ONE SIDED (σ, τ) - LIE IDEALS AND GENERALIZED DERIVATIONS IN PRIME RINGS

Evrim Güven

Communicated by J. Abuhlail

MSC 2010 Classifications: Primary 16W25, 16N60; Secondary 16A70.

Keywords and phrases: Prime ring, Lie Ideal, generalized derivation.

Abstract. Let *R* be a prime ring with characteristic not 2 and $\sigma, \tau, \lambda, \mu$, automorphisms of *R*. Let *V* be a nonzero left (σ, τ) -Lie ideal ,*U* a nonzero right (σ, τ) -Lie ideal of *R* and $a, b \in R$. The main object in this article is to study the situations. (1) $aVb \subset C_{\lambda,\mu}$. (2) (i) $bV \subset C_{\lambda,\mu}$ (or $Vb \subset C_{\lambda,\mu}$), (ii) $bU \subset C_{\lambda,\mu}$ (or $Ub \subset C_{\lambda,\mu}$), (iii) $(V,b)_{\lambda,\mu} = 0$ (or $(b,V)_{\lambda,\mu} = 0$), (iv) $(U,b)_{\lambda,\mu} = 0$, (3) (i) $(h(I), a)_{\lambda,\mu} = 0$, (ii) $ah(I) \subset C_{\lambda,\mu}(J)$, (iii) $ah(R)b \subset C_{\lambda,\mu}$, (iv) $h[I, a]_{\lambda,\mu} = 0$, (v) h(V) = 0 where *I*, *J* are ideals and *h* is a left (or right)-generalized (σ, τ) -derivation of *R*.

1 Introduction

Let *R* be a ring and σ, τ two mappings of *R*. We write $[x, y]_{\sigma,\tau} = x\sigma(y) - \tau(y)x$ for $x, y \in R$ and so $[x, y]_{1,1} = [x, y] = xy - yx$, where $1 : R \longrightarrow R$ is an identity mapping. Let *U* be an additive subgroup of *R*. If $[U, R] \subset U$ then *U* is called a Lie ideal of *R*. The definition of (σ, τ) -Lie ideal of *R* is introduced in [9] as follows: (i) *U* is called a right (σ, τ) -Lie ideal of *R* if $[U, R]_{\sigma, \tau} \subset U$, (ii) *U* is called a left (σ, τ) -Lie ideal if $[R, U]_{\sigma, \tau} \subset U$. (iii) *U* is called a (σ, τ) -Lie ideal if *U* is both a right and left (σ, τ) -Lie ideal of *R*. Every Lie ideal of *R* is a (1, 1)-Lie ideal of *R*. If $R = \{ \begin{pmatrix} x & y \\ 0 & 0 \end{pmatrix} | x \text{ and } y \text{ are integers} \}, U = \{ \begin{pmatrix} x & 0 \\ 0 & 0 \end{pmatrix} | x \text{ is integer} \}, \sigma \begin{pmatrix} x & 0 \\ 0 & 0 \end{pmatrix} | x \begin{pmatrix} x & 0 \\ 0 & 0 \end{pmatrix} |$

Let $d: R \longrightarrow R$ be an additive mapping of R. If d(xy) = d(x)y + xd(y) for all $x, y \in R$ then d is called a derivation. An additive mapping $h: R \longrightarrow R$ is said to be right-generalized derivation associated with derivation d if $h(xy) = h(x)y + xd(y), \forall x, y \in R$ and left-generalized derivation associated with derivation d_1 , if $h(xy) = d_1(x)y + xh(y), \forall x, y \in R$. Every derivation $d: R \to R$ is a right (and left)-generalized derivation with d.

The mapping defined by $h(r) = [r, a]_{\sigma,\tau}, \forall r \in R$ is a right-generalized derivation associated with derivation $d(r) = [r, \sigma(a)], \forall r \in R$ and left-generalized derivation associated with derivation $d_1(r) = [r, \tau(a)], \forall r \in R$.

Let $d : R \longrightarrow R$ be an additive mapping of R. If $d(xy) = d(x)\sigma(y) + \tau(x)d(y)$ for all $x, y \in R$ then d is called a (σ, τ) -derivation of R. If there exist a (σ, τ) -derivation d of R such that $h(xy) = h(x)\sigma(y) + \tau(x)d(y)$ for all $x, y \in R$ then h is called a right-generalized (σ, τ) -derivation associated with d. If there exist a (σ, τ) -derivation d_1 such that $h(xy) = d_1(x)\sigma(y) + \tau(x)h(y)$ for all $x, y \in R$ then h is called a left-generalized (σ, τ) -derivation associated with d_1 (see [5]). Every (σ, τ) -derivation $d : R \to R$ is a right (and left)-generalized (σ, τ) -derivation associated with d.

The mapping $h(r) = (a, r)_{\sigma,\tau}, \forall r \in R$ is a left-generalized (σ, τ) -derivation associated with (σ, τ) -derivation $d_1(r) = [a, r]_{\sigma,\tau}, \forall r \in R$ and right-generalized (σ, τ) -derivation associated with (σ, τ) -derivation $d(r) = -[a, r]_{\sigma,\tau}, \forall r \in R$.

In this paper we have given some results on one sided (σ, τ) -Lie ideals and left (or right)generalized (σ, τ) -derivation in prime rings. Some algebraic properties of (σ, τ) -Lie ideal are discussed in [1], [2], [3], [6], [8], [9], [11] and [13] where further references can be found.

