
a, C).

Hence, in view of Lemma 2.4(c) and inequality (3.1), we get that the last inequality is equivalent
to

Vψ,α

(
(H(f1)−H(f2))

ϱ (∥f1 − f2∥φ,α)

)
≤ TV Rψ,α

(
H(f1)−H(f2)

ϱ (∥f1 − f2∥φ,α)

)
≤ 1.

Now, by definition of Vψ,α and H , it follows that for any rectangle [t1, t2] × [s1, s2] ⊆
Iba, with t1 < t2 and s1 < s2 and for any f1, f2 ∈ RVφ,α(Iba, C), we obtain:

ψ


∣∣∣ 2∑
i=1

2∑
j=1

(−1)i+j(H(f1)−H(f2))(ti, sj)
∣∣∣

ϱ (∥f1 − f2∥φ,α)∆α(t2) · ∆α(s2)

∆α(t2) · ∆α(s2) ≤ 1. (3.2)

Let us define now, for arbitrarily fixed θ, ρ ∈ R, with θ < ρ:

η
θ,ρ(t) :=


0 for t ≤ θ
α(t)− α(θ)

α(ρ)− α(θ)
for θ ≤ t ≤ ρ

1 for t ≥ ρ.

Observe that η
θ,ρ : R −→ [0, 1].

Next, consider two auxiliary functions: ηi : [ai, bi] −→ [0, 1], i = 1, 2, defined in the
following way:

η1(t) :=


0 for a1 ≤ t ≤ t1

ηt1 ,t2
(t) for t1 ≤ t ≤ t2,

1 for t2 ≤ t,
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η2(s) :=


0 for a2 ≤ s ≤ s1

ηs1,s2(s) for s1 ≤ s ≤ s2,

1 for s2 ≤ s.

Finally, for arbitrary points y1, y2 ∈ C, y1 ̸= y2, define functions f1, f2 : Iba −→ C as follows:

fj(t, s) :=
1
2

[(
η

1
(t) · η

2
(s)

)
(y1 − y2) + yj + y2

]
, (t, s) ∈ Iba, j = 1, 2.

Observe, that

f1(t1, s1) = f1(t1, s2) = f1(t2, s1) =
y1 + y2

2
; f1(t2, s2) = y1,

f2(t1, s1) = f2(t1, s2) = f2(t2, s1) = y2; f2(t2, s2) =
y1 + y2

2
,

f1(·)− f2(·) =
y1 − y2

2
, and consequently ∥f1 − f2∥φ,α =

|y1 − y2|
2

> 0;

Also, by definition of H:(
H(f1)−H(f2)

)
(t1, s1) = h

(
(t1, s1),

y1 + y2

2

)
− h

(
(t1, s1), y2

)
(3.3)(

H(f1)−H(f2)
)
(t1, s2) = h

(
(t1, s2),

y1 + y2

2

)
− h

(
(t1, s2), y2

)
(3.4)(

H(f1)−H(f2)
)
(t2, s1) = h

(
(t2, s1),

y1 + y2

2

)
− h

(
(t2, s1), y2

)
(3.5)

(
H(f1)−H(f2)

)
(t2, s2) = h

(
(t2, s2), y1

)
− h

(
(t2, s2),

y1 + y2

2

)
(3.6)

Now notice that, by applying the inverse function ψ−1 to both sides of (3.2), one gets

∣∣∣∣∣∣
2∑
i=1

2∑
j=1

(−1)i+j(H(f1)−H(f2))(ti, sj)

∣∣∣∣∣∣
≤ ∆α(t2)∆α(s2) · ϱ

(
|y1 − y2|

2

)
ψ−1

(
1

∆α(t2)∆α(s2)

)
. (3.7)

Taking into account the fact that for any u ∈ C the function hu ∈ RVψ,α(Iba, Y ), the identities
(3.3)-(3.6), that ψ satisfies the condition ∞1, and passing to limit in (3.7) as ∆α(t2)∆α(s2) −→ 0,
in such a way that (t, s) ∈ [t1, t2] × [s1, s2] ⊆ Iba, with t1 < t2 and si < s2, we obtain, after
simplification (the first two summands cancel out each other), for all (t, s) ∈ Iba, y1, y2 ∈ C:

h

(
(t, s),

y1 + y2

2

)
=

1
2
(h((t, s), y1) + h((t, s), y2)) .

