ONE SIDED (σ, τ) - LIE IDEALS AND GENERALIZED DERIVATIONS IN PRIME RINGS

Evrim Güven

Communicated by J. Abuhlail

MSC 2010 Classifications: Primary 16W25, 16N60; Secondary 16A70.
Keywords and phrases: Prime ring, Lie Ideal, generalized derivation.

Abstract

Let R be a prime ring with characteristic not 2 and $\sigma, \tau, \lambda, \mu$, automorphisms of R. Let V be a nonzero left (σ, τ)-Lie ideal , U a nonzero right (σ, τ)-Lie ideal of R and $a, b \in R$. The main object in this article is to study the situations. (1) $a V b \subset C_{\lambda, \mu}$. (2) (i) $b V \subset C_{\lambda, \mu}$ (or $V b \subset C_{\lambda, \mu}$), (ii) $b U \subset C_{\lambda, \mu}\left(\right.$ or $\left.U b \subset C_{\lambda, \mu}\right)$, (iii) $(V, b)_{\lambda, \mu}=0\left(\right.$ or $\left.(b, V)_{\lambda, \mu}=0\right)$, (iv) $(U, b)_{\lambda, \mu}=0$, (3) (i) $(h(I), a)_{\lambda, \mu}=0$, (ii) $a h(I) \subset C_{\lambda, \mu}(J)$, (iii) $a h(R) b \subset C_{\lambda, \mu}$, (iv) $h[I, a]_{\lambda, \mu}=0$, (v) $h(V)=0$ where I, J are ideals and h is a left (or right)-generalized $(\sigma, \tau)-$ derivation of R.

1 Introduction

Let R be a ring and σ, τ two mappings of R. We write $[x, y]_{\sigma, \tau}=x \sigma(y)-\tau(y) x$ for $x, y \in R$ and so $[x, y]_{1,1}=[x, y]=x y-y x$, where $1: R \longrightarrow R$ is an identity mapping. Let U be an additive subgroup of R. If $[U, R] \subset U$ then U is called a Lie ideal of R. The definition of (σ, τ)-Lie ideal of R is introduced in [9] as follows: (i) U is called a right (σ, τ)-Lie ideal of R if $[U, R]_{\sigma, \tau} \subset U$, (ii) U is called a left (σ, τ)-Lie ideal if $[R, U]_{\sigma, \tau} \subset U$. (iii) U is called a (σ, τ)-Lie ideal if U is both a right and left (σ, τ)-Lie ideal of R. Every Lie ideal of R is a $(1,1)-$ Lie ideal of R. If $R=\left\{\left(\begin{array}{ll}x & y \\ 0 & 0\end{array}\right) \upharpoonleft x\right.$ and y are integers $\}, U=\left\{\left(\begin{array}{ll}x & 0 \\ 0 & 0\end{array}\right) \upharpoonleft x\right.$ is integer $\}, \sigma\left(\begin{array}{ll}x & y \\ 0 & 0\end{array}\right)=\left(\begin{array}{ll}x & 0 \\ 0 & 0\end{array}\right)$ and $\tau\left(\begin{array}{ll}x & y \\ 0 & 0\end{array}\right)=\left(\begin{array}{cc}x & -y \\ 0 & 0\end{array}\right)$ then U is a right $(\sigma, \tau)-$ Lie ideal but not a Lie ideal of R.

Let $d: R \longrightarrow R$ be an additive mapping of R. If $d(x y)=d(x) y+x d(y)$ for all $x, y \in R$ then d is called a derivation. An additive mapping $h: R \longrightarrow R$ is said to be right-generalized derivation associated with derivation d if $h(x y)=h(x) y+x d(y), \forall x, y \in R$ and left-generalized derivation associated with derivation d_{1}, if $h(x y)=d_{1}(x) y+x h(y), \forall x, y \in R$. Every derivation $d: R \rightarrow R$ is a right (and left)-generalized derivation with d.

The mapping defined by $h(r)=[r, a]_{\sigma, \tau}, \forall r \in R$ is a right-generalized derivation associated with derivation $d(r)=[r, \sigma(a)], \forall r \in R$ and left-generalized derivation associated with derivation $d_{1}(r)=[r, \tau(a)], \forall r \in R$.

Let $d: R \longrightarrow R$ be an additive mapping of R. If $d(x y)=d(x) \sigma(y)+\tau(x) d(y)$ for all $x, y \in R$ then d is called a (σ, τ)-derivation of R. If there exist a (σ, τ)-derivation d of R such that $h(x y)=h(x) \sigma(y)+\tau(x) d(y)$ for all $x, y \in R$ then h is called a right-generalized (σ, τ)-derivation associated with d. If there exist a (σ, τ)-derivation d_{1} such that $h(x y)=$ $d_{1}(x) \sigma(y)+\tau(x) h(y)$ for all $x, y \in R$ then h is called a left-generalized (σ, τ)-derivation associated with d_{1} (see [5]). Every (σ, τ)-derivation $d: R \rightarrow R$ is a right (and left)-generalized (σ, τ)-derivation associated with d.

The mapping $h(r)=(a, r)_{\sigma, \tau}, \forall r \in R$ is a left-generalized (σ, τ)-derivation associated with (σ, τ)-derivation $d_{1}(r)=[a, r]_{\sigma, \tau}, \forall r \in R$ and right-generalized (σ, τ)-derivation associated with (σ, τ)-derivation $d(r)=-[a, r]_{\sigma, \tau}, \forall r \in R$.

In this paper we have given some results on one sided (σ, τ)-Lie ideals and left (or right)generalized (σ, τ)-derivation in prime rings. Some algebraic properties of (σ, τ)-Lie ideal are discussed in [1], [2], [3], [6], [8], [9], [11] and [13] where further references can be found.