Throughout, R will be a prime ring with characteristic not 2 and $\sigma, \tau, \alpha, \beta, \lambda, \mu$ automorphisms of R. We write $C_{\sigma,\tau} = \{c \in R \mid c\sigma(r) = \tau(r)c, \forall r \in R\}$, and will make extensive use of the following basic commutator identities:

$$\begin{split} & [xy, z]_{\sigma,\tau} = x[y, z]_{\sigma,\tau} + [x, \tau(z)]y = x[y, \sigma(z)] + [x, z]_{\sigma,\tau}y \\ & [x, yz]_{\sigma,\tau} = \tau(y)[x, z]_{\sigma,\tau} + [x, y]_{\sigma,\tau}\sigma(z) \\ & (x, yz)_{\sigma,\tau} = \tau(y)(x, z)_{\sigma,\tau} + [x, y]_{\sigma,\tau}\sigma(z) = -\tau(y)[x, z]_{\sigma,\tau} + (x, y)_{\sigma,\tau}\sigma(z) \\ & (xy, z)_{\sigma,\tau} = x(y, z)_{\sigma,\tau} - [x, \tau(z)]y = x[y, \sigma(z)] + (x, z)_{\sigma,\tau}y. \end{split}$$

2 Results

Lemma 2.1. [11, Theorem2] Let V be a noncentral left (σ, τ) -Lie ideal of R. Then there exist a nonzero ideal M of R such that $([R, M]_{\sigma, \tau} \subset V \text{ and } [R, M]_{\sigma, \tau} \nsubseteq C_{\sigma, \tau}) \text{ or } \sigma(u) + \tau(u) \in Z, \forall u \in V.$

Lemma 2.2. [4, Lemma3] Let d be a nonzero (σ, τ) - derivation on R, $a \in R$ and $U \neq 0$ an ideal of R. If ad(U) = 0 (or d(U)a = 0) then a = 0.

Lemma 2.3. [4, Lemma1] Let R be a prime ring and $d : R \longrightarrow R a(\sigma, \tau)$ -derivation. If U is a right ideal of R and d(U) = 0 then d = 0.

Lemma 2.4. [12, Lemma4] If a prime ring contains a nonzero commutative right ideal then R is commutative.

Lemma 2.5. [7, Theorem1] Let $h : R \longrightarrow R$ be a nonzero right-generalized (σ, τ) - derivation associated with a nonzero (λ, μ) -derivation d and I, J nonzero ideals of R. If $h(I) \subset C_{\alpha,\beta}(J)$ then R is commutative.

Lemma 2.6. Let $h : R \longrightarrow R$ be a nonzero right-generalized (σ, τ) -derivation associated with a nonzero (σ, τ) -derivation d and I a nonzero ideal of R. If $a, b \in R$ such that $[ah(I), b]_{\lambda,\mu} = 0$ then $[a, \mu(b)]a = 0$ or $d\sigma^{-1}\lambda(b) = 0$.

Proof. Let $[ah(I), b]_{\lambda,\mu} = 0$. Then we have,

$$0 = [ah(x\sigma^{-1}\lambda(b)), b]_{\lambda,\mu} = [ah(x)\lambda(b) + a\tau(x)d\sigma^{-1}\lambda(b), b]_{\lambda,\mu}$$
$$= ah(x)[\lambda(b), \lambda(b)] + [ah(x), b]_{\lambda,\mu}\lambda(b) + a\tau(x)[d\sigma^{-1}\lambda(b), b]_{\lambda,\mu}$$
$$+ [a\tau(x), \mu(b)]d\sigma^{-1}\lambda(b), \forall x \in I$$

and so

$$a\tau(x)[k,b]_{\lambda,\mu} + [a\tau(x),\mu(b)]k = 0, \forall x \in I, k = d\sigma^{-1}\lambda(b).$$
(2.1)

Let us replace x by $\tau^{-1}(a)x$ in (2.1). Then using (2.1) we get,

$$0 = aa\tau(x)[k,b]_{\lambda,\mu} + [aa\tau(x),\mu(b)]k$$

= $aa\tau(x)[k,b]_{\lambda,\mu} + a[a\tau(x),\mu(b)]k + [a,\mu(b)]a\tau(x)k$
= $[a,\mu(b)]a\tau(x)k, \forall x \in I$

and so $[a, \mu(b)]a\tau(I)d\sigma^{-1}\lambda(b) = 0$. Since $\tau(I)$ is a nonzero ideal of R then we obtain that $[a, \mu(b)]a = 0$ or $d\sigma^{-1}\lambda(b) = 0$.

Theorem 2.7. Let $h : R \longrightarrow R$ be a nonzero right-generalized (σ, τ) -derivation associated with (σ, τ) -derivation d and I, J nonzero ideals of R. If $a \in R$ such that $ah(I) \subset C_{\lambda,\mu}(J)$ then $a \in Z$ or d = 0.

