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Abstract. Let R be a prime ring with characteristic not 2 and σ, τ, λ, µ, automorphisms of R.
Let V be a nonzero left (σ, τ)−Lie ideal ,U a nonzero right (σ, τ)−Lie ideal of R and a, b ∈ R.
The main object in this article is to study the situations. (1) aV b ⊂ Cλ,µ. (2) (i) bV ⊂ Cλ,µ

(or V b ⊂ Cλ,µ), (ii) bU ⊂ Cλ,µ (or Ub ⊂ Cλ,µ), (iii) (V, b)λ,µ = 0 (or (b, V )λ,µ = 0),
(iv) (U, b)λ,µ = 0, (3) (i) (h (I) , a)λ,µ = 0, (ii) ah(I) ⊂ Cλ,µ(J), (iii) ah(R)b ⊂ Cλ,µ, (iv)
h[I, a]λ,µ = 0, (v) h(V ) = 0 where I, J are ideals and h is a left (or right)-generalized (σ, τ)−
derivation of R.

1 Introduction

Let R be a ring and σ, τ two mappings of R. We write [x, y]σ,τ = xσ(y)−τ(y)x for x, y ∈ R and
so [x, y]1,1 = [x, y] = xy − yx, where 1 : R −→ R is an identity mapping. Let U be an additive
subgroup of R. If [U,R] ⊂ U then U is called a Lie ideal of R. The definition of (σ, τ)−Lie ideal
of R is introduced in [9] as follows: (i) U is called a right (σ, τ)−Lie ideal of R if [U,R]σ,τ ⊂ U,
(ii) U is called a left (σ, τ)−Lie ideal if [R,U ]σ,τ ⊂ U. (iii) U is called a (σ, τ)−Lie ideal if U
is both a right and left (σ, τ)−Lie ideal of R. Every Lie ideal of R is a (1, 1)−Lie ideal of R. If
R = { (x y

0 0 ) � x and y are integers}, U = { (x 0
0 0 ) � x is integer}, σ(x y

0 0 ) = (x 0
0 0 ) and τ(x y

0 0 ) = (x −y
0 0 )

then U is a right (σ, τ)−Lie ideal but not a Lie ideal of R.
Let d : R −→ R be an additive mapping of R. If d(xy) = d(x)y+xd(y) for all x, y ∈ R then

d is called a derivation. An additive mapping h : R −→ R is said to be right-generalized deriva-
tion associated with derivation d if h (xy) = h (x) y + xd (y) , ∀x, y ∈ R and left-generalized
derivation associated with derivation d1, if h (xy) = d1 (x) y + xh (y) , ∀x, y ∈ R. Every deriva-
tion d : R → R is a right (and left)-generalized derivation with d.

The mapping defined by h(r) = [r, a]σ,τ , ∀r ∈ R is a right-generalized derivation associ-
ated with derivation d(r) = [r, σ(a)] , ∀r ∈ R and left-generalized derivation associated with
derivation d1(r) = [r, τ(a)] , ∀r ∈ R.

Let d : R −→ R be an additive mapping of R. If d(xy) = d(x)σ(y) + τ(x)d(y) for all
x, y ∈ R then d is called a (σ, τ)−derivation of R. If there exist a (σ, τ)−derivation d of R
such that h(xy) = h(x)σ(y) + τ(x)d(y) for all x, y ∈ R then h is called a right-generalized
(σ, τ)−derivation associated with d. If there exist a (σ, τ)−derivation d1 such that h(xy) =
d1(x)σ(y) + τ(x)h(y) for all x, y ∈ R then h is called a left-generalized (σ, τ)−derivation
associated with d1 (see [5]). Every (σ, τ)−derivation d : R → R is a right (and left)-generalized
(σ, τ)−derivation associated with d.

The mapping h(r) = (a, r)σ,τ , ∀r ∈ R is a left-generalized (σ, τ)−derivation associated with
(σ, τ)−derivation d1(r) = [a, r]σ,τ , ∀r ∈ R and right-generalized (σ, τ)−derivation associated
with (σ, τ)−derivation d(r) = −[a, r]σ,τ ,∀r ∈ R.