Throughout, R will be a prime ring with characteristic not 2 and $\sigma, \tau, \alpha, \beta, \lambda, \mu$ automorphisms of R. We write $C_{\sigma, \tau}=\{c \in R \mid c \sigma(r)=\tau(r) c, \forall r \in R\}$, and will make extensive use of the following basic commutator identities:

```
\([x y, z]_{\sigma, \tau}=x[y, z]_{\sigma, \tau}+[x, \tau(z)] y=x[y, \sigma(z)]+[x, z]_{\sigma, \tau} y\)
\([x, y z]_{\sigma, \tau}=\tau(y)[x, z]_{\sigma, \tau}+[x, y]_{\sigma, \tau} \sigma(z)\)
\((x, y z)_{\sigma, \tau}=\tau(y)(x, z)_{\sigma, \tau}+[x, y]_{\sigma, \tau} \sigma(z)=-\tau(y)[x, z]_{\sigma, \tau}+(x, y)_{\sigma, \tau} \sigma(z)\)
\((x y, z)_{\sigma, \tau}=x(y, z)_{\sigma, \tau}-[x, \tau(z)] y=x[y, \sigma(z)]+(x, z)_{\sigma, \tau} y\).
```


2 Results

Lemma 2.1. [11, Theorem2] Let V be a noncentral left (σ, τ)-Lie ideal of R. Then there exist a nonzero ideal M of R such that $\left([R, M]_{\sigma, \tau} \subset V\right.$ and $\left.[R, M]_{\sigma, \tau} \nsubseteq C_{\sigma, \tau}\right)$ or $\sigma(u)+\tau(u) \in$ $Z, \forall u \in V$.

Lemma 2.2. [4, Lemma3] Let d be a nonzero (σ, τ)-derivation on $R, a \in R$ and $U \neq 0$ an ideal of R. If $a d(U)=0($ or $d(U) a=0)$ then $a=0$.

Lemma 2.3. [4, Lemma1] Let R be a prime ring and $d: R \longrightarrow R a(\sigma, \tau)-$ derivation. If U is a right ideal of R and $d(U)=0$ then $d=0$.

Lemma 2.4. [12, Lemma4] If a prime ring contains a nonzero commutative right ideal then R is commutative.

Lemma 2.5. [7, Theorem1] Let $h: R \longrightarrow R$ be a nonzero right-generalized $(\sigma, \tau)-$ derivation associated with a nonzero (λ, μ)-derivation d and I, J nonzero ideals of R. If $h(I) \subset C_{\alpha, \beta}(J)$ then R is commutative.

Lemma 2.6. Let $h: R \longrightarrow R$ be a nonzero right-generalized (σ, τ)-derivation associated with a nonzero (σ, τ)-derivation d and I a nonzero ideal of R. If $a, b \in R$ such that $[a h(I), b]_{\lambda, \mu}=0$ then $[a, \mu(b)] a=0$ or $d \sigma^{-1} \lambda(b)=0$.

Proof. Let $[a h(I), b]_{\lambda, \mu}=0$. Then we have,

$$
\begin{aligned}
0 & =\left[a h\left(x \sigma^{-1} \lambda(b)\right), b\right]_{\lambda, \mu}=\left[a h(x) \lambda(b)+a \tau(x) d \sigma^{-1} \lambda(b), b\right]_{\lambda, \mu} \\
& =a h(x)[\lambda(b), \lambda(b)]+[a h(x), b]_{\lambda, \mu} \lambda(b)+a \tau(x)\left[d \sigma^{-1} \lambda(b), b\right]_{\lambda, \mu} \\
& +[a \tau(x), \mu(b)] d \sigma^{-1} \lambda(b), \forall x \in I
\end{aligned}
$$

and so

$$
\begin{equation*}
a \tau(x)[k, b]_{\lambda, \mu}+[a \tau(x), \mu(b)] k=0, \forall x \in I, k=d \sigma^{-1} \lambda(b) \tag{2.1}
\end{equation*}
$$

Let us replace x by $\tau^{-1}(a) x$ in (2.1). Then using (2.1) we get,

$$
\begin{aligned}
0 & =a a \tau(x)[k, b]_{\lambda, \mu}+[a a \tau(x), \mu(b)] k \\
& =a a \tau(x)[k, b]_{\lambda, \mu}+a[a \tau(x), \mu(b)] k+[a, \mu(b)] a \tau(x) k \\
& =[a, \mu(b)] a \tau(x) k, \forall x \in I
\end{aligned}
$$

and so $[a, \mu(b)] a \tau(I) d \sigma^{-1} \lambda(b)=0$. Since $\tau(I)$ is a nonzero ideal of R then we obtain that $[a, \mu(b)] a=0$ or $d \sigma^{-1} \lambda(b)=0$.

Theorem 2.7. Let $h: R \longrightarrow R$ be a nonzero right-generalized (σ, τ)-derivation associated with (σ, τ)-derivation d and I, J nonzero ideals of R. If $a \in R$ such that $a h(I) \subset C_{\lambda, \mu}(J)$ then $a \in Z$ or $d=0$.

