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Abstract. Let R be a prime ring with characteristic not 2 and o, 7, A, u, automorphisms of R.
Let V be a nonzero left (o, 7)—Lie ideal ,U a nonzero right (o, 7)—Lie ideal of R and a,b € R.
The main object in this article is to study the situations. (1) aVb C C) ,. (2) () bV C Cy
(or Vb C Cyp), (i) U C Cy, (or Ub C Cy,), (i) (V,b)r, = 0 (or (b,V)x, = 0),
1) (U,b)x,, = 0, 3) (1) (h(I),a)x, = 0, (ii) ah(I) C Cy ,(J), (iii) ah(R)b C Cy ., (i)
h[I,a]x, =0, (v) h(V) = 0 where I, J are ideals and h is a left (or right)-generalized (o, 7)—
derivation of R.

1 Introduction

Let R be aring and o, 7 two mappings of R. We write [x,y|,,» = xo(y) —7(y)z for 2,y € R and
so [z,y|i1 = [z,y] = 2y — yz, where 1 : R — R is an identity mapping. Let U be an additive
subgroup of R. If [U, R] C U then U is called a Lie ideal of R. The definition of (o, 7)—Lie ideal
of R is introduced in [9] as follows: (i) U is called a right (o, 7)—Lie ideal of R if [U, R], , C U,
(ii) U is called a left (o, 7)—Lie ideal if [R, U], , C U. (iii) U is called a (o, 7)—Lie ideal if U
is both a right and left (o, 7)—Lie ideal of R. Every Lie ideal of R is a (1, 1)—Lie ideal of R. If
R={(5)1 zrandyareintegers}, U = { (¢J) 1 zisinteger}, o () = ¢ and 7(§) = (5 o %)
then U is a right (o, 7)—Lie ideal but not a Lie ideal of R.

Letd : R — R be an additive mapping of R. If d(xy) = d(x)y + zd(y) for all z,y € R then
d is called a derivation. An additive mapping h : R — R is said to be right-generalized deriva-
tion associated with derivation d if h (zy) = h(z)y + zd (y),Vz,y € R and left-generalized
derivation associated with derivation dy, if h (zy) = d; (z) y + zh (y) ,Vz,y € R. Every deriva-
tion d : R — R is aright (and left)-generalized derivation with d.

The mapping defined by h(r) = [r,a],-,Vr € R is a right-generalized derivation associ-
ated with derivation d(r) = [r,o(a)],¥r € R and left-generalized derivation associated with
derivation d,(r) = [r,7(a)],Vr € R.

Let d : R — R be an additive mapping of R. If d(zy) = d(z)o(y) + 7(x)d(y) for all
x,y € R then d is called a (o, 7)—derivation of R. If there exist a (o, 7)—derivation d of R
such that h(zy) = h(x)o(y) + 7(z)d(y) for all z,y € R then h is called a right-generalized
(o, 7)—derivation associated with d. If there exist a (o, 7)—derivation d; such that h(zy) =
di(z)o(y) + 7(z)h(y) for all z,y € R then h is called a left-generalized (o, 7)—derivation
associated with d; (see [5]). Every (o, 7)—derivation d : R — R is a right (and left)-generalized
(o, 7)—derivation associated with d.

The mapping h(r) = (a,7), -, Vr € Ris aleft-generalized (o, 7)—derivation associated with
(o, 7)—derivation d;(r) = [a,7],-,Vr € R and right-generalized (o, 7)—derivation associated
with (o, 7)—derivation d(r) = —[a, r]s,r, V7 € R.

In this paper we have given some results on one sided (o, 7)—Lie ideals and left (or right)-
generalized (o, 7)—derivation in prime rings. Some algebraic properties of (o, 7)—Lie ideal are
discussed in [1], [2], [3], [6], [8], [9], [11] and [13] where further references can be found.