In this paper we have given some results on one sided (σ, τ)−Lie ideals and left (or right)-
generalized (σ, τ)−derivation in prime rings. Some algebraic properties of (σ, τ)−Lie ideal are
discussed in [1], [2], [3], [6], [8], [9], [11] and [13] where further references can be found.

Throughout, R will be a prime ring with characteristic not 2 and σ, τ, α, β, λ, µ automor-
phisms of R. We write Cσ,τ = {c ∈ R | cσ(r) = τ(r)c, ∀ r ∈ R}, and will make extensive use
of the following basic commutator identities:
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[xy, z]σ,τ = x[y, z]σ,τ + [x, τ(z)]y = x[y, σ(z)] + [x, z]σ,τy
[x, yz]σ,τ = τ(y)[x, z]σ,τ + [x, y]σ,τσ(z)
(x, yz)σ,τ = τ(y)(x, z)σ,τ + [x, y]σ,τσ(z) = −τ(y)[x, z]σ,τ + (x, y)σ,τσ(z)
(xy, z)σ,τ = x(y, z)σ,τ − [x, τ(z)]y = x[y, σ(z)] + (x, z)σ,τy.

2 Results

Lemma 2.1. [11, Theorem2] Let V be a noncentral left (σ, τ)−Lie ideal of R. Then there exist
a nonzero ideal M of R such that ( [R,M ]σ,τ ⊂ V and [R,M ]σ,τ " Cσ,τ ) or σ(u) + τ(u) ∈
Z, ∀u ∈ V.

Lemma 2.2. [4, Lemma3] Let d be a nonzero (σ, τ)− derivation on R ,a ∈ R and U ̸= 0 an
ideal of R. If ad(U) = 0 (or d(U)a = 0) then a = 0.

Lemma 2.3. [4, Lemma1] Let R be a prime ring and d : R −→ R a (σ, τ)−derivation. If U is a
right ideal of R and d(U) = 0 then d = 0.

Lemma 2.4. [12, Lemma4] If a prime ring contains a nonzero commutative right ideal then R
is commutative.

Lemma 2.5. [7, Theorem1] Let h : R −→ R be a nonzero right-generalized (σ, τ)− derivation
associated with a nonzero (λ, µ)−derivation d and I, J nonzero ideals of R. If h(I) ⊂ Cα,β(J)
then R is commutative.

Lemma 2.6. Let h : R −→ R be a nonzero right-generalized (σ, τ)−derivation associated with
a nonzero (σ, τ)−derivation d and I a nonzero ideal of R. If a, b ∈ R such that [ah(I), b]λ,µ = 0
then [a, µ(b)]a = 0 or dσ−1λ(b) = 0.

Proof. Let [ah(I), b]λ,µ = 0. Then we have,

0 = [ah(xσ−1λ(b)), b]λ,µ = [ah(x)λ(b) + aτ(x)dσ−1λ(b), b]λ,µ

= ah(x)[λ(b), λ(b)] + [ah(x), b]λ,µλ(b) + aτ(x)[dσ−1λ(b), b]λ,µ

+ [aτ(x), µ(b)]dσ−1λ(b), ∀x ∈ I

and so
aτ(x)[k, b]λ,µ + [aτ(x), µ(b)]k = 0, ∀x ∈ I , k = dσ−1λ(b). (2.1)

Let us replace x by τ−1(a)x in (2.1). Then using (2.1) we get,

0 = aaτ(x)[k, b]λ,µ + [aaτ(x), µ(b)]k

= aaτ(x)[k, b]λ,µ + a[aτ(x), µ(b)]k + [a, µ(b)]aτ(x)k

= [a, µ(b)]aτ(x)k, ∀x ∈ I

and so [a, µ(b)]aτ(I)dσ−1λ(b) = 0. Since τ(I) is a nonzero ideal of R then we obtain that
[a, µ(b)]a = 0 or dσ−1λ(b) = 0.

Theorem 2.7. Let h : R −→ R be a nonzero right-generalized (σ, τ)−derivation associated
with (σ, τ)−derivation d and I, J nonzero ideals of R. If a ∈ R such that ah(I) ⊂ Cλ,µ(J) then
a ∈ Z or d = 0.