Proof. Let $ah(I) \subset C_{\lambda,\mu}(J)$. This means that $[ah(I), x]_{\lambda,\mu} = 0, \forall x \in J$. Using Lemma (2.6) we obtain that, for any $x \in J$,

$$[a, \mu(x)]a = 0 \text{ or } d\sigma^{-1}\lambda(x) = 0.$$

Let $K = \{x \in J \mid [a, \mu(x)]a = 0\}$ and $L = \{x \in J \mid d\sigma^{-1}\lambda(x) = 0\}$. Then K and L are subgroups of J and $J = K \cup L$. Hence we have J = K or J = L. That is

$$[a, \mu(J)]a = 0$$
 or $d\sigma^{-1}\lambda(J) = 0$.

Since $\sigma^{-1}\lambda(J)$ is a nonzero ideal of R then $d\sigma^{-1}\lambda(J) = 0$ implies that d = 0 by Lemma (2.3). If $[a, \mu(J)]a = 0$ then using this relation we get,

$$0 = [a, \mu(rx)]a = \mu(r)[a, \mu(x)]a + [a, \mu(r)]\mu(x)a = [a, \mu(r)]\mu(x)a, \forall x \in J, r \in R.$$

That is $[a, R]\mu(J)a = 0$. Since $\mu(J) \neq 0$ is an ideal of R then we have [a, R] = 0 or a = 0. This means that $a \in Z$ for two case.

Theorem 2.8. Let J be a nonzero ideal of R and $a, b \in R$.

(i) If $b(a, R)_{\alpha,\beta} \subset C_{\lambda,\mu}(J)$ then $a \in C_{\alpha,\beta}$ or $b \in Z$. (ii) If $b(R, a)_{\alpha,\beta} \subset C_{\lambda,\mu}(J)$ then $a \in Z$ or $b \in Z$.

Proof. (i) Let $h(r) = (a, r)_{\alpha, \beta}, \forall r \in R \text{ and } d(r) = -[a, r]_{\alpha, \beta}, \forall r \in R.$ Since ,

$$h(rs) = (a, rs)_{\alpha,\beta} = -\beta(r)[a, s]_{\alpha,\beta} + (a, r)_{\alpha,\beta}\alpha(s)$$
$$= h(r)\alpha(s) + \beta(r)d(s), \forall r, s \in R$$

and

$$d(rs) = -[a, rs]_{\alpha,\beta} = -\beta(r)[a, s]_{\alpha,\beta} - [a, r]_{\alpha,\beta}\alpha(s)$$
$$= d(r)\alpha(s) + \beta(r)d(s), \forall r, s \in R$$

then d is a (α, β) -derivation and h is a right-generalized (α, β) -derivation associated with d.

If h = 0 then we have Rd(R) = 0 by the above relation. This gives that d = 0 and so $a \in C_{\alpha,\beta}$. Let $h \neq 0$.

If $b(a, R)_{\alpha,\beta} \subset C_{\lambda,\mu}(J)$ then we have $bh(R) \subset C_{\lambda,\mu}(J)$. This gives that $b \in Z$ or d = 0 by Theorem (2.7). Finally we obtain that $b \in Z$ or $a \in C_{\alpha,\beta}$.

(ii) Consider the mappings defined by $g(r) = (r, a)_{\alpha,\beta}, \forall r \in R \text{ and } d(r) = [r, \alpha(a)], \forall r \in R.$ Since,

$$d(rs) = [rs, \alpha(a)] = r[s, \alpha(a)] + [r, \alpha(a)]s = d(r)s + rd(s), \forall r, s \in R$$

and

$$g(rs) = (rs, a)_{\alpha,\beta} = r[s, \alpha(a)] + (r, a)_{\alpha,\beta}s = g(r)s + rd(s), \forall r, s \in R,$$

then d is a derivation and g is a right-generalized derivation associated with d. If g = 0 then we obtain that d(R) = 0 and so $a \in Z$ by the above relation.

If $b(R, a)_{\alpha,\beta} \subset C_{\lambda,\mu}(J)$ then we have $bg(R) \subset C_{\lambda,\mu}(J)$. This means that $b \in Z$ or d = 0 by Theorem (2.7). That is $b \in Z$ or $a \in Z$.

Using Theorem (2.8) we can prove the following Corollary immediately.

Corollary 2.9. Let V be a nonzero left (σ, τ) -lie ideal and U a nonzero right (σ, τ) -lie ideal of R. Let $J \neq (0)$ be an ideal of R and $b \in R$.

(i) If $b(V, R)_{\alpha,\beta} \subset C_{\lambda,\mu}(J)$ then $V \subset C_{\alpha,\beta}$ or $b \in Z$. (ii) If $b(R, V)_{\alpha,\beta} \subset C_{\lambda,\mu}(J)$ then $V \subset Z$ or $b \in Z$. (iii) If $b(U, R)_{\alpha,\beta} \subset C_{\lambda,\mu}(J)$ then $U \subset C_{\alpha,\beta}$ or $b \in Z$. (iv) If $b(R, U)_{\alpha,\beta} \subset C_{\lambda,\mu}(J)$ then $U \subset Z$ or $b \in Z$.

Theorem 2.10. Let $d : R \longrightarrow R$ be a nonzero (σ, τ) -derivation and $b \in R$. If $d(R)b \subset C_{\lambda,\mu}(R)$ then $b \in Z$.