Proof. Let $a h(I) \subset C_{\lambda, \mu}(J)$. This means that $[a h(I), x]_{\lambda, \mu}=0, \forall x \in J$. Using Lemma (2.6) we obtain that, for any $x \in J$,

$$
[a, \mu(x)] a=0 \text { or } d \sigma^{-1} \lambda(x)=0
$$

Let $K=\{x \in J \mid[a, \mu(x)] a=0\}$ and $L=\left\{x \in J \mid d \sigma^{-1} \lambda(x)=0\right\}$. Then K and L are subgroups of J and $J=K \cup L$. Hence we have $J=K$ or $J=L$. That is

$$
[a, \mu(J)] a=0 \text { or } d \sigma^{-1} \lambda(J)=0
$$

Since $\sigma^{-1} \lambda(J)$ is a nonzero ideal of R then $d \sigma^{-1} \lambda(J)=0$ implies that $d=0$ by Lemma (2.3). If $[a, \mu(J)] a=0$ then using this relation we get,
$0=[a, \mu(r x)] a=\mu(r)[a, \mu(x)] a+[a, \mu(r)] \mu(x) a=[a, \mu(r)] \mu(x) a, \forall x \in J, r \in R$.
That is $[a, R] \mu(J) a=0$. Since $\mu(J) \neq 0$ is an ideal of R then we have $[a, R]=0$ or $a=0$. This means that $a \in Z$ for two case.

Theorem 2.8. Let J be a nonzero ideal of R and $a, b \in R$.
(i) If $b(a, R)_{\alpha, \beta} \subset C_{\lambda, \mu}(J)$ then $a \in C_{\alpha, \beta}$ or $b \in Z$.
(ii) If $b(R, a)_{\alpha, \beta} \subset C_{\lambda, \mu}(J)$ then $a \in Z$ or $b \in Z$.

Proof. (i) Let $h(r)=(a, r)_{\alpha, \beta}, \forall r \in R$ and $d(r)=-[a, r]_{\alpha, \beta}, \forall r \in R$. Since,

$$
\begin{aligned}
h(r s) & =(a, r s)_{\alpha, \beta}=-\beta(r)[a, s]_{\alpha, \beta}+(a, r)_{\alpha, \beta} \alpha(s) \\
& =h(r) \alpha(s)+\beta(r) d(s), \forall r, s \in R
\end{aligned}
$$

and

$$
\begin{aligned}
d(r s) & =-[a, r s]_{\alpha, \beta}=-\beta(r)[a, s]_{\alpha, \beta}-[a, r]_{\alpha, \beta} \alpha(s) \\
& =d(r) \alpha(s)+\beta(r) d(s), \forall r, s \in R
\end{aligned}
$$

then d is a (α, β)-derivation and h is a right-generalized (α, β)-derivation associated with d.

If $h=0$ then we have $R d(R)=0$ by the above relation. This gives that $d=0$ and so $a \in C_{\alpha, \beta}$. Let $h \neq 0$.

If $b(a, R)_{\alpha, \beta} \subset C_{\lambda, \mu}(J)$ then we have $b h(R) \subset C_{\lambda, \mu}(J)$. This gives that $b \in Z$ or $d=0$ by Theorem (2.7). Finally we obtain that $b \in Z$ or $a \in C_{\alpha, \beta}$.
(ii) Consider the mappings defined by $g(r)=(r, a)_{\alpha, \beta}, \forall r \in R$ and $d(r)=[r, \alpha(a)], \forall r \in R$. Since,

$$
d(r s)=[r s, \alpha(a)]=r[s, \alpha(a)]+[r, \alpha(a)] s=d(r) s+r d(s), \forall r, s \in R
$$

and

$$
g(r s)=(r s, a)_{\alpha, \beta}=r[s, \alpha(a)]+(r, a)_{\alpha, \beta} s=g(r) s+r d(s), \forall r, s \in R
$$

then d is a derivation and g is a right-generalized derivation associated with d. If $g=0$ then we obtain that $d(R)=0$ and so $a \in Z$ by the above relation.

If $b(R, a)_{\alpha, \beta} \subset C_{\lambda, \mu}(J)$ then we have $b g(R) \subset C_{\lambda, \mu}(J)$. This means that $b \in Z$ or $d=0$ by Theorem (2.7). That is $b \in Z$ or $a \in Z$.

Using Theorem (2.8) we can prove the following Corollary immediately.
Corollary 2.9. Let V be a nonzero left (σ, τ)-lie ideal and U a nonzero right (σ, τ)-lie ideal of R. Let $J \neq(0)$ be an ideal of R and $b \in R$.
(i) If $b(V, R)_{\alpha, \beta} \subset C_{\lambda, \mu}(J)$ then $V \subset C_{\alpha, \beta}$ or $b \in Z$.
(ii) If $b(R, V)_{\alpha, \beta} \subset C_{\lambda, \mu}(J)$ then $V \subset Z$ or $b \in Z$.
(iii) If $b(U, R)_{\alpha, \beta} \subset C_{\lambda, \mu}(J)$ then $U \subset C_{\alpha, \beta}$ or $b \in Z$.
(iv) If $b(R, U)_{\alpha, \beta} \subset C_{\lambda, \mu}(J)$ then $U \subset Z$ or $b \in Z$.

Theorem 2.10. Let $d: R \longrightarrow R$ be a nonzero (σ, τ)-derivation and $b \in R$. If $d(R) b \subset C_{\lambda, \mu}(R)$ then $b \in Z$.