Proof. Let ah(I) ⊂ Cλ,µ(J). This means that [ah(I), x]λ,µ = 0, ∀x ∈ J. Using Lemma (2.6) we
obtain that, for any x ∈ J,

[a, µ(x)]a = 0 or dσ−1λ(x) = 0.

Let K = {x ∈ J | [a, µ(x)]a = 0} and L =
{
x ∈ J | dσ−1λ(x) = 0

}
. Then K and L are

subgroups of J and J = K ∪ L. Hence we have J = K or J = L. That is

[a, µ(J)]a = 0 or dσ−1λ(J) = 0.
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Since σ−1λ(J) is a nonzero ideal of R then dσ−1λ(J) = 0 implies that d = 0 by Lemma
(2.3). If [a, µ(J)]a = 0 then using this relation we get,

0 = [a, µ(rx)]a = µ(r)[a, µ(x)]a+ [a, µ(r)]µ(x)a = [a, µ(r)]µ(x)a,∀x ∈ J, r ∈ R.

That is [a,R]µ(J)a = 0. Since µ(J) ̸= 0 is an ideal of R then we have [a,R] = 0 or a = 0.
This means that a ∈ Z for two case.

Theorem 2.8. Let J be a nonzero ideal of R and a, b ∈ R.

(i) If b(a,R)α,β ⊂ Cλ,µ(J) then a ∈ Cα,β or b ∈ Z .
(ii) If b(R, a)α,β ⊂ Cλ,µ(J) then a ∈ Z or b ∈ Z.

Proof. (i) Let h(r) = (a, r)α,β , ∀r ∈ R and d(r) = −[a, r]α,β , ∀r ∈ R. Since ,

h(rs) = (a, rs)α,β = −β(r)[a, s]α,β + (a, r)α,βα(s)

= h(r)α(s) + β(r)d(s), ∀r, s ∈ R

and

d(rs) = −[a, rs]α,β = −β(r)[a, s]α,β − [a, r]α,βα(s)

= d(r)α(s) + β(r)d(s),∀r, s ∈ R

then d is a (α, β)−derivation and h is a right-generalized (α, β)−derivation associated with
d.

If h = 0 then we have Rd(R) = 0 by the above relation. This gives that d = 0 and so
a ∈ Cα,β . Let h ̸= 0.

If b(a,R)α,β ⊂ Cλ,µ(J) then we have bh(R) ⊂ Cλ,µ(J). This gives that b ∈ Z or d = 0 by
Theorem (2.7). Finally we obtain that b ∈ Z or a ∈ Cα,β .

(ii) Consider the mappings defined by g(r) = (r, a)α,β ,∀r ∈ R and d(r) = [r, α(a)], ∀r ∈ R.
Since,

d(rs) = [rs, α(a)] = r[s, α(a)] + [r, α(a)]s = d(r)s+ rd(s), ∀r, s ∈ R

and
g(rs) = (rs, a)α,β = r[s, α(a)] + (r, a)α,βs = g(r)s+ rd(s), ∀r, s ∈ R,

then d is a derivation and g is a right-generalized derivation associated with d. If g = 0 then
we obtain that d(R) = 0 and so a ∈ Z by the above relation.

If b(R, a)α,β ⊂ Cλ,µ(J) then we have bg(R) ⊂ Cλ,µ(J). This means that b ∈ Z or d = 0 by
Theorem (2.7). That is b ∈ Z or a ∈ Z.

Using Theorem (2.8) we can prove the following Corollary immediately.

Corollary 2.9. Let V be a nonzero left (σ, τ)−lie ideal and U a nonzero right (σ, τ)−lie ideal of
R. Let J ̸= (0) be an ideal of R and b ∈ R.

(i) If b(V,R)α,β ⊂ Cλ,µ(J) then V ⊂ Cα,β or b ∈ Z .
(ii) If b(R, V )α,β ⊂ Cλ,µ(J) then V ⊂ Z or b ∈ Z.
(iii) If b(U,R)α,β ⊂ Cλ,µ(J) then U ⊂ Cα,β or b ∈ Z .
(iv) If b(R,U)α,β ⊂ Cλ,µ(J) then U ⊂ Z or b ∈ Z.

Theorem 2.10. Let d : R −→ R be a nonzero (σ, τ)−derivation and b ∈ R. If d(R)b ⊂ Cλ,µ(R)
then b ∈ Z.