Therefore, the function h((t, s), ·) is a solution of Jensen functional equation in C for (t, s) ∈ Iba.
Thus, by a slight modification of a standard argument (see Kuczma [6, Th. 1,page 315]); the
assumed continuity of h with respect to the third variable and for each (t, s) ∈ Iba it guaranties
the existence of an additive function A : Iba −→ Y and B : Iba −→ Y such that

h(·, y) = A(·)y +B(·), y ∈ C. (3.8)

Finally, notice that A(t, s)(0) = 0, for every (t, s) ∈ Iba. Therefore, putting y = 0 in (3.8),
we get

h(t, s, 0) = B(t, s), (t, s) ∈ Iba,

which implies that B ∈ RVψ,α(Iba, Y ).
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Remark 3.2. If the function γ : [0,∞) −→ [0,∞) is right at 0 and γ(0) = 0, then the assumption
of the continuity of h with respect to the third variable can be omitted, as it follows from (3.1).

Note that in the first part of the Theorem 3.1 the function γ : [0,∞) −→ [0,∞) is completely
arbitrary.

As an immediate corollary of the Theorem 3.1 we obtain the following

Corollary 3.3. Let (X, | · |) be a real normed space, (Y, | · |) a real Banach space, C a convex
cone in X and suppose that φ, ψ ∈ F . If the composition operator H generated by the function
h : I×C −→ Y mapsRVφ,α(Iba, C) intoRVψ,α(Iba, Y ), and there exist a function γ : [0,∞) −→
[0,∞) right continuous at 0 with γ(0) = 0, such that

∥H(f1)−H(f2)∥ψ ≤ γ
(
∥f1 − f2∥φ

)
, f1, f2 ∈ RVφ,α(I

b
a),

then

h(t, s, x) = A(t, s)x+B(t, s), (t, s) ∈ Iba, x ∈ C

for some A ∈ L(X,Y ) and B ∈ RVψ,α(Iba, Y ).

We now recall definitions of uniformly bounded and equidistantly uniformly bounded map-
ping introduced by Matkowski in [11], which plays a crucial role.

Definition 3.4 ([11]). Let X and Y be two metric (or normed) spaces. We say that a mapping
H : X −→ Y is uniformly bounded if, for any t > 0, there is a nonnegative real number ϱ(t)
such that, for any nonempty set A ⊂ X, we have

diam(A) ≤ t =⇒ diam(H(A)) ≤ ϱ(t).

Remark 3.5. Obviously, every uniformly continuous operator or Lipschitzian operator is uni-
formly bounded. Note that, under the assumptions of this definition, every bounded operator is
uniformly bounded.

Applying the Theorem 3.1 we obtain our main results.

Theorem 3.6. Let Iba ⊂ R2 be a rectangle, α : I −→ R a fixed continuous strictly increasing
function and φ,ψ are N -functions that satisfy the ∞1 condition,X is a real normed space, Y is a
real Banach space and C is a closed and convex set in X. If the nonlinear composition operator
H generated by the function h : Iba × C −→ Y maps the set RVφ,α(Iba, C) into the Banach
space RVψ,α(Iba, Y ) and is uniformly bounded, then there exist functions A(t, s) ∈ L(Iba, Y ) and
B ∈ RVψ,α(Iba, Y ) such that

h((t, s), u) = A(t, s)u+B(t, s), for (t, s) ∈ Iba, u ∈ C.

Proof. Choose any ε ≥ 0 and arbitrary f1, f2 ∈ RVφ,α(Iba, C) such that ∥f1 − f2∥φ,α = ε. The
uniform boundedness of H implies that diam(H ({f1, f2})) ≤ ϱ(ε), i.e.,

∥H(f1)−H(f2)∥ψ,α = diam(H ({f1, f2})) ≤ ϱ(∥f1 − f2∥φ,α),

so it is enough to apply Theorem 3.1.

Definition 3.7 ([11]). Let X and Y be two metric (or normed) spaces. We say that a mapping
H : X −→ Y is equidistantly uniformly bounded if, for every t > 0, there is a nonnegative real
number ϱ(t) such that, for all z1, z2 ∈ A ⊂ X,

diam{z1, z2} = t =⇒ diam
{
H(z1), H(z2)

}
≤ ϱ(t).

Of course, the equidistant uniform boundedness is a weaker condition than the uniform
boundedness. Similarly, by Theorem 3.1, we obtain the following result.

Theorem 3.8. Let Iba ⊂ R2 be a rectangle, α : I −→ R a fixed continuous strictly increasing
function and φ,ψ are N -functions that satisfy the ∞1 condition, X is a real normed space, Y
is a real Banach space and C is a closed and convex set in X. If the nonlinear composition
operator H generated by the function h : Iba × C −→ Y maps the set RVφ,α(Iba, C) into the
Banach space RVψ,α(Iba, Y ) and is equidistantly uniformly bounded, then

h((t, s), u) = A(t, s)u+B(t, s), for (t, s) ∈ Iba, u ∈ C.

for some functions A : Iba −→ L(Iba) and B ∈ RVψ,α(Iba, Y ).
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