Proof. If $d(R) b \subset C_{\lambda, \mu}(R)$ then we have

$$
\begin{aligned}
0= & {\left[d\left(r \sigma^{-1}(b)\right) b, \mu^{-1} \tau(r)\right]_{\lambda, \mu}=\left[d(r) b b+\tau(r) d \sigma^{-1}(b) b, \mu^{-1} \tau(r)\right]_{\lambda, \mu} } \\
= & d(r) b\left[b, \lambda \mu^{-1} \tau(r)\right]+\left[d(r) b, \mu^{-1} \tau(r)\right]_{\lambda, \mu} b+\tau(r)\left[d \sigma^{-1}(b) b, \mu^{-1} \tau(r)\right]_{\lambda, \mu} \\
& +[\tau(r), \tau(r)] d \sigma^{-1}(b) b \\
= & d(r) b\left[b, \lambda \mu^{-1} \tau(r)\right], \forall r \in R .
\end{aligned}
$$

That is

$$
\begin{equation*}
d(r) b\left[b, \lambda \mu^{-1} \tau(r)\right]=0, \forall r \in R \tag{2.2}
\end{equation*}
$$

Since $d(r) b \in C_{\lambda, \mu}(R), \forall r \in R$ then, for any $r \in R$, we obtain that

$$
d(r) b=0 \text { or }\left[b, \lambda \mu^{-1} \tau(r)\right]=0
$$

by (2.2). Let $K=\{r \in R \mid d(r) b=0\}$ and $L=\left\{r \in R \mid\left[b, \lambda \mu^{-1} \tau(r)\right]=0\right\}$. Considering as in the proof of Theorem (2.7) we get

$$
d(R) b=0 \text { or }[b, R]=0
$$

If $[b, R]=0$ then we have $b \in Z$. Since $d \neq 0$ then $d(R) b=0$ implies that $b=0$ by Lemma (2.2) and so $b \in Z$.

Remark 2.11. [10, Lemma3] Let R be a prime ring and $a, b \in R$. If $b, a b \in C_{\sigma, \tau}$ then $b=0$ or $a \in Z$.

Lemma 2.12. Let I be a nonzero ideal of R and $a, b \in R$. If $[I, a]_{\sigma, \tau} b \subset C_{\lambda, \mu}$ then $b=0$ or $a \in Z$.

Proof. Let $[I, a]_{\sigma, \tau} b \subset C_{\lambda, \mu}$. Then we have

$$
C_{\lambda, \mu} \ni[\tau(a) x, a]_{\sigma, \tau} b=\tau(a)[x, a]_{\sigma, \tau} b+[\tau(a), \tau(a)] x b=\tau(a)[x, a]_{\sigma, \tau} b, \forall x \in I
$$

and so $\tau(a)[x, a]_{\sigma, \tau} b \in C_{\lambda, \mu}, \forall x \in I$. Considering the last relation and hypothesis we obtain that, for any $x \in I$,

$$
[x, a]_{\sigma, \tau} b \in C_{\lambda, \mu} \text { and } \tau(a)[x, a]_{\sigma, \tau} b \in C_{\lambda, \mu} .
$$

Using Remark (2.11) we get $\tau(a) \in Z$ or $[x, a]_{\sigma, \tau} b=0$. Applying this argument for all $x \in I$ we have $a \in Z$ or $[I, a]_{\sigma, \tau} b=0$.

On the other hand $[I, a]_{\sigma, \tau} b=0$ gives that,

$$
0=[r x, a]_{\sigma, \tau} b=r[x, a]_{\sigma, \tau} b+[r, \tau(a)] x b=[r, \tau(a)] x b, \forall x \in I, r \in R
$$

and so $[R, \tau(a)] I b=0$. Since R is prime ring and $I \neq(0)$ an ideal of R then we have $b=0$ or $a \in Z$.

Theorem 2.13. Let V be a nonzero left (σ, τ)-Lie ideal $b \in R$ and U a nonzero right (σ, τ)-Lie ideal of R.
(i) If $b V \subset C_{\lambda, \mu}$ then $b \in Z$ or $V \subset Z$.
(ii) If $V b \subset C_{\lambda, \mu}$ then $b=0$ or $V \subset Z$.
(iii) If $b U \subset C_{\lambda, \mu}$ (or $U b \subset C_{\lambda, \mu}$) then $b \in Z$ or $U \subset C_{\sigma, \tau}$.

Proof. For any $v \in V$, let us consider the mapping defined by $h(r)=[r, v]_{\sigma, \tau}, \forall r \in R$. Since,

$$
\begin{aligned}
h(r s) & =[r s, v]_{\sigma, \tau}=r[s, \sigma(v)]+[r, v]_{\sigma, \tau} s \\
& =h(r) s+r d_{1}(s), \forall r, s \in R, \text { where } d_{1}(s)=[s, \sigma(v)], \forall s \in R
\end{aligned}
$$

then h is a right-generalized derivation with derivation d_{1}.
(i) If $b V \subset C_{\lambda, \mu}$ then, for any $v \in V$, we have $b[R, v]_{\sigma, \tau} \subset b V \subset C_{\lambda, \mu}$ and so $b h(R) \subset C_{\lambda, \mu}$. This means that $b \in Z$ or $d_{1}=0$ by Theorem (2.7). If $d_{1}=0$ then we have $v \in Z$.

If we consider for all $v \in V$ the same argument we get $b \in Z$ or $V \subset Z$.
(ii) If $V b \subset C_{\lambda, \mu}$ then $[R, V]_{\sigma, \tau} b \subset C_{\lambda, \mu}$. This gives that $b=0$ or $V \subset Z$ by Lemma (2.12).
(iii) For any $u \in U$, define the mapping $d(r)=[u, r]_{\sigma, \tau}, \forall r \in R$. It is clear that, d is a
(σ, τ)-derivation and so right (and left)-generalized (σ, τ)-derivation associated with d.
If $b U \subset C_{\lambda, \mu}$ then, for any $u \in U$, we have $b[u, R]_{\sigma, \tau} \subset b U \subset C_{\lambda, \mu}$ and so $b d(R) \subset C_{\lambda, \mu}$.
Using Theorem (2.7) we get $b \in Z$ or $d=0$. On the other hand $d=0$ implies that $u \in C_{\sigma, \tau}$.
Considering as in the proof of (i) we get $b \in Z$ or $U \subset C_{\sigma, \tau}$.
If $U b \subset C_{\lambda, \mu}$ then, for any $u \in U$, we have $[u, R]_{\sigma, \tau} b \subset U b \subset C_{\lambda, \mu}$ gives that $d(R) b \subset C_{\lambda, \mu}$.
Using Theorem (2.10) we have $b \in Z$ or $d=0$. That is $b \in Z$ or $u \in C_{\sigma, \tau}$.
If we consider for all $u \in U$ the same thing we get $b \in Z$ or $U \subset C_{\sigma, \tau}$.