Throughout, R will be a prime ring with characteristic not 2 and o, 7, v, 8, A, u automor-
phisms of R. We write C,, , = {¢ € R | co(r) = 7(r)c, V r € R}, and will make extensive use
of the following basic commutator identities:
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y,0(2)] + [z, 2]ory

| |
=

z, yz]a'r = T(y)[x, Z}UT + [x,y U’TU(Z)
(33 yZ)UT = T(y)(x Z) x,y]m.,-a(z) = _T(y) [va]U,T + (x,y)gﬁa(z)
(2y, 2)or = 2(Y, 2)or [ T(2)y = zy,0(2)] + (2, 2)0.ry-

2 Results

Lemma 2.1. [ 11, Theorem2] Let V be a noncentral left (o, 7)—Lie ideal of R. Then there exist
a nonzero ideal M of R such that ( [R,M),. C V and [R,M],. € C,.) or o(u) + 7(u) €
Z,Nu e V.

Lemma 2.2. [4, Lemma3] Let d be a nonzero (o, 7)— derivation on R ,a € Rand U # 0 an
ideal of R. If ad(U) = 0 (or d(U)a = 0) then a = 0.

Lemma 2.3. [4, Lemmal] Let R be a prime ring and d : R — R a (o, 7)—derivation. If U is a
right ideal of R and d(U) = 0 then d = 0.

Lemma 2.4. [12, Lemma4] If a prime ring contains a nonzero commutative right ideal then R
is commutative.

Lemma 2.5. [7, Theoreml] Let h : R — R be a nonzero right-generalized (o, 7)— derivation
associated with a nonzero (A, p)—derivation d and 1, J nonzero ideals of R. If h(I) C Cy, 5(J)
then R is commutative.

Lemma 2.6. Let h : R — R be a nonzero right-generalized (o, T)—derivation associated with
a nonzero (o, T)—derivation d and I a nonzero ideal of R. If a,b € R such that [ah(I),b]x,, =0
then [a, u(b)]a = 0 or do='A\(b) = 0.

Proof. Let [ah(I),b]y,,, = 0. Then we have,

0 = [ah(za™'A(b)),b]x,,. = [ah(2)A(D) + a7 (z)do'\(D), D]
= ah(z)[A(b), A(0)] + [ah(z), b]5 ,A(b) + a7 (2)[do ™ A(b), blx,,
+ a7 (), u(b)]do ' \(b), Yz € T
and so
at(2)[k, bl + [aT(z), w(b)]k = 0,Vz € T, k = do~"\(b). .1

Let us replace = by 77! (a)x in (2.1). Then using (2.1) we get,

0 = aar(z)[k,blxu+ [aar(z), u(b)]k
aar (@) k. B + alar(e), (D) + [ p(B)ar()k
la, u(b)]aT(z)k,Ve € T

and so [a, u(b)]ar(I)do~'A(b) = 0. Since 7(I) is a nonzero ideal of R then we obtain that
[a, u(b)]a = 0or do~A(b) = 0. |

Theorem 2.7. Let h : R — R be a nonzero right-generalized (o, T)—derivation associated
with (o, T)—derivation d and I, J nonzero ideals of R. If a € R such that ah(I) C Cy ,(J) then
ac Zord=0.

Proof. Letah(I) C Cy ,(J). This means that [ah(I), x|y, = 0,Vz € J. Using Lemma (2.6) we
obtain that, for any = € J,
[a, u(z)]a = 0 or do~'A(z) = 0.

Let K = {z € J|[a,u(z)]a=0}and L = {z € J|do'\(= —O} Then K and L are
subgroups of J and J = K U L. Hence we have J = K or J = L. That is

[a, u(J)]a = 0or do~'A(J) = 0.
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Since o~!'\(J) is a nonzero ideal of R then do~'A(J) = 0 implies that d = 0 by Lemma
(2.3). If [a, w(J)]a = 0 then using this relation we get,

= la, u(rz)la = p(r)la, p(@)]a + la, p(r)lp(@)a = la, u(r)]p(z)a, Vo € J,r € R.
That is [a, R]u(J)a = 0. Since p(J) # 0 is an ideal of R then we have [a, R] = 0 or a = 0.
This means that a € Z for two case. O

Theorem 2.8. Let J be a nonzero ideal of R and a,b € R.