Proof. If $d(R)b \subset C_{\lambda,\mu}(R)$ then we have

$$\begin{aligned} 0 &= & [d(r\sigma^{-1}(b))b, \mu^{-1}\tau(r)]_{\lambda,\mu} = [d(r)bb + \tau(r)d\sigma^{-1}(b)b, \mu^{-1}\tau(r)]_{\lambda,\mu} \\ &= & d(r)b[b, \lambda\mu^{-1}\tau(r)] + [d(r)b, \mu^{-1}\tau(r)]_{\lambda,\mu}b + \tau(r)[d\sigma^{-1}(b)b, \mu^{-1}\tau(r)]_{\lambda,\mu} \\ &+ [\tau(r), \tau(r)]d\sigma^{-1}(b)b \\ &= & d(r)b[b, \lambda\mu^{-1}\tau(r)], \forall r \in R. \end{aligned}$$

That is

$$d(r)b[b,\lambda\mu^{-1}\tau(r)] = 0, \forall r \in R.$$
(2.2)

Since $d(r)b \in C_{\lambda,\mu}(R), \forall r \in R$ then, for any $r \in R$, we obtain that

$$d(r)b = 0$$
 or $[b, \lambda \mu^{-1} \tau(r)] = 0$

by (2.2). Let $K = \{r \in R \mid d(r)b = 0\}$ and $L = \{r \in R \mid [b, \lambda \mu^{-1} \tau(r)] = 0\}$. Considering as in the proof of Theorem (2.7) we get

$$d(R)b = 0$$
 or $[b, R] = 0$.

If [b, R] = 0 then we have $b \in Z$. Since $d \neq 0$ then d(R)b = 0 implies that b = 0 by Lemma (2.2) and so $b \in Z$.

Remark 2.11. [10, Lemma3] Let R be a prime ring and $a, b \in R$. If $b, ab \in C_{\sigma,\tau}$ then b = 0 or $a \in Z$.

Lemma 2.12. Let I be a nonzero ideal of R and $a, b \in R$. If $[I, a]_{\sigma,\tau} b \subset C_{\lambda,\mu}$ then b = 0 or $a \in Z$.

Proof. Let $[I, a]_{\sigma,\tau} b \subset C_{\lambda,\mu}$. Then we have

$$C_{\lambda,\mu} \ni [\tau(a)x, a]_{\sigma,\tau}b = \tau(a)[x, a]_{\sigma,\tau}b + [\tau(a), \tau(a)]xb = \tau(a)[x, a]_{\sigma,\tau}b, \forall x \in I$$

and so $\tau(a)[x, a]_{\sigma,\tau} b \in C_{\lambda,\mu}, \forall x \in I$. Considering the last relation and hypothesis we obtain that, for any $x \in I$,

$$[x,a]_{\sigma,\tau}b \in C_{\lambda,\mu}$$
 and $\tau(a)[x,a]_{\sigma,\tau}b \in C_{\lambda,\mu}$.

Using Remark (2.11) we get $\tau(a) \in Z$ or $[x, a]_{\sigma,\tau} b = 0$. Applying this argument for all $x \in I$ we have $a \in Z$ or $[I, a]_{\sigma,\tau} b = 0$.

On the other hand $[I, a]_{\sigma, \tau} b = 0$ gives that,

 $0 = [rx, a]_{\sigma, \tau} b = r[x, a]_{\sigma, \tau} b + [r, \tau(a)] x b = [r, \tau(a)] x b, \forall x \in I, r \in R$

and so $[R, \tau(a)]Ib = 0$. Since R is prime ring and $I \neq (0)$ an ideal of R then we have b = 0or $a \in Z$.

Theorem 2.13. Let V be a nonzero left (σ, τ) -Lie ideal $b \in R$ and U a nonzero right (σ, τ) -Lie ideal of R.

(i) If $bV \subset C_{\lambda,\mu}$ then $b \in Z$ or $V \subset Z$. (ii) If $Vb \subset C_{\lambda,\mu}$ then b = 0 or $V \subset Z$. (iii) If $bU \subset C_{\lambda,\mu}$ (or $Ub \subset C_{\lambda,\mu}$) then $b \in Z$ or $U \subset C_{\sigma,\tau}$.

Proof. For any $v \in V$, let us consider the mapping defined by $h(r) = [r, v]_{\sigma, \tau}, \forall r \in R$. Since,

$$\begin{split} h(rs) &= [rs, v]_{\sigma, \tau} = r[s, \sigma(v)] + [r, v]_{\sigma, \tau}s \\ &= h(r)s + rd_1(s), \forall r, s \in R, \text{ where } d_1(s) = [s, \sigma(v)], \forall s \in R \end{split}$$

then h is a right-generalized derivation with derivation d_1 .

(i) If $bV \subset C_{\lambda,\mu}$ then, for any $v \in V$, we have $b[R, v]_{\sigma,\tau} \subset bV \subset C_{\lambda,\mu}$ and so $bh(R) \subset C_{\lambda,\mu}$. This means that $b \in Z$ or $d_1 = 0$ by Theorem (2.7). If $d_1 = 0$ then we have $v \in Z$.

If we consider for all $v \in V$ the same argument we get $b \in Z$ or $V \subset Z$.

(ii) If $Vb \subset C_{\lambda,\mu}$ then $[R, V]_{\sigma,\tau}b \subset C_{\lambda,\mu}$. This gives that b = 0 or $V \subset Z$ by Lemma (2.12). (iii) For any $u \in U$, define the mapping $d(r) = [u, r]_{\sigma,\tau}, \forall r \in R$. It is clear that, d is a (σ, τ) -derivation and so right (and left)-generalized (σ, τ) -derivation associated with d.