Lemma 2.14. Let $h: R \longrightarrow R$ be a nonzero left-generalized (σ, τ)-derivation with $(\sigma, \tau)-$ derivation d and $a \in R$. If I is a nonzero ideal of R such that $h[I, a]_{\lambda, \mu}=0$ then $a \in Z$ or $d \mu(a)=0$.

Proof. Let $h[x, a]_{\lambda, \mu}=0, \forall x \in I$. Then we have,

$$
\begin{aligned}
0 & =h[\mu(a) x, a]_{\lambda, \mu}=h\left\{\mu(a)[x, a]_{\lambda, \mu}+[\mu(a), \mu(a)] x\right\} \\
& =h\left\{\mu(a)[x, a]_{\lambda, \mu}\right\}=d \mu(a) \sigma[x, a]_{\lambda, \mu}+\tau \mu(a) h[x, a]_{\lambda, \mu}=d \mu(a) \sigma[x, a]_{\lambda, \mu}, \forall x \in I
\end{aligned}
$$

and so $k[x, a]_{\lambda, \mu}=0, \forall x \in I$, where $k=\sigma^{-1} d \mu(a)$. Replacing x by $x r, r \in R$ we get

$$
\begin{aligned}
0 & =k[x r, a]_{\lambda, \mu}=k x[r, \lambda(a)]+k[x, a]_{\lambda, \mu} r \\
& =k x[r, \lambda(a)], \forall x \in I, r \in R
\end{aligned}
$$

That is $k I[R, \lambda(a)]=0$. Since R is prime and $I \neq 0$ an ideal of R then we obtain that $a \in Z$ or $d \mu(a)=0$ by the last relation.

Lemma 2.15. Let $h: R \longrightarrow R$ be a nonzero left-generalized $(\alpha, \beta)-$ derivation with $(\alpha, \beta)-$ derivation d. If V is a nonzero left (σ, τ)-Lie ideal of R such that $h(V)=0$ then $d=0$ or $\sigma(v)+\tau(v) \in Z$ for all $v \in V$.

Proof. If $V \subset Z$ then $\sigma(v)+\tau(v) \in Z$ for all $v \in V$. If $V \nsubseteq Z$ then there exist a nonzero ideal M of R such that

$$
\left([R, M]_{\sigma, \tau} \subset V \text { and }[R, M]_{\sigma, \tau} \nsubseteq C_{\sigma, \tau}\right) \text { or } \sigma(v)+\tau(v) \in Z, \forall v \in V
$$

by Lemma (2.1). Let $[R, M]_{\sigma, \tau} \subset V$ and $[R, M]_{\sigma, \tau} \nsubseteq C_{\sigma, \tau}$. If $h(V)=0$ then we have $h[R, M]_{\sigma, \tau} \subset h(V)=0$ and so $h[R, M]_{\sigma, \tau}=0$. This gives that, for any $m \in M$,

$$
m \in Z \text { or } d \tau(m)=0
$$

by Lemma (2.14). Let $K=\{m \in M \mid m \in Z\}$ and $L=\{m \in M \mid d \tau(m)=0\}$. Then K and L are subgroups of M and $M=K \cup L$. Hence, we have $M=K$ or $M=L$. That is $M \subset Z$ or $d \tau(M)=0$. Since $\tau(M) \neq 0$ is an ideal of R then $d \tau(M)=0$ implies that $d=0$ by Lemma (2.3). On the other hand, if $M \subset Z$ then we obtain that R is commutative by Lemma (2.4) and so $\sigma(v)+\tau(v) \in Z, \forall v \in V$.

Lemma 2.16. Let $h: R \longrightarrow R$ be a nonzero left-generalized (σ, τ)-derivation associated with a nonzero (σ, τ)-derivation d. If I is a nonzero ideal of R and $a \in R$ such that $(h(I), a)_{\lambda, \mu}=0$ then $a \in Z$ or $d \tau^{-1} \mu(a)=0$.

Proof. Let $(h(I), a)_{\lambda, \mu}=0$ and $k=d \tau^{-1} \mu(a)$. Then we get

$$
\begin{aligned}
0 & =\left(h\left(\tau^{-1} \mu(a) y\right), a\right)_{\lambda, \mu}=\left(d \tau^{-1} \mu(a) \sigma(y)+\mu(a) h(y), a\right)_{\lambda, \mu} \\
& =k[\sigma(y), \lambda(a)]+(k, a)_{\lambda, \mu} \sigma(y)+\mu(a)(h(y), a)_{\lambda, \mu}-[\mu(a), \mu(a)] h(y), \forall y \in I
\end{aligned}
$$

This gives that

$$
\begin{equation*}
k[\sigma(y), \lambda(a)]+(k, a)_{\lambda, \mu} \sigma(y)=0, \forall y \in I \tag{2.3}
\end{equation*}
$$

Replacing y by $y r, r \in R$ in (2.3) and using (2.3) we get,

$$
\begin{aligned}
0 & =k \sigma(y)[\sigma(r), \lambda(a)]+k[\sigma(y), \lambda(a)] \sigma(r)+(k, a)_{\lambda, \mu} \sigma(y) \sigma(r) \\
& =k \sigma(y)[\sigma(r), \lambda(a)], \forall y \in I, r \in R
\end{aligned}
$$

That is

$$
\begin{equation*}
k \sigma(I)[R, \lambda(a)]=0 \tag{2.4}
\end{equation*}
$$

Since $\sigma(I)$ is a nonzero ideal of R then we have $a \in Z$ or $d \tau^{-1} \mu(a)=0$ by (2.4) in prime rings.