(i) If b(a, R)a,p C Crp(J)thenae Cypgorbe Z .
(i) If b(R,a)a,3 C Cxu(J) thena € Zorb e Z.

Proof. (i) Let h(r) = (a,7)a,p,Yr € Rand d(r) = —[a,7]a,p, Vr € R. Since ,

hrs) = (a,75)ap =—B(r)[a;s]as + (a,7)asals)
= h(r)a(s)+ B(r)d(s),Vr,s € R

and

d(rs) = —la,rslap=—pB(r)la,slap —[a,7]a,pa(s)
= d(r)a(s) + B(r)d(s),Vr,s € R

then d is a («, 3)—derivation and h is a right-generalized («, 3)—derivation associated with
d.

If h = 0 then we have Rd(R) = 0 by the above relation. This gives that d = 0 and so
a € Cqp. Leth#0.

If b(a, R)a,s C Ch,u(J) then we have bh(R) C C) ,(J). This gives that b € Z or d = 0 by
Theorem (2.7). Finally we obtain thatb € Z ora € C, g.

(ii) Consider the mappings defined by g(r) = (r,a)a.3,Vr € Rand d(r) = [r,a(a)],Vr € R.
Since,

d(rs) = [rs,a(a)] = r[s,a(a)] + [r,a(a)]s = d(r)s + rd(s),Vr,s € R

and
g(rs) = (rs,a)ap =rls,a(a)] + (r,a)a,ps = g(r)s + rd(s),Vr,s € R,

then d is a derivation and g is a right-generalized derivation associated with d. If g = 0 then
we obtain that d(R) = 0 and so a € Z by the above relation.

If b(R,a)a,3 C Cy ,(J) then we have bg(R) C C) (/). This means that b € Z or d = 0 by
Theorem (2.7). Thatisb € Zora € Z. O

Using Theorem (2.8) we can prove the following Corollary immediately.

Corollary 2.9. Let V' be a nonzero left (o, 7)—lie ideal and U a nonzero right (o, T)—lie ideal of
R. Let J # (0) be an ideal of R and b € R.

D Ifb(V,R)ap CCxrp(J)thenV C Cypgorbe Z.
(i) If b(R, V)5 C Cap(J) then V C Zorb € Z.
(iii) If (U, R)a.5 C Cx,.(J) then U € Cogorbe Z.
(V) Ifb(R,U)ap C Crp(J)thenU C Zorb € Z.

Theorem 2.10. Let d : R — R be a nonzero (o, 7)—derivation and b € R. If d(R)b C C) ,(R)
thenb € Z.

Proof. If d(R)b C Cy ,(R) then we have
0 = [d(ra™" ()b, g~ ' 7(r)]xp. = [d(r)bb + 7(r)do™" (b)b, =7 (1),
= d(r)blo, ™7 (r)] + [d(r)b, ™ 7 ()] ot () [do ™ (D), p ()],
+[r(r), 7(r)]do ™" (b)b
= d(r)b[b, \u~'7(r)],Vr € R.
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That is
d(r)b[b, \u~ ()] = 0,Vr € R. (2.2)

Since d(r)b € C) ,,(R),Vr € R then, for any r € R, we obtain that
d(r)b=0or [b, \u~'7(r)] = 0

by 2.2). Let K = {r € R|d(r)b=0} and L = {r € R | [b, \u~'7(r)] = 0}. Considering as in
the proof of Theorem (2.7) we get

d(R)b=0o0r[b,R] =0.