If $bU \subset C_{\lambda,\mu}$ then, for any $u \in U$, we have $b[u, R]_{\sigma,\tau} \subset bU \subset C_{\lambda,\mu}$ and so $bd(R) \subset C_{\lambda,\mu}$. Using Theorem (2.7) we get $b \in Z$ or d = 0. On the other hand d = 0 implies that $u \in C_{\sigma,\tau}$.

Considering as in the proof of (i) we get $b \in Z$ or $U \subset C_{\sigma,\tau}$.

If $Ub \subset C_{\lambda,\mu}$ then, for any $u \in U$, we have $[u, R]_{\sigma,\tau} b \subset Ub \subset C_{\lambda,\mu}$ gives that $d(R)b \subset C_{\lambda,\mu}$. Using Theorem (2.10) we have $b \in Z$ or d = 0. That is $b \in Z$ or $u \in C_{\sigma,\tau}$.

If we consider for all $u \in U$ the same thing we get $b \in Z$ or $U \subset C_{\sigma,\tau}$.

Lemma 2.14. Let $h : R \longrightarrow R$ be a nonzero left-generalized (σ, τ) -derivation with (σ, τ) -derivation d and $a \in R$. If I is a nonzero ideal of R such that $h[I, a]_{\lambda,\mu} = 0$ then $a \in Z$ or $d\mu(a) = 0$.

Proof. Let $h[x, a]_{\lambda, \mu} = 0, \forall x \in I$. Then we have,

$$\begin{aligned} 0 &= h[\mu(a)x, a]_{\lambda,\mu} = h\{\mu(a)[x, a]_{\lambda,\mu} + [\mu(a), \mu(a)]x\} \\ &= h\{\mu(a)[x, a]_{\lambda,\mu}\} = d\mu(a)\sigma[x, a]_{\lambda,\mu} + \tau\mu(a)h[x, a]_{\lambda,\mu} = d\mu(a)\sigma[x, a]_{\lambda,\mu}, \forall x \in I \end{aligned}$$

and so $k[x,a]_{\lambda,\mu} = 0, \forall x \in I$, where $k = \sigma^{-1}d\mu(a)$. Replacing x by $xr, r \in R$ we get

$$0 = k[xr, a]_{\lambda,\mu} = kx[r, \lambda(a)] + k[x, a]_{\lambda,\mu}r$$
$$= kx[r, \lambda(a)], \forall x \in I, r \in R.$$

That is $kI[R, \lambda(a)] = 0$. Since R is prime and $I \neq 0$ an ideal of R then we obtain that $a \in Z$ or $d\mu(a) = 0$ by the last relation.

Lemma 2.15. Let $h : R \longrightarrow R$ be a nonzero left-generalized (α, β) – derivation with (α, β) – derivation d. If V is a nonzero left (σ, τ) – Lie ideal of R such that h(V) = 0 then d = 0 or $\sigma(v) + \tau(v) \in Z$ for all $v \in V$.

Proof. If $V \subset Z$ then $\sigma(v) + \tau(v) \in Z$ for all $v \in V$. If $V \nsubseteq Z$ then there exist a nonzero ideal M of R such that

$$([R, M]_{\sigma, \tau} \subset V \text{ and } [R, M]_{\sigma, \tau} \nsubseteq C_{\sigma, \tau}) \text{ or } \sigma(v) + \tau(v) \in Z, \forall v \in V$$

by Lemma (2.1). Let $[R, M]_{\sigma,\tau} \subset V$ and $[R, M]_{\sigma,\tau} \nsubseteq C_{\sigma,\tau}$. If h(V) = 0 then we have $h[R, M]_{\sigma,\tau} \subset h(V) = 0$ and so $h[R, M]_{\sigma,\tau} = 0$. This gives that, for any $m \in M$,

$$m \in Z \text{ or } d\tau(m) = 0$$

by Lemma (2.14). Let $K = \{m \in M \mid m \in Z\}$ and $L = \{m \in M \mid d\tau(m) = 0\}$. Then K and L are subgroups of M and $M = K \cup L$. Hence, we have M = K or M = L. That is $M \subset Z$ or $d\tau(M) = 0$. Since $\tau(M) \neq 0$ is an ideal of R then $d\tau(M) = 0$ implies that d = 0 by Lemma (2.3). On the other hand, if $M \subset Z$ then we obtain that R is commutative by Lemma (2.4) and so $\sigma(v) + \tau(v) \in Z, \forall v \in V$.

Lemma 2.16. Let $h : R \longrightarrow R$ be a nonzero **left-generalized** (σ, τ) – derivation associated with a nonzero (σ, τ) – derivation d. If I is a nonzero ideal of R and $a \in R$ such that $(h(I), a)_{\lambda,\mu} = 0$ then $a \in Z$ or $d\tau^{-1}\mu(a) = 0$.