Theorem 2.17. Let U be a nonzero right (σ, τ)-Lie ideal of R and $b \in R$. Let V be a nonzero left $(\sigma, \tau)-$ Lie ideal of R.
(i) If $(V, b)_{\lambda, \mu}=0$ then $b \in Z$ or $\sigma(v)+\tau(v) \in Z$ for all $v \in V$.
(ii) If $(b, V)_{\lambda, \mu}=0$ then $b \in C_{\lambda, \mu}$ or $\sigma(v)+\tau(v) \in Z$ for all $v \in V$.
(iii) If $(U, b)_{\lambda, \mu}=0$ then $b \in Z$ or $U \subset C_{\sigma, \tau}$.

Proof. (i) Let $g(r)=(r, b)_{\lambda, \mu}, \forall r \in R$ and $d(r)=-[r, \mu(b)], \forall r \in R$. Since,

$$
g(r s)=(r s, b)_{\lambda, \mu}=r(s, b)_{\lambda, \mu}-[r, \mu(b)] s=d(r) s+r g(s), \forall r, s \in R
$$

then g is a left-generalized derivation with derivation $d(r)=-[r, \mu(b)], \forall r \in R$. If $g=0$ then we have $d=0$ by the above relation. This gives that $b \in Z$.

Let us consider that $g \neq 0$. If $(V, b)_{\lambda, \mu}=0$ then $g(V)=0$. This implies that $d=0$ (and so $b \in Z$) or $\sigma(v)+\tau(v) \in Z, \forall v \in V$ by Lemma (2.15).
(ii) The mapping defined by $h(r)=(b, r)_{\lambda, \mu}, \forall r \in R$ is a left-generalized $(\lambda, \mu)-$ derivation with (λ, μ)-derivation $d_{1}(r)=[b, r]_{\lambda, \mu}, \forall r \in R$. Because,

$$
d_{1}(r s)=[b, r s]_{\lambda, \mu}=\mu(r)[b, s]_{\lambda, \mu}+[b, r]_{\lambda, \mu} \lambda(s)=d_{1}(r) \lambda(s)+\mu(r) d_{1}(s), \forall r, s \in R
$$

and

$$
h(r s)=(b, r s)_{\lambda, \mu}=\mu(r)(b, s)_{\lambda, \mu}+[b, r]_{\lambda, \mu} \lambda(s)=d_{1}(r) \lambda(s)+\mu(r) h(s), \forall r, s \in R
$$

If $h=0$ then, considering as in the proof of (i), we have $d_{1}=0$ and so $b \in C_{\lambda, \mu}$.
Assume that $h \neq 0$. If $(b, V)_{\lambda, \mu}=0$ then we have $h(V)=0$. Using Lemma (2.15) we obtain that $d_{1}=0$ (and so $b \in C_{\lambda, \mu}$) or $\sigma(v)+\tau(v) \in Z, \forall v \in V$.
(iii) Let $d(r)=[u, r]_{\sigma, \tau}, \forall r \in R$, for any $u \in U$. Then d is a (σ, τ)-derivation and so left (and right)-generalized $(\sigma, \tau)-$ derivation associated with d. Let $d \neq 0$.

If $(U, b)_{\lambda, \mu}=0$ then we can write $\left([u, R]_{\sigma, \tau}, b\right)_{\lambda, \mu}=0, \forall u \in U$ and so $(d(R), b)_{\lambda, \mu}=0$. If we use Lemma (2.16) we obtain that $b \in Z$ or $d \tau^{-1} \mu(b)=0$. That is

$$
b \in Z \text { or }\left[u, \tau^{-1} \mu(b)\right]_{\sigma, \tau}=0
$$

If $d=0$ then we have $u \in C_{\sigma, \tau}$ and so $\left[u, \tau^{-1} \mu(b)\right]_{\sigma, \tau}=0$. Considering same thing for all $u \in U$ we get

$$
b \in Z \text { or }\left[U, \tau^{-1} \mu(b)\right]_{\sigma, \tau}=0
$$

On the other hand, $\left[U, \tau^{-1} \mu(b)\right]_{\sigma, \tau}=0$ gives that $b \in Z$ or $U \subset C_{\sigma, \tau}$ by [8, Lemma3].
Lemma 2.18. Let M be a nonzero ideal of R. If $c \in R$ such that $[[c, M], c] c=0$ then $c \in Z$ or $c^{2}=0$.