Proof. If d(R)b ⊂ Cλ,µ(R) then we have

0 = [d(rσ−1(b))b, µ−1τ(r)]λ,µ = [d(r)bb+ τ(r)dσ−1(b)b, µ−1τ(r)]λ,µ

= d(r)b[b, λµ−1τ(r)] + [d(r)b, µ−1τ(r)]λ,µb+τ(r)[dσ−1(b)b, µ−1τ(r)]λ,µ

+[τ(r), τ(r)]dσ−1(b)b

= d(r)b[b, λµ−1τ(r)], ∀r ∈ R.
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That is
d(r)b[b, λµ−1τ(r)] = 0, ∀r ∈ R. (2.2)

Since d(r)b ∈ Cλ,µ(R), ∀r ∈ R then, for any r ∈ R, we obtain that

d(r)b = 0 or [b, λµ−1τ(r)] = 0

by (2.2). Let K = {r ∈ R | d(r)b = 0} and L = {r ∈ R | [b, λµ−1τ(r)] = 0}. Considering as in
the proof of Theorem (2.7) we get

d(R)b = 0 or [b,R] = 0.

If [b,R] = 0 then we have b ∈ Z. Since d ̸= 0 then d(R)b = 0 implies that b = 0 by Lemma
(2.2) and so b ∈ Z.

Remark 2.11. [10, Lemma3] Let R be a prime ring and a, b ∈ R. If b, ab ∈ Cσ,τ then b = 0 or
a ∈ Z.

Lemma 2.12. Let I be a nonzero ideal of R and a, b ∈ R. If [I, a]σ,τ b ⊂ Cλ,µ then b = 0 or
a ∈ Z.

Proof. Let [I, a]σ,τ b ⊂ Cλ,µ. Then we have

Cλ,µ ∋ [τ(a)x, a]σ,τ b = τ(a)[x, a]σ,τ b+ [τ(a), τ(a)]xb = τ(a)[x, a]σ,τ b,∀x ∈ I

and so τ(a)[x, a]σ,τ b ∈ Cλ,µ, ∀x ∈ I . Considering the last relation and hypothesis we obtain that,
for any x ∈ I ,

[x, a]σ,τ b ∈ Cλ,µ and τ(a)[x, a]σ,τ b ∈ Cλ,µ.

Using Remark (2.11) we get τ(a) ∈ Z or [x, a]σ,τ b = 0. Applying this argument for all x ∈ I
we have a ∈ Z or [I, a]σ,τ b = 0.

On the other hand [I, a]σ,τ b = 0 gives that,

0 = [rx, a]σ,τ b = r[x, a]σ,τ b+ [r, τ(a)]xb = [r, τ(a)]xb, ∀x ∈ I, r ∈ R

and so [R, τ(a)]Ib = 0. Since R is prime ring and I ̸= (0) an ideal of R then we have b = 0
or a ∈ Z.

Theorem 2.13. Let V be a nonzero left (σ, τ)−Lie ideal b ∈ R and U a nonzero right (σ, τ)−Lie
ideal of R.

(i) If bV ⊂ Cλ,µ then b ∈ Z or V ⊂ Z.
(ii) If V b ⊂ Cλ,µ then b = 0 or V ⊂ Z.
(iii) If bU ⊂ Cλ,µ (or Ub ⊂ Cλ,µ) then b ∈ Z or U ⊂ Cσ,τ .

Proof. For any v ∈ V, let us consider the mapping defined by h(r) = [r, v]σ,τ ,∀ r ∈ R. Since,

h(rs) = [rs, v]σ,τ = r[s, σ(v)] + [r, v]σ,τs

= h(r)s+ rd1(s), ∀r, s ∈ R, where d1(s) = [s, σ(v)],∀s ∈ R

then h is a right-generalized derivation with derivation d1.
(i) If bV ⊂ Cλ,µ then, for any v ∈ V, we have b[R, v]σ,τ ⊂ bV ⊂ Cλ,µ and so bh(R) ⊂ Cλ,µ.