Proof. Let $(h(I), a)_{\lambda,\mu} = 0$ and $k = d\tau^{-1}\mu(a)$. Then we get

$$0 = (h(\tau^{-1}\mu(a)y), a)_{\lambda,\mu} = (d\tau^{-1}\mu(a)\sigma(y) + \mu(a)h(y), a)_{\lambda,\mu}$$

= $k[\sigma(y), \lambda(a)] + (k, a)_{\lambda,\mu}\sigma(y) + \mu(a)(h(y), a)_{\lambda,\mu} - [\mu(a), \mu(a)]h(y), \forall y \in I.$

This gives that

$$k\left[\sigma(y),\lambda(a)\right] + (k,a)_{\lambda,\mu}\sigma(y) = 0, \ \forall y \in I.$$
(2.3)

Replacing y by $yr, r \in R$ in (2.3) and using (2.3) we get,

$$\begin{split} 0 &= k\sigma(y) \left[\sigma(r), \lambda(a) \right] + k \left[\sigma(y), \lambda(a) \right] \sigma(r) + (k, a)_{\lambda, \mu} \sigma(y) \sigma(r) \\ &= k\sigma(y) \left[\sigma(r), \lambda(a) \right], \forall y \in I, r \in R. \end{split}$$

That is

$$k\sigma(I)\left[R,\lambda(a)\right] = 0. \tag{2.4}$$

Since $\sigma(I)$ is a nonzero ideal of R then we have $a \in Z$ or $d\tau^{-1}\mu(a) = 0$ by (2.4) in prime rings.

Theorem 2.17. Let U be a nonzero right (σ, τ) -Lie ideal of R and $b \in R$. Let V be a nonzero left (σ, τ) -Lie ideal of R.

- (i) If $(V, b)_{\lambda,\mu} = 0$ then $b \in Z$ or $\sigma(v) + \tau(v) \in Z$ for all $v \in V$. (ii) If $(b, V)_{\lambda,\mu} = 0$ then $b \in C_{\lambda,\mu}$ or $\sigma(v) + \tau(v) \in Z$ for all $v \in V$.
- (iii) If $(U, b)_{\lambda,\mu} = 0$ then $b \in Z$ or $U \subset C_{\sigma,\tau}$.

Proof. (i) Let $g(r) = (r, b)_{\lambda,\mu}, \forall r \in R \text{ and } d(r) = -[r, \mu(b)], \forall r \in R.$ Since,

$$g(rs) = (rs, b)_{\lambda,\mu} = r(s, b)_{\lambda,\mu} - [r, \mu(b)]s = d(r)s + rg(s), \forall r, s \in \mathbb{R}$$

then g is a left-generalized derivation with derivation $d(r) = -[r, \mu(b)], \forall r \in \mathbb{R}$. If g = 0 then we have d = 0 by the above relation. This gives that $b \in \mathbb{Z}$.

Let us consider that $g \neq 0$. If $(V, b)_{\lambda,\mu} = 0$ then g(V) = 0. This implies that d = 0 (and so $b \in Z$) or $\sigma(v) + \tau(v) \in Z, \forall v \in V$ by Lemma (2.15).

(ii) The mapping defined by $h(r) = (b, r)_{\lambda,\mu}, \forall r \in R$ is a left-generalized (λ, μ) -derivation with (λ, μ) -derivation $d_1(r) = [b, r]_{\lambda,\mu}, \forall r \in R$. Because,

$$d_{1}(rs) = [b, rs]_{\lambda, \mu} = \mu(r) [b, s]_{\lambda, \mu} + [b, r]_{\lambda, \mu} \lambda(s) = d_{1}(r)\lambda(s) + \mu(r)d_{1}(s), \forall r, s \in \mathbb{R}$$

and

$$h(rs) = (b, rs)_{\lambda,\mu} = \mu(r)(b, s)_{\lambda,\mu} + [b, r]_{\lambda,\mu} \lambda(s) = d_1(r)\lambda(s) + \mu(r)h(s), \forall r, s \in \mathbb{R}.$$

If h = 0 then, considering as in the proof of (i), we have $d_1 = 0$ and so $b \in C_{\lambda,\mu}$.

Assume that $h \neq 0$. If $(b, V)_{\lambda,\mu} = 0$ then we have h(V) = 0. Using Lemma (2.15) we obtain that $d_1 = 0$ (and so $b \in C_{\lambda,\mu}$) or $\sigma(v) + \tau(v) \in Z, \forall v \in V$.

(iii) Let $d(r) = [u, r]_{\sigma, \tau}, \forall r \in \mathbb{R}$, for any $u \in U$. Then d is a (σ, τ) -derivation and so left (and right)-generalized (σ, τ) - derivation associated with d. Let $d \neq 0$.

If $(U,b)_{\lambda,\mu} = 0$ then we can write $([u, R]_{\sigma,\tau}, b)_{\lambda,\mu} = 0, \forall u \in U$ and so $(d(R), b)_{\lambda,\mu} = 0$. If we use Lemma (2.16) we obtain that $b \in Z$ or $d\tau^{-1}\mu(b) = 0$. That is

$$b \in Z$$
 or $[u, \tau^{-1}\mu(b)]_{\sigma,\tau} = 0$

If d = 0 then we have $u \in C_{\sigma,\tau}$ and so $[u, \tau^{-1}\mu(b)]_{\sigma,\tau} = 0$. Considering same thing for all $u \in U$ we get

$$b \in Z$$
 or $[U, \tau^{-1}\mu(b)]_{\sigma,\tau} = 0$

On the other hand, $[U, \tau^{-1}\mu(b)]_{\sigma,\tau} = 0$ gives that $b \in Z$ or $U \subset C_{\sigma,\tau}$ by [8, Lemma3]. \Box

Lemma 2.18. Let M be a nonzero ideal of R. If $c \in R$ such that [[c, M], c]c = 0 then $c \in Z$ or $c^2 = 0$.