Proof. If $[[c, M], c] c=0$ then we can write

$$
\begin{equation*}
[c, x] c c=c[c, x] c, \forall x \in M \tag{2.5}
\end{equation*}
$$

Using the hypothesis and (2.5) we get

$$
\begin{aligned}
0 & =[[c, y x], c] c=[y[c, x]+[c, y] x, c] c=[y[c, x], c] c+[[c, y] x, c] c \\
& =y[[c, x], c] c+[y, c][c, x] c+[c, y][x, c] c+[[c, y], c] x c \\
& =[y, c][c, x] c+[c, y][x, c] c+[[c, y], c] x c \\
& =[y, c][c, x] c+[y, c][c, x] c+[[c, y], c] x c, \forall x, y \in M
\end{aligned}
$$

That is

$$
\begin{equation*}
2[y, c][c, x] c+[[c, y], c] x c=0, \forall x, y \in M \tag{2.6}
\end{equation*}
$$

Replacing x by $c x$ in (2.6) and using hypothesis, char $R \neq 2$, we get

$$
\begin{aligned}
0 & =2[y, c][c, c x] c+[[c, y], c] c x c=2[y, c][c, c x] c \\
& =2[y, c] c[c, x] c+2[y, c][c, c] x c, \forall x, y \in M
\end{aligned}
$$

and so

$$
\begin{equation*}
[y, c] c[c, x] c=0, \forall x, y \in M \tag{2.7}
\end{equation*}
$$

Taking $r y, r \in R$ instead of y in (2.7) we have
$0=[r y, c] c[c, x] c=r[y, c] c[c, x] c+[r, c] y c[c, x] c=[r, c] y c[c, x] c$ for all $x, y \in M, r \in R$ and so

$$
\begin{equation*}
[R, c] M c[c, M] c=0 \tag{2.8}
\end{equation*}
$$

Since R is prime then we obtain that $c \in Z$ or $c[c, M] c=0$ by (2.8) and so $c[c, x] c=0, \forall x \in$ M for two case. Using (2.5) we get $[c, x] c c=0, \forall x \in M$. Replacing x by $s x, s \in R$ in the last relation we have $[c, R] M c c=0$ and so $c \in Z$ or $c^{2}=0$.

Lemma 2.19. Let $h: R \longrightarrow R$ be a nonzero right-generalized (σ, τ)-derivation associated with a nonzero (σ, τ)-derivation d and $a, b \in R$.
(i) If $a h(R) b=0$ then $a=0$ or $d \sigma^{-1}(b) b=0$.
(ii) If $a h(R) b \subset C_{\lambda, \mu}$ then $a=0$ or $\left[d \sigma^{-1}(b), b\right] b=0$.

Proof. (i) If $a h(R) b=0$ then we have

$$
0=a h\left(x \sigma^{-1}(b)\right) b=a h(x) b b+a \tau(x) d \sigma^{-1}(b) b=a \tau(x) d \sigma^{-1}(b) b, \forall x \in R
$$

That is, $a R d \sigma^{-1}(b) b=0$. This means that $a=0$ or $d \sigma^{-1}(b) b=0$ in prime rings.
(ii) Let $a h(R) b \subset C_{\lambda, \mu}$ and $k=d \sigma^{-1}(b)$. Then we get

$$
\begin{aligned}
0 & =\left[a h\left(x \sigma^{-1}(b)\right) b, \lambda^{-1}(b)\right]_{\lambda, \mu}=\left[a h(x) b b+a \tau(x) d \sigma^{-1}(b) b, \lambda^{-1}(b)\right]_{\lambda, \mu} \\
& =a h(x) b[b, b]+\left[a h(x) b, \lambda^{-1}(b)\right]_{\lambda, \mu} b+a \tau(x)[k b, b]+\left[a \tau(x), \lambda^{-1}(b)\right]_{\lambda, \mu} k b \\
& =a \tau(x)[k b, b]+\left[a \tau(x), \lambda^{-1}(b)\right]_{\lambda, \mu} k b \\
& =a \tau(x) k[b, b]+a \tau(x)[k, b] b+\left[a \tau(x), \lambda^{-1}(b)\right]_{\lambda, \mu} k b, \forall x \in R
\end{aligned}
$$

which gives that

$$
\begin{equation*}
a \tau(x)[k, b] b+\left[a \tau(x), \lambda^{-1}(b)\right]_{\lambda, \mu} k b=0, \forall x \in R . \tag{2.9}
\end{equation*}
$$

Replacing x by $\tau^{-1} h(x) \tau^{-1}(b)$ in (2.9) and using hypothesis we get $a h(R) b[k, b] b=0$.
Since $a h(R) b \subset C_{\lambda, \mu}$ and R is prime ring then we have $a h(R) b=0$ or $[k, b] b=0$. That is

$$
\begin{equation*}
a h(R) b=0 \text { or }\left[d \sigma^{-1}(b), b\right] b=0 . \tag{2.10}
\end{equation*}
$$

If $a h(R) b=0$ in (2.10) then we get $a=0$ or $d \sigma^{-1}(b) b=0$ by (i). On the other hand, if $d \sigma^{-1}(b) b=0$ then we obtain that

$$
\left[d \sigma^{-1}(b), b\right] b=d \sigma^{-1}(b) b b-b d \sigma^{-1}(b) b=0
$$

Lemma 2.20. If I is a nonzero ideal of R and $a, b \in R$ such that $a[R, I]_{\sigma, \tau} b=0$ then $a=0$ or $b \in Z$.

Proof. For any $x \in I$, the mapping defined by $h(r)=[r, x]_{\sigma, \tau}, \forall r \in R$ is a right-generalized derivation with derivation $d=[r, \sigma(x)], \forall r \in R$, (see Theorem (2.13)).

If $a[R, I]_{\sigma, \tau} b=0$ then we have $a h(R) b=0$. This gives that $a=0$ or $d(b) b=0$ by Lemma (2.19). That is, $a=0$ or $[b, \sigma(x)] b=0$. If we consider same argument for all $x \in I$ then we get

$$
a=0 \text { or }[b, \sigma(I)] b=0
$$

The mapping defined by $d_{1}(r)=[b, r], \forall r \in R$ is a derivation. If $[b, \sigma(I)] b=0$ then we get $d_{1} \sigma(I) b=0$. Since $\sigma(I) \neq 0$ an ideal of R then we have $b=0$ or $d_{1}=0$ by Lemma (2.2). If $d_{1}=0$ then $b \in Z$. Finally we obtain that $a=0$ or $b \in Z$ for all case.