If [, R] = O then we have b € Z. Since d # 0 then d(R)b = 0 implies that b = 0 by Lemma
(2.2)andso b € Z. O

Remark 2.11. [10, Lemma3] Let R be a prime ring and a,b € R. If b,ab € C, > then b = 0 or
a €.

Lemma 2.12. Let I be a nonzero ideal of R and a,b € R.If [I,a], b C Cy, then b = 0 or
a € 7.

Proof. Let[I,al, b C Cy . Then we have
Chpu 3 [1(a)x,a)eb = T(a)x,a]sb+ [1(a), 7(a)]zb = 7(a)[z, alsb, Vo € T

and so 7(a)[x, als,-b € Cy , Vo € I. Considering the last relation and hypothesis we obtain that,
forany z € I,
[%,a]5,.b € Cy,and 7(a)[z,als b€ Cx .

Using Remark (2.11) we get 7(a) € Z or [z, a], b = 0. Applying this argument for all z € I
wehavea € Zor [I,al,,b=0.
On the other hand [I, a], b = 0 gives that,

0= [rz,a)e b =r[z,a]ls b+ [r,7(a)|zb = [r,7(a)]xb,Vz € I,7 € R

and so [R,7(a)]Ib = 0. Since R is prime ring and I # (0) an ideal of R then we have b = 0
orac Z. O

Theorem 2.13. Let V' be a nonzero left (o, 7)—Lie ideal b € R and U a nonzero right (o, 7)—Lie
ideal of R.

IV CcCypthenbe ZorV C Z.
(i) If Vb € Cy,, thenb =0 or V C Z.
(i) IfbU C Cyp (or Ub C Cy ) thenbe Zor U C C, ;.

Proof. For any v € V, let us consider the mapping defined by h(r) = [r,v],,,,V r € R. Since,

h(rs) = [rs,v]e.r =r[s,o()]+ [r,v]s-s

= h(r)s+rdi(s),Vr,s € R, where d;(s) = [s,0(v)],Vs € R

then h is a right-generalized derivation with derivation d;.

(i) If bV C C\ , then, for any v € V, we have b[R, v],,» C bV C Cy , and so bh(R) C C} ..
This means that b € Z or d; = 0 by Theorem (2.7). If d; = 0 then we have v € Z.

If we consider for all v € V' the same argument we getb € Zor V C Z.

(i) If Vb C Cy , then [R, V], b C C) . This gives that b =0 or V' C Z by Lemma (2.12).

(iii) For any u € U, define the mapping d(r) = [u,7]s,V r € R. It is clear that, d is a
(0, 7)—derivation and so right (and left)-generalized (o, 7)—derivation associated with d.

If bU C Cl,, then, for any u € U, we have blu, R],, C bU C C) , and so bd(R) C Cy .
Using Theorem (2.7) we get b € Z or d = 0. On the other hand d = 0 implies that u € Cj, .

Considering as in the proof of (i) we getb € Z or U C Cy .

If Ub C Cy, then, for any u € U, we have [u, R], b C Ub C C, , gives that d(R)b C C ,.
Using Theorem (2.10) we have b € Z ord = 0. Thatisb e Zoru € Cy .

If we consider for all u € U the same thing we getb € Z or U C Cy ;. O
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Lemma 2.14. Let h : R — R be a nonzero left-generalized (o, T)— derivation with (o,7)—
derivation d and a € R. If I is a nonzero ideal of R such that h[I,a]x, = 0 then a € Z or
du(a) = 0.

Proof. Let h[z,a]y, = 0,Vz € I. Then we have,
0 = hlpla)z,alx, = h{p(a)lz, alxu + [p(a), pla)lz}
= h{p(a)[z,alx .} = du(a)o(z,alx,, + Tp(a)h|z, aly , = dp(a)olz, a]y ,, Ve € 1
and so k[z, a]y,, = 0,Vz € I, where k = 0~ 'du(a). Replacing x by ar,r € R we get
0 = klar,alx, = kzlr,Na)] + k[z, a]x .7
= kx[r,\a),Yzel,reR.