Proof. If [[c, M], c]c = 0 then we can write

$$[c, x]cc = c[c, x]c, \forall x \in M.$$
(2.5)

Using the hypothesis and (2.5) we get

That is

$$2[y,c][c,x]c + [[c,y],c]xc = 0, \forall x, y \in M.$$
(2.6)

Replacing x by cx in (2.6) and using hypothesis, $charR \neq 2$, we get

and so

$$[y,c]c[c,x]c = 0, \forall x, y \in M$$
(2.7)

Taking $ry, r \in R$ instead of y in (2.7) we have

0=[ry,c]c[c,x]c=r[y,c]c[c,x]c+[r,c]yc[c,x]c=[r,c]yc[c,x]c for all $x,y\in M,r\in R$ and so

$$[R, c]Mc[c, M]c = 0.$$
 (2.8)

Since R is prime then we obtain that $c \in Z$ or c[c, M]c = 0 by (2.8) and so $c[c, x]c = 0, \forall x \in M$ for two case. Using (2.5) we get $[c, x]cc = 0, \forall x \in M$. Replacing x by $sx, s \in R$ in the last relation we have [c, R]Mcc = 0 and so $c \in Z$ or $c^2 = 0$.

Lemma 2.19. Let $h : R \longrightarrow R$ be a nonzero **right-generalized** (σ, τ) - derivation associated with a nonzero (σ, τ) -derivation d and $a, b \in R$.

(i) If ah(R)b = 0 then a = 0 or dσ⁻¹(b)b = 0.
(ii) If ah(R)b ⊂ C_{λ,μ} then a = 0 or [dσ⁻¹(b), b]b = 0.

Proof. (i) If ah(R)b = 0 then we have

$$0 = ah(x\sigma^{-1}(b))b = ah(x)bb + a\tau(x)d\sigma^{-1}(b)b = a\tau(x)d\sigma^{-1}(b)b, \forall x \in \mathbb{R}.$$

That is, $aRd\sigma^{-1}(b)b = 0$. This means that a = 0 or $d\sigma^{-1}(b)b = 0$ in prime rings. (ii) Let $ah(R)b \subset C_{\lambda,\mu}$ and $k = d\sigma^{-1}(b)$. Then we get

$$\begin{aligned} 0 &= [ah(x\sigma^{-1}(b))b, \lambda^{-1}(b)]_{\lambda,\mu} = [ah(x)bb + a\tau(x)d\sigma^{-1}(b)b, \lambda^{-1}(b)]_{\lambda,\mu} \\ &= ah(x)b[b,b] + [ah(x)b, \lambda^{-1}(b)]_{\lambda,\mu}b + a\tau(x)[kb,b] + [a\tau(x), \lambda^{-1}(b)]_{\lambda,\mu}kb \\ &= a\tau(x)[kb,b] + [a\tau(x), \lambda^{-1}(b)]_{\lambda,\mu}kb \\ &= a\tau(x)k[b,b] + a\tau(x)[k,b]b + [a\tau(x), \lambda^{-1}(b)]_{\lambda,\mu}kb, \forall x \in R \end{aligned}$$

which gives that

$$a\tau(x)[k,b]b + [a\tau(x),\lambda^{-1}(b)]_{\lambda,\mu}kb = 0, \forall x \in R.$$
(2.9)

Replacing x by $\tau^{-1}h(x)\tau^{-1}(b)$ in (2.9) and using hypothesis we get ah(R)b[k,b]b = 0. Since $ah(R)b \subset C_{\lambda,\mu}$ and R is prime ring then we have ah(R)b = 0 or [k,b]b = 0. That is

$$ah(R)b = 0 \text{ or } [d\sigma^{-1}(b), b]b = 0.$$
 (2.10)

If ah(R)b = 0 in (2.10) then we get a = 0 or $d\sigma^{-1}(b)b = 0$ by (i). On the other hand, if $d\sigma^{-1}(b)b = 0$ then we obtain that

$$[d\sigma^{-1}(b), b]b = d\sigma^{-1}(b)bb - bd\sigma^{-1}(b)b = 0.$$

Lemma 2.20. If I is a nonzero ideal of R and $a, b \in R$ such that $a[R, I]_{\sigma,\tau}b = 0$ then a = 0 or $b \in Z$.

Proof. For any $x \in I$, the mapping defined by $h(r) = [r, x]_{\sigma,\tau}, \forall r \in R$ is a right-generalized derivation with derivation $d = [r, \sigma(x)], \forall r \in R$, (see Theorem (2.13)).

If $a[R, I]_{\sigma,\tau}b = 0$ then we have ah(R)b = 0. This gives that a = 0 or d(b)b = 0 by Lemma (2.19). That is, a = 0 or $[b, \sigma(x)]b = 0$. If we consider same argument for all $x \in I$ then we get

$$a = 0$$
 or $[b, \sigma(I)]b = 0$.

The mapping defined by $d_1(r) = [b, r], \forall r \in R$ is a derivation. If $[b, \sigma(I)]b = 0$ then we get $d_1\sigma(I)b = 0$. Since $\sigma(I) \neq 0$ an ideal of R then we have b = 0 or $d_1 = 0$ by Lemma (2.2). If $d_1 = 0$ then $b \in Z$. Finally we obtain that a = 0 or $b \in Z$ for all case.