Theorem 2.21. Let V be a nonzero left (σ, τ)-Lie ideal of R and $a, b \in R$. If $a V b \subset C_{\lambda, \mu}$ then $a=0$ or $b \in Z$ or $\sigma(v)+\tau(v) \in Z, \forall v \in V$.
Proof. If $V \subset Z$ then $\sigma(v)+\tau(v) \in Z, \forall v \in V$. If $V \nsubseteq Z$ then there exist a nonzero ideal M of R such that

$$
\left([R, M]_{\sigma, \tau} \subset V \text { and }[R, M]_{\sigma, \tau} \nsubseteq C_{\sigma, \tau}\right) \text { or } \sigma(v)+\tau(v) \in Z, \forall v \in V
$$

by Lemma (2.1). Let us take any element $m \in M$. Then the mapping defined by $h(r)=$ $[r, m]_{\sigma, \tau}, \forall r \in R$ is a right-generalized derivation associated with derivation $d(s)=[s, \sigma(m)], \forall s \in$ R.

Let $[R, M]_{\sigma, \tau} \subset V$ and $[R, M]_{\sigma, \tau} \nsubseteq C_{\sigma, \tau}$. If $a V b \subset C_{\lambda, \mu}$ then we have $a[R, M]_{\sigma, \tau} b \subset$ $a V b \subset C_{\lambda, \mu}$ and so $a h(R) b \subset C_{\lambda, \mu}$. This means that $a=0$ or $[d(b), b] b=0$ or $h=0$ by Lemma (2.19). That is,

$$
a=0 \text { or } h=0 \text { or }[[b, \sigma(m)], b] b=0 .
$$

If $h=0$ then we have $d=0$ by the relation $h(r s)=h(r) s+r d(s), \forall r, s \in R$ and so $m \in Z$. That is, again we have $[[b, \sigma(m)], b] b=0$. If we consider the same argument for all $m \in M$ then we obtain that

$$
a=0 \text { or }[[b, \sigma(M)], b] b=0 .
$$

Since $\sigma(M)$ is a nonzero ideal of R then $[[b, \sigma(M)], b] b=0$ means that $b \in Z$ or $b^{2}=0$ by Lemma (2.18). If $b^{2}=0$ then using that $a[R, M]_{\sigma, \tau} b \subset C_{\lambda, \mu}$ we get

$$
a[r, m]_{\sigma, \tau} b \lambda(s) b=\mu(s) a[r, m]_{\sigma, \tau} b^{2}=0 \text { for all } r, s \in R, m \in M
$$

and so $a[R, m]_{\sigma, \tau} b R b=0$. Using primeness of R we obtain that $a[R, M]_{\sigma, \tau} b=0$ or $b=0$. That is $a[R, M]_{\sigma, \tau} b=0$ for two case. This gives that $a=0$ or $b \in Z$ by Lemma (2.20). Finally we obtain that $a=0$ or $b \in Z$ or $\sigma(v)+\tau(v) \in Z, \forall v \in V$

References

[1] M.Ashraf, N.-ur Rehman, S.Ali and M.R.Mozumder, On (σ, τ)-Lie Ideals with Generalized Derivations in Rings, International Journal of Algebra 3, (2009).
[2] N. Aydýn, On One Sided (σ, τ)-Lie Ideals in Prime Rings, Tr.Journal of Math. 21, (1997).
[3] N. Aydýn and H. Kandamar, (σ, τ)-Lie Ideals in Prime Rings, Tr.Journal of Math. 18, (1994).
[4] N. Aydýn, On One Sided (σ, τ)-Lie Ideals in Prime Rings, Doga Tr.Journal of Math. 16, (1992).
[5] C. J. Chang, On the Identity $h(x)=a f(x)+g(x) b$ Taiwanese Jour. of Math., 7, (2003).
[6] O. Golbasi and E. Koc, On (σ, τ)-Lie ideals with Generalized Derivation, Bull. Korean Math. Soc., (2010).
[7] E. Guven, Some Results on Generalized (σ, τ)-derivations in Prime Rings,Beitrage zur Algebra and Geometry, 54, (2013).
[8] E. Guven, K. Kaya and M. Soyturk, Some Results on (σ, τ)-Lie Ideals, Math. J. Okayama Univ., 49, (2007).
[9] K. Kaya, (σ, τ)-Lie ideals in Prime Rings, An.Univ. Timisoara, Stiinte Mat., 30, (1992).
[10] K. Kaya, On Prime Rings With $(\sigma, \tau)-$ Derivations Doga Tr.Journal of Math., 12, (1988).
[11] K. Kaya and N Aydin, Some Results on Generalized Lie Ideals,A Scientific Journal Issued by Jordan University for Women ,3,(1999).
[12] J. H. Maine,Centralizing Mappings of Prime Rings, Canad. Math. Bull, 27, (1984).
[13] K.H.Park and Y.S.Jung, J. Some Results Concerning $(\sigma, \tau)-$ Derivations on Prime Rings, J. Korea Soc. Math. Educ. Ser.B, Pure and App. Math., 10, (2003).

Author information

Evrim Güven, Department of Mathematics, University of Kocaeli, Kocaeli, Turkey.
E-mail: evrimokaya@yahoo.com
Received: February 23, 2017.
Accepted: July 27, 2017.