That is kI[R, A(a)] = 0. Since R is prime and I # 0 an ideal of R then we obtain thata € Z
or du(a) = 0 by the last relation. i

Lemma 2.15. Let h : R — R be a nonzero left-generalized (o, 3)— derivation with (o, 8)—
derivation d. If V' is a nonzero left (o,7)—Lie ideal of R such that h(V) = 0 then d = 0 or
o(v)+7(v) € Z forallve V.

Proof. If V. .C Z then o(v) + 7(v) € Z forallv € V.If V € Z then there exist a nonzero ideal
M of R such that

([R,M],. CV and [R, M|, - ;(_ Cor)oro(v)+7(v)eZ VveV

by Lemma (2.1). Let [R,M],, C V and [R,M],, ¢ C,,. If (V) = 0 then we have
h[R, M), C h(V) = 0 and so h[R, M], , = 0. This gives that, for any m € M,

meée Zordr(m)=0

by Lemma (2.14). Let K = {m € M | m € Z} and L = {m € M | dr(m) = 0}. Then K
and L are subgroups of M and M = K U L. Hence, we have M = K or M = L. Thatis M C Z
or dr(M) = 0. Since 7(M) # 0 is an ideal of R then d7 (M) = 0 implies that d = 0 by Lemma
(2.3). On the other hand, if M C Z then we obtain that R is commutative by Lemma (2.4) and
soo(v) +7(v) € ZNVveV. o

Lemma 2.16. Let h : R — R be a nonzero left-generalized (o, T)— derivation associated with
a nonzero (o, T)—derivation d. If I is a nonzero ideal of R and a € R such that (h(I),a)x, =0
then a € Z or dr—'p(a) = 0.

Proof. Let (h(I),a)x, =0and k = dr~'u(a). Then we get
0 = (h(r'ua)y),a)ru = (dr " u(a)o(y) + u(a)h(y), a)r,.
= klo), Ma)] + (k,a)xuo(y) + pla)(h (y), a)xu — [ula), w(a)] hy), Yy € I.

This gives that
klo(y), Aa)] + (k,a)ro(y) =0, Vy € 1. (2.3)

Replacing y by yr,r € R in (2.3) and using (2.3) we get,
0=rko(y)lo(r), Ma)] + ko (y), Ma)] o (r) + (k,a)xuo(y)o(r)
=ko(y) [o(r),\(a)],Yy € I,7 € R.

That is
ko(I)[R,\(a)] = 0. 2.4)

Since o([) is a nonzero ideal of R then we have a € Z or dr~'p(a) = 0 by (2.4) in prime
rings. O
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Theorem 2.17. Let U be a nonzero right (o, 7)—Lie ideal of R and b € R. Let V be a nonzero
left (o, 7)—Lie ideal of R.

@) If (V,b)r,, =0thenbe Zoro(v)+7(v) € Zforallv e V.
@) If (b,V)x,, =0thenb e Cy oro(v) +7(v) € Zforallv e V.
(iii) If (U, b) 5, = Othen b € Z or U C Cy 1.

Proof. (i) Let g(r) = (r,b)x,,, Vr € Rand d(r) = — [r, u(b)],Vr € R. Since,
g(rs) = (rs,b)au =7(s,0)x = [r, p(b)]s = d(r)s +rg(s), Vr,s € R

then g is a left-generalized derivation with derivation d(r) = — [r, u(b)],¥Vr € R. If g = 0
then we have d = 0 by the above relation. This gives that b € Z.

Let us consider that g # 0. If (V,b), , = 0 then g(V') = 0. This implies that d = 0 (and so
beZ)oro(v)+7(v) € Z,Yv € V by Lemma (2.15).