This means that b ∈ Z or d1 = 0 by Theorem (2.7). If d1 = 0 then we have v ∈ Z.
If we consider for all v ∈ V the same argument we get b ∈ Z or V ⊂ Z.
(ii) If V b ⊂ Cλ,µ then [R, V ]σ,τ b ⊂ Cλ,µ. This gives that b = 0 or V ⊂ Z by Lemma (2.12).
(iii) For any u ∈ U, define the mapping d(r) = [u, r]σ,τ , ∀ r ∈ R. It is clear that, d is a

(σ, τ)−derivation and so right (and left)-generalized (σ, τ)−derivation associated with d.
If bU ⊂ Cλ,µ then, for any u ∈ U, we have b[u,R]σ,τ ⊂ bU ⊂ Cλ,µ and so bd(R) ⊂ Cλ,µ.

Using Theorem (2.7) we get b ∈ Z or d = 0. On the other hand d = 0 implies that u ∈ Cσ,τ .
Considering as in the proof of (i) we get b ∈ Z or U ⊂ Cσ,τ .
If Ub ⊂ Cλ,µ then, for any u ∈ U, we have [u,R]σ,τ b ⊂ Ub ⊂ Cλ,µ gives that d(R)b ⊂ Cλ,µ.

Using Theorem (2.10) we have b ∈ Z or d = 0. That is b ∈ Z or u ∈ Cσ,τ .
If we consider for all u ∈ U the same thing we get b ∈ Z or U ⊂ Cσ,τ .
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Lemma 2.14. Let h : R −→ R be a nonzero left-generalized (σ, τ)− derivation with (σ, τ)−
derivation d and a ∈ R. If I is a nonzero ideal of R such that h[I, a]λ,µ = 0 then a ∈ Z or
dµ(a) = 0.

Proof. Let h[x, a]λ,µ = 0, ∀x ∈ I . Then we have,

0 = h[µ(a)x, a]λ,µ = h{µ(a)[x, a]λ,µ + [µ(a), µ(a)]x}
= h{µ(a)[x, a]λ,µ} = dµ(a)σ[x, a]λ,µ + τµ(a)h[x, a]λ,µ = dµ(a)σ[x, a]λ,µ, ∀x ∈ I

and so k[x, a]λ,µ = 0, ∀x ∈ I, where k = σ−1dµ(a). Replacing x by xr, r ∈ R we get

0 = k[xr, a]λ,µ = kx[r, λ(a)] + k[x, a]λ,µr

= kx[r, λ(a)],∀ x ∈ I, r ∈ R.

That is kI[R, λ(a)] = 0. Since R is prime and I ̸= 0 an ideal of R then we obtain that a ∈ Z
or dµ(a) = 0 by the last relation.

Lemma 2.15. Let h : R −→ R be a nonzero left-generalized (α, β)− derivation with (α, β)−
derivation d. If V is a nonzero left (σ, τ)−Lie ideal of R such that h(V ) = 0 then d = 0 or
σ(v) + τ(v) ∈ Z for all v ∈ V.

Proof. If V ⊂ Z then σ(v) + τ(v) ∈ Z for all v ∈ V. If V " Z then there exist a nonzero ideal
M of R such that

([R,M ]σ,τ ⊂ V and [R,M ]σ,τ * Cσ,τ ) or σ(v) + τ(v) ∈ Z , ∀ v ∈ V

by Lemma (2.1). Let [R,M ]σ,τ ⊂ V and [R,M ]σ,τ * Cσ,τ . If h(V ) = 0 then we have
h[R,M ]σ,τ ⊂ h(V ) = 0 and so h[R,M ]σ,τ = 0. This gives that, for any m ∈ M ,

m ∈ Z or dτ(m) = 0

by Lemma (2.14). Let K = {m ∈ M | m ∈ Z} and L = {m ∈ M | dτ(m) = 0}. Then K
and L are subgroups of M and M = K ∪L. Hence, we have M = K or M = L. That is M ⊂ Z
or dτ(M) = 0. Since τ(M) ̸= 0 is an ideal of R then dτ(M) = 0 implies that d = 0 by Lemma
(2.3). On the other hand, if M ⊂ Z then we obtain that R is commutative by Lemma (2.4) and
so σ(v) + τ(v) ∈ Z, ∀v ∈ V .