Theorem 2.21. Let V be a nonzero left (σ, τ) -Lie ideal of R and $a, b \in R$. If $aVb \subset C_{\lambda,\mu}$ then a = 0 or $b \in Z$ or $\sigma(v) + \tau(v) \in Z, \forall v \in V$.

Proof. If $V \subset Z$ then $\sigma(v) + \tau(v) \in Z$, $\forall v \in V$. If $V \nsubseteq Z$ then there exist a nonzero ideal M of R such that

 $([R, M]_{\sigma, \tau} \subset V \text{ and } [R, M]_{\sigma, \tau} \nsubseteq C_{\sigma, \tau}) \text{ or } \sigma(v) + \tau(v) \in Z, \forall v \in V$

by Lemma (2.1). Let us take any element $m \in M$. Then the mapping defined by $h(r) = [r,m]_{\sigma,\tau}, \forall r \in R$ is a right-generalized derivation associated with derivation $d(s) = [s,\sigma(m)], \forall s \in R$.

Let $[R, M]_{\sigma,\tau} \subset V$ and $[R, M]_{\sigma,\tau} \nsubseteq C_{\sigma,\tau}$. If $aVb \subset C_{\lambda,\mu}$ then we have $a[R, M]_{\sigma,\tau}b \subset aVb \subset C_{\lambda,\mu}$ and so $ah(R)b \subset C_{\lambda,\mu}$. This means that a = 0 or [d(b), b]b = 0 or h = 0 by Lemma (2.19). That is,

$$a = 0$$
 or $h = 0$ or $[[b, \sigma(m)], b]b = 0$

If h = 0 then we have d = 0 by the relation h(rs) = h(r)s + rd(s), $\forall r, s \in R$ and so $m \in Z$. That is, again we have $[[b, \sigma(m)], b]b = 0$. If we consider the same argument for all $m \in M$ then we obtain that

$$a = 0$$
 or $[[b, \sigma(M)], b]b = 0.$

Since $\sigma(M)$ is a nonzero ideal of R then $[[b, \sigma(M)], b]b = 0$ means that $b \in Z$ or $b^2 = 0$ by Lemma (2.18). If $b^2 = 0$ then using that $a[R, M]_{\sigma,\tau}b \subset C_{\lambda,\mu}$ we get

$$a[r,m]_{\sigma,\tau}b\lambda(s)b = \mu(s)a[r,m]_{\sigma,\tau}b^2 = 0$$
 for all $r,s \in R, m \in M$

and so $a[R, m]_{\sigma,\tau}bRb = 0$. Using primeness of R we obtain that $a[R, M]_{\sigma,\tau}b = 0$ or b = 0. That is $a[R, M]_{\sigma,\tau}b = 0$ for two case. This gives that a = 0 or $b \in Z$ by Lemma (2.20). Finally we obtain that a = 0 or $b \in Z$ or $\sigma(v) + \tau(v) \in Z, \forall v \in V$

References

- [1] M.Ashraf, N.-ur Rehman, S.Ali and M.R.Mozumder, On (σ, τ) -Lie Ideals with Generalized Derivations in Rings, *International Journal of Algebra* **3**, (2009).
- [2] N. Aydýn, On One Sided (σ, τ) -Lie Ideals in Prime Rings, *Tr.Journal of Math.* **21**, (1997).
- [3] N. Aydýn and H. Kandamar, (σ, τ) -Lie Ideals in Prime Rings, *Tr.Journal of Math.* **18**, (1994).
- [4] N. Aydýn, On One Sided (σ, τ)-Lie Ideals in Prime Rings, *Doga Tr. Journal of Math.* **16**, (1992).
- [5] C. J. Chang, On the Identity h(x) = af(x) + g(x)b Taiwanese Jour. of Math., 7, (2003).
- [6] O. Golbasi and E. Koc, On (σ, τ) -Lie ideals with Generalized Derivation, *Bull. Korean Math. Soc.*, (2010).
- [7] E. Guven, Some Results on Generalized (σ, τ) -derivations in Prime Rings, *Beitrage zur Algebra and Geometry*, **54**, (2013).
- [8] E. Guven, K. Kaya and M. Soyturk, Some Results on (σ, τ) -Lie Ideals, *Math. J. Okayama Univ.*, **49**, (2007).
- [9] K. Kaya, (σ, τ) -Lie ideals in Prime Rings, An. Univ. Timisoara, Stiinte Mat., **30**, (1992).
- [10] K. Kaya, On Prime Rings With (σ, τ) -Derivations Doga Tr.Journal of Math., **12**, (1988).
- [11] K. Kaya and N Aydin, Some Results on Generalized Lie Ideals, *A Scientific Journal Issued by Jordan University for Women*, **3**,(1999).
- [12] J. H. Maine, Centralizing Mappings of Prime Rings, Canad. Math. Bull, 27, (1984).
- [13] K.H.Park and Y.S.Jung, J. Some Results Concerning (σ, τ) -Derivations on Prime Rings, J. Korea Soc. Math. Educ. Ser.B, Pure and App. Math., 10, (2003).

Author information

Evrim Güven, Department of Mathematics, University of Kocaeli, Kocaeli, Turkey. E-mail: evrimokaya@yahoo.com

Received: February 23, 2017.

Accepted: July 27, 2017.