(ii) The mapping defined by h(r) = (b,r)x, ., Vr € R is a left-generalized (X, 1) — derivation
with (A, p)—derivation d; (r) = [b, 7], ,,Vr € R. Because,

di(rs) = [b,rs]y , = u(r) [b,s]y , +[b.7]y , A(s) = di(r)A(s) + p(r)di(s),Vr,s € R

and

h(rs) = (b,rs)x,u = p(r)(b, $),. + [b, r})\’u A(s) = di(r)A(s) + p(r)h(s),Vr,s € R.

If b, = O then, considering as in the proof of (i), we have d; = 0 and so b € C ,,.

Assume that h # 0. If (b, V) , = 0 then we have ~(V') = 0. Using Lemma (2.15) we obtain
thatd; =0 (andsob e Cy )oro(v)+7(v) € Z,Vv e V.

(iii) Let d(r) = [u,7]s,-,Vr € R, for any u € U. Then d is a (o, 7)—derivation and so left
(and right)-generalized (o, 7)— derivation associated with d. Let d # 0.

If (U,b),, = 0 then we can write ([u, R],+,b)x,, = 0,Yu € U and so (d(R),b)», = 0. If
we use Lemma (2.16) we obtain that b € Z or d7—'u(b) = 0. That is

be Zor [u, 7' p(b)]yr = 0.

If d = 0 then we have u € C,, and so [u, 7~ u(b)],» = 0. Considering same thing for all
u € U we get
be Zor[U, 7 b))y, =0.

On the other hand, [U, 7 !1(b)],» = 0 gives that b € Z or U C C, . by [8, Lemma3]. O

Lemma 2.18. Let M be a nonzero ideal of R. If ¢ € R such that [[c, M], clc = 0 then ¢ € Z or
=0

Proof. 1f [[c, M], ¢]Jc = 0 then we can write
[e, z]cc = c[e, z]e, Vo € M. (2.5)
Using the hypothesis and (2.5) we get

0 = [le;yal, ce = lyle, 2] + [e,ylz, dle = [y[e, ], cle + [[e, yla, c]e

That is
2[y, cl[c, z]c + [[c, y], c]zc = 0,Vz,y € M. (2.6)

Replacing = by cz in (2.6) and using hypothesis,charR # 2, we get
0 = 2[y,dle,cx]e+ [[e,y], cJexe = 2]y, c][e, cx]e
= 2[y,dele, zle+ 2y, J[e, clwe, Yo,y € M
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and so
ly, c|cle, x]e = 0,Va,y € M 2.7)

Taking ry,r € R instead of y in (2.7) we have
0 = [ry, d]c[e, z]c = r[y, c|c[e, x]c + [r, clycle, z]e = [r, c]yc|e, z]c forall x,y € M,r € R and
SO
[R, c|Mc[e, M]c = 0. (2.8)

Since R is prime then we obtain that ¢ € Z or c[c, M]c = 0 by (2.8) and so c[c, z]c = 0,Vz €
M for two case. Using (2.5) we get [c, z]cc = 0,Vx € M . Replacing z by sx, s € R in the last
relation we have [c, R]Mcc = 0and so ¢ € Z or ¢* = 0. o

Lemma 2.19. Let h : R — R be a nonzero right-generalized (o, 7)— derivation associated
with a nonzero (o, 7)—derivation d and a,b € R.

() If ah(R)b = 0 then a = 0 or do~'(b)b = 0.
(ii) If ah(R)b C Cy ,, then a = 0 or [do~1(b),b]b = 0.

Proof. (i) If ah(R)b = 0 then we have
0 = ah(xo "' (b))b = ah(z)bb + ar(x)do =" (b)b = ar(x)do ' (b)b,Vx € R.