Lemma 2.16. Let h : R −→ R be a nonzero left-generalized (σ, τ)− derivation associated with
a nonzero (σ, τ)−derivation d. If I is a nonzero ideal of R and a ∈ R such that (h (I) , a)λ,µ = 0
then a ∈ Z or dτ−1µ(a) = 0.

Proof. Let (h (I) , a)λ,µ = 0 and k = dτ−1µ(a). Then we get

0 = (h
(
τ−1µ(a)y

)
, a)λ,µ = (dτ−1µ(a)σ(y) + µ(a)h(y), a)λ,µ

= k [σ(y), λ(a)] + (k, a)λ,µσ(y) + µ(a)(h (y) , a)λ,µ − [µ(a), µ(a)]h(y), ∀y ∈ I.

This gives that
k [σ(y), λ(a)] + (k, a)λ,µσ(y) = 0, ∀y ∈ I. (2.3)

Replacing y by yr, r ∈ R in (2.3) and using (2.3) we get,

0 = kσ(y) [σ(r), λ(a)] + k [σ(y), λ(a)]σ(r) + (k, a)λ,µσ(y)σ(r)

= kσ(y) [σ(r), λ(a)] , ∀y ∈ I, r ∈ R.

That is
kσ(I) [R, λ(a)] = 0. (2.4)

Since σ(I) is a nonzero ideal of R then we have a ∈ Z or dτ−1µ(a) = 0 by (2.4) in prime
rings.
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Theorem 2.17. Let U be a nonzero right (σ, τ)−Lie ideal of R and b ∈ R. Let V be a nonzero
left (σ, τ)−Lie ideal of R.

(i) If (V, b)λ,µ = 0 then b ∈ Z or σ(v) + τ(v) ∈ Z for all v ∈ V .
(ii) If (b, V )λ,µ = 0 then b ∈ Cλ,µ or σ(v) + τ(v) ∈ Z for all v ∈ V .
(iii) If (U, b)λ,µ = 0 then b ∈ Z or U ⊂ Cσ,τ .

Proof. (i) Let g(r) = (r, b)λ,µ, ∀r ∈ R and d(r) = − [r, µ(b)] , ∀r ∈ R. Since,

g(rs) = (rs, b)λ,µ = r(s, b)λ,µ − [r, µ(b)]s = d(r)s+ rg(s),∀r, s ∈ R

then g is a left-generalized derivation with derivation d(r) = − [r, µ(b)] ,∀r ∈ R. If g = 0
then we have d = 0 by the above relation. This gives that b ∈ Z.

Let us consider that g ̸= 0. If (V, b)λ,µ = 0 then g(V ) = 0. This implies that d = 0 (and so
b ∈ Z ) or σ(v) + τ(v) ∈ Z, ∀v ∈ V by Lemma (2.15).

(ii) The mapping defined by h(r) = (b, r)λ,µ,∀r ∈ R is a left-generalized (λ, µ)− derivation
with (λ, µ)−derivation d1(r) = [b, r]λ,µ , ∀r ∈ R. Because,

d1(rs) = [b, rs]λ,µ = µ(r) [b, s]λ,µ + [b, r]λ,µ λ(s) = d1(r)λ(s) + µ(r)d1(s),∀r, s ∈ R

and

h(rs) = (b, rs)λ,µ = µ(r)(b, s)λ,µ + [b, r]λ,µ λ(s) = d1(r)λ(s) + µ(r)h(s), ∀r, s ∈ R.

If h = 0 then, considering as in the proof of (i), we have d1 = 0 and so b ∈ Cλ,µ.
Assume that h ̸= 0. If (b, V )λ,µ = 0 then we have h(V ) = 0. Using Lemma (2.15) we obtain

that d1 = 0 ( and so b ∈ Cλ,µ ) or σ(v) + τ(v) ∈ Z, ∀v ∈ V .
(iii) Let d(r) = [u, r]σ,τ , ∀r ∈ R, for any u ∈ U . Then d is a (σ, τ)−derivation and so left

(and right)-generalized (σ, τ)− derivation associated with d. Let d ̸= 0.
If (U, b)λ,µ = 0 then we can write ([u,R]σ,τ , b)λ,µ = 0, ∀u ∈ U and so (d(R), b)λ,µ = 0. If

we use Lemma (2.16) we obtain that b ∈ Z or dτ−1µ(b) = 0. That is

b ∈ Z or [u, τ−1µ(b)]σ,τ = 0.