That is, aRdo~!(b)b = 0. This means that a = 0 or do~!(b)b = 0 in prime rings.
(ii) Let ah(R)b C Cy, and k = do~'(b). Then we get

0 = [ah(zo ' ()b, A71(b)]x, = [ah()bb + ar(z)do = (b)b, A" (B)]a .
= ah(x)b[b,b] + [ah(z)b, A7 ()], b + a7 (2)[kb, b] + [a7 (), \~" (b)]x ukb
= ar(z)[kb,b] + [ar(x), A" (b)]x kb

= ar(z)k[b,b] + ar(2)[k,b]b + [aT(z), \"' (D)]x, kD, Y2 € R
which gives that
ar(z)[k,b]b + [aT(z), \"' (D)]x,.kb = 0,Vz € R. 2.9

Replacing = by 7~ 'h(x)7~!(b) in (2.9 ) and using hypothesis we get ah(R)b[k, b]b = 0.
Since ah(R)b C C),, and R is prime ring then we have ah(R)b = 0 or [k, b]b = 0. That is

ah(R)b = 0 or [do~'(b),b]b = 0. (2.10)

If ah(R)b = 0 in (2.10 ) then we get a = 0 or do~!(b)b = 0 by (i). On the other hand, if
do~'(b)b = 0 then we obtain that

[do=1(b),b]b = do~ ' (b)bb — bdo ' (b)b = 0.

Lemma 2.20. If I is a nonzero ideal of R and a,b € R such that a[R, I], ;b = 0 then a = 0 or
be Z.

Proof. For any z € I, the mapping defined by h(r) = [r,z]s,,V 7 € R is a right-generalized
derivation with derivation d = [r,o(z)],V r € R, (see Theorem (2.13)).

If a[R, I], b = O then we have ah(R)b = 0. This gives that a = 0 or d(b)b = 0 by Lemma
(2.19). That is, a = 0 or [b, o(z)]b = 0. If we consider same argument for all = € I then we get

a=0or[b,o(I)b=0.
The mapping defined by d;(r) = [b,7],Vr € R is a derivation. If [b,o(I)]b = 0 then we get

dio(I)b = 0. Since (I) # 0 an ideal of R then we have b = 0 or d; = 0 by Lemma (2.2). If
dy = 0 then b € Z. Finally we obtain that « = 0 or b € Z for all case. O
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Theorem 2.21. Let V' be a nonzero left (o, T)—Lie ideal of R and a,b € R. If aVb C Cl , then
a=0o0rbe Zoro(v)+7(v) € Z,YveV.

Proof. IfV C Ztheno(v) +7(v) € Z,Yv € V. If V € Z then there exist a nonzero ideal M of
R such that

([R. M)y, CVand [R,M],, ¢ Cyr)oro(v)+7(v) €Z YveV

by Lemma (2.1). Let us take any element mn € M. Then the mapping defined by h(r) =
[r,m], -, Vr € Risaright-generalized derivation associated with derivation d(s) = [s, o(m)],Vs €
R.

Let [R,M],. C V and [R,M|,, ¢ C, .. If aVb C Cy, then we have a[R, M], b C
aVb C Cy,, and so ah(R)b C Cl ,. This means that a = 0 or [d(b), b]b = 0 or h = 0 by Lemma
(2.19). That is,

a=0orh=0or[[bo(m)],b]b=0.

If h = 0 then we have d = 0 by the relation h(rs) = h(r)s + rd(s),Vr,s € Rand som € Z.
That is, again we have [[b, c(m)], b]b = 0. If we consider the same argument for all m € M then
we obtain that

a=0or|[[b,o(M)],blb=0.

Since o(M) is a nonzero ideal of R then [[b,o(M)],b]b = 0 means that b € Z or b*> = 0 by

Lemma (2.18). If b? = 0 then using that a[R, M|, b C Cy ,, we get

alr,m)y+bA(s)b = pu(s)alr,m]s b* =0 forall7,s € R,m € M

and so a[R, m], rbRb = 0. Using primeness of R we obtain that a[R, M|, b = 0or b = 0. That
is a[R, M|, +b = 0 for two case. This gives that « = 0 or b € Z by Lemma (2.20). Finally we
obtain thata = 0orb € Zoro(v) + 7(v) € Z,YVv €V o
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