If d = 0 then we have u ∈ Cσ,τ and so [u, τ−1µ(b)]σ,τ = 0. Considering same thing for all
u ∈ U we get

b ∈ Z or [U, τ−1µ(b)]σ,τ = 0.

On the other hand, [U, τ−1µ(b)]σ,τ = 0 gives that b ∈ Z or U ⊂ Cσ,τ by [8, Lemma3].

Lemma 2.18. Let M be a nonzero ideal of R. If c ∈ R such that [[c,M ], c]c = 0 then c ∈ Z or
c2 = 0.

Proof. If [[c,M ], c]c = 0 then we can write

[c, x]cc = c[c, x]c,∀x ∈ M. (2.5)

Using the hypothesis and (2.5) we get

0 = [[c, yx], c]c = [y[c, x] + [c, y]x, c]c = [y[c, x], c]c+ [[c, y]x, c]c

= y[[c, x], c]c+ [y, c][c, x]c+ [c, y][x, c]c+ [[c, y], c]xc

= [y, c][c, x]c+ [c, y][x, c]c+ [[c, y], c]xc

= [y, c][c, x]c+ [y, c][c, x]c+ [[c, y], c]xc,∀x, y ∈ M.

That is
2[y, c][c, x]c+ [[c, y], c]xc = 0, ∀x, y ∈ M. (2.6)

Replacing x by cx in (2.6) and using hypothesis,charR ̸= 2, we get

0 = 2[y, c][c, cx]c+ [[c, y], c]cxc = 2[y, c][c, cx]c

= 2[y, c]c[c, x]c+ 2[y, c][c, c]xc,∀x, y ∈ M
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and so
[y, c]c[c, x]c = 0,∀x, y ∈ M (2.7)

Taking ry, r ∈ R instead of y in (2.7) we have
0 = [ry, c]c[c, x]c = r[y, c]c[c, x]c+[r, c]yc[c, x]c = [r, c]yc[c, x]c for all x, y ∈ M, r ∈ R and

so
[R, c]Mc[c,M ]c = 0. (2.8)

Since R is prime then we obtain that c ∈ Z or c[c,M ]c = 0 by (2.8) and so c[c, x]c = 0, ∀x ∈
M for two case. Using (2.5) we get [c, x]cc = 0, ∀x ∈ M . Replacing x by sx, s ∈ R in the last
relation we have [c,R]Mcc = 0 and so c ∈ Z or c2 = 0.

Lemma 2.19. Let h : R −→ R be a nonzero right-generalized (σ, τ)− derivation associated
with a nonzero (σ, τ)−derivation d and a, b ∈ R.

(i) If ah(R)b = 0 then a = 0 or dσ−1(b)b = 0.
(ii) If ah(R)b ⊂ Cλ,µ then a = 0 or [dσ−1(b), b]b = 0.

Proof. (i) If ah(R)b = 0 then we have

0 = ah(xσ−1(b))b = ah(x)bb+ aτ(x)dσ−1(b)b = aτ(x)dσ−1(b)b, ∀x ∈ R.

That is, aRdσ−1(b)b = 0. This means that a = 0 or dσ−1(b)b = 0 in prime rings.
(ii) Let ah(R)b ⊂ Cλ,µ and k = dσ−1(b). Then we get

0 = [ah(xσ−1(b))b, λ−1(b)]λ,µ = [ah(x)bb+ aτ(x)dσ−1(b)b, λ−1(b)]λ,µ

= ah(x)b[b, b] + [ah(x)b, λ−1(b)]λ,µb+ aτ(x)[kb, b] + [aτ(x), λ−1(b)]λ,µkb

= aτ(x)[kb, b] + [aτ(x), λ−1(b)]λ,µkb

= aτ(x)k[b, b] + aτ(x)[k, b]b+ [aτ(x), λ−1(b)]λ,µkb,∀x ∈ R

which gives that

aτ(x)[k, b]b+ [aτ(x), λ−1(b)]λ,µkb = 0, ∀x ∈ R. (2.9)

Replacing x by τ−1h(x)τ−1(b) in (2.9 ) and using hypothesis we get ah(R)b[k, b]b = 0.
Since ah(R)b ⊂ Cλ,µ and R is prime ring then we have ah(R)b = 0 or [k, b]b = 0. That is

ah(R)b = 0 or [dσ−1(b), b]b = 0. (2.10)

If ah(R)b = 0 in (2.10 ) then we get a = 0 or dσ−1(b)b = 0 by (i). On the other hand, if
dσ−1(b)b = 0 then we obtain that

[dσ−1(b), b]b = dσ−1(b)bb− bdσ−1(b)b = 0.

Lemma 2.20. If I is a nonzero ideal of R and a, b ∈ R such that a[R, I]σ,τ b = 0 then a = 0 or
b ∈ Z.

Proof. For any x ∈ I , the mapping defined by h(r) = [r, x]σ,τ , ∀ r ∈ R is a right-generalized
derivation with derivation d = [r, σ(x)], ∀ r ∈ R, (see Theorem (2.13)).

If a[R, I]σ,τ b = 0 then we have ah(R)b = 0. This gives that a = 0 or d(b)b = 0 by Lemma
(2.19). That is, a = 0 or [b, σ(x)]b = 0. If we consider same argument for all x ∈ I then we get

a = 0 or [b, σ(I)]b = 0.

The mapping defined by d1(r) = [b, r], ∀r ∈ R is a derivation. If [b, σ(I)]b = 0 then we get
d1σ(I)b = 0. Since σ(I) ̸= 0 an ideal of R then we have b = 0 or d1 = 0 by Lemma (2.2). If
d1 = 0 then b ∈ Z. Finally we obtain that a = 0 or b ∈ Z for all case.
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Theorem 2.21. Let V be a nonzero left (σ, τ)−Lie ideal of R and a, b ∈ R. If aV b ⊂ Cλ,µ then
a = 0 or b ∈ Z or σ(v) + τ(v) ∈ Z, ∀v ∈ V .

Proof. If V ⊂ Z then σ(v) + τ(v) ∈ Z, ∀v ∈ V . If V * Z then there exist a nonzero ideal M of
R such that

([R,M ]σ,τ ⊂ V and [R,M ]σ,τ * Cσ,τ ) or σ(v) + τ(v) ∈ Z, ∀v ∈ V

by Lemma (2.1). Let us take any element m ∈ M . Then the mapping defined by h(r) =
[r,m]σ,τ , ∀r ∈ R is a right-generalized derivation associated with derivation d(s) = [s, σ(m)], ∀s ∈
R.

Let [R,M ]σ,τ ⊂ V and [R,M ]σ,τ * Cσ,τ . If aV b ⊂ Cλ,µ then we have a[R,M ]σ,τ b ⊂
aV b ⊂ Cλ,µ and so ah(R)b ⊂ Cλ,µ. This means that a = 0 or [d(b), b]b = 0 or h = 0 by Lemma
(2.19). That is,

a = 0 or h = 0 or [[b, σ(m)], b]b = 0.

If h = 0 then we have d = 0 by the relation h(rs) = h(r)s+ rd(s), ∀r, s ∈ R and so m ∈ Z.
That is, again we have [[b, σ(m)], b]b = 0. If we consider the same argument for all m ∈ M then
we obtain that

a = 0 or [[b, σ(M)], b]b = 0.
Since σ(M) is a nonzero ideal of R then [[b, σ(M)], b]b = 0 means that b ∈ Z or b2 = 0 by

Lemma (2.18). If b2 = 0 then using that a[R,M ]σ,τ b ⊂ Cλ,µ we get

a[r,m]σ,τ bλ(s)b = µ(s)a[r,m]σ,τ b
2 = 0 for all r, s ∈ R,m ∈ M

and so a[R,m]σ,τ bRb = 0. Using primeness of R we obtain that a[R,M ]σ,τ b = 0 or b = 0. That
is a[R,M ]σ,τ b = 0 for two case. This gives that a = 0 or b ∈ Z by Lemma (2.20). Finally we
obtain that a = 0 or b ∈ Z or σ(v) + τ(v) ∈ Z, ∀v ∈ V
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