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Abstract. Connectedness plays an important part in the study of topology. Several authors
have generalized this notion by using generalized open and closed sets. In [9], the concept of Ω-
open and Ω-closed sets have been introduced and studied. By using these set, we have introduced
Ω-connectedness and investigated its properties.

1 Introduction

Let X be a topological space. In 1982, Hdeib [10] introduced the notion of ω-closeness. Using
this concept, he introduced and studied ω-continuity. In 1968, the notions of θ-open subsets,
θ-closed subsets and θ-closure were introduced by Veličko [20] for the purpose of studying the
important class of H-closed spaces in terms of filter bases. He also showed that the collection
of θ-open sets in a topological space X itself forms a topology ℑθ on X. Dickman and Porter
[4], [5], Joseph [13] extended the work of Veličko to study further properties of H-closed spaces.
Noiri and Jafari [17], Caldas et al. [1] and [2], Steiner [18] and Cao et al [3] have also obtained
several new and interesting results related to these sets. In [9], we have introduced the concept
of Ω−open, Ω− closed sets and studied their properties. Exploiting this concept, in this paper,
we introduce and study the notion of Ω-connectedness. We start with the idea of Ω-separated
sets which is keynote in introducing Ω-connectedness.

2 Preliminaries

Throughout this paper a space will always mean a topological space on which no separation
axioms are assumed unless otherwise explicitly stated. Let (X,ℑ ) be a space and let A be a
subset of X. The closure and interior of A are denoted as cl(A) and int(A) respectively. A point
x ∈ X is called a clocondensation point of A [9] if for each open set U containing x, the set
cl(U) ∩ A is uncountable. A is called Ω-closed if it contains all its clocondensation points. The
complement of an Ω-closed set is called Ω-open. A subset W of a space (X,ℑ ) is Ω-open if and
only if for each x ∈ W there exists an open set U containing x such that cl(U)-W is countable.
The family of all Ω-open subsets of a space (X,ℑ ), denoted by ℑΩ, forms a topology on X . Let
(X,ℑ ) be a space and A be a subset of X.The Ω-interior and Ω-closure of a subset A of a space
(X,ℑ ) is denoted as Ω-cl(A) and Ω-int(A) in the space (X,ℑΩ ). A function f : X→Y is said to
be Ω-continuous [9] if ∀ x ∈ X and ∀ V open in Y containing f(x), ∃ an Ω-open subset containing
x such that f(U) ⊂ V.

3 Ω − Seprated Sets

Definition 3.1. Two nonempty subsets A and B of a topological space(X ,ℑ) are said to be Ω-
separated if A∩(Ω-Cl(B)) = (Ω-Cl(A))∩B = ϕ. Obviously, if A and B are two Ω separated sets,
then A ∩ B = ϕ.Whenever X is expressed as a union of two Ω separated sets A and B, then we
say that A and B form an Ω-separation of X.
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Remark 3.2. Let (X ,ℑ) be a topological space. If X can be written as union of two Ω-separated
sets it does not necessarily mean that it can be written as union of two separated sets and vice
versa as can be seen from the following examples :

Example 3.3. Let N be the set of natural numbers equipped with the topology ℑ= {ϕ, X, Nm : m
∈ N} where Nm = {m,m+ 1,m+ 2, . . ...} then it is clear that ℑΩ is discrete topology on N as
N is countable and therefore X has Ω-separation since every Ω-open set is Ω-closed. However,
X has no separation with respect to ℑ.

Example 3.4. Let R be the real line having the topology ℑ= {ϕ, X, Q}. Evidently, ℑΩ is the
co-countable topology. Here X is neither separated nor Ω - separated. Note that Q is open in ℑ
while closed in ℑΩ.

Example 3.5. Let R be the real line equipped with discrete topology then ℑΩ is discrete topology
and R is separated with respect to both the topologies.

Example 3.6. Let R be the real line with point exclusion topology then ℑΩ is cocountable topol-
ogy therefore R is separated but not Ω-separated.

Example 3.7. The two Ω-separated sets are always disjoint, since A∩B ⊂ A∩(Ω-Cl(B)) =ϕ.

Theorem 3.8. For any non – empty subsets A and B of a topological space(X ,ℑ), the following
are equivalent:

(i) A and B are Ω-separated.

(ii) There exist Ω-closed sets F and G satisfying A ⊂ F⊂ (X ∼ B) and B ⊂ G⊂ (X ∼ A).

(iii) There exist Ω-open sets U and V satisfying A ⊂ U⊂ (X ∼ B) and B ⊂ V⊂ (X ∼ A).

Proof. The Proof is straightforward and hence omitted.

Theorem 3.9. Let A and B be subsets of a topological space(X, ℑ). If A and B are Ω-separated,
ϕ ̸= C ⊂ A and ϕ ̸= D ⊂ B, then C and D are Ω-separated.

Proof. Since A and B are Ω-separated sets, A ∩ (Ω-Cl(B))= ϕ and (Ω-Cl(A))∩B = ϕ. By
hypothesis C⊂A, we have (Ω-cl(C)) ∩ D = ϕ.Similarly, we have C ∩ (Ω-Cl(D)) = ϕ. Therefore,
C and D are Ω-separated sets.

Theorem 3.10. Let C be a Ω-closed subset of a topological space (X, ℑ) and let A and B be
Ω-separated sets such that C = A∪B, then A and B are Ω-closed sets.

Proof. Let C = A∪B, where (Ω-Cl(A)) ∩ B = ϕ=A ∩ (Ω-Cl(B)). Now, C ∩ (Ω-Cl(A)) = (A∪B) ∩
(Ω-Cl(A)) = A. Since the intersection of two Ω-closed sets is Ω-closed, therefore A is Ω-closed.
Similarly, it can be shown that B is Ω-closed.

Theorem 3.11. Let A and B be non-empty subsets in a topological space (X, ℑ). Then the
following statements hold:
(1) If A and B are Ω -separated and P ⊂ A, Q ⊂ B, then P and Q are also Ω -separated.
(2) If A∩B = ϕ such that A and B are Ω -closed (Ω -open), then A and B are Ω -separated.
(3) If A and B are Ω -closed (Ω -open) and H = A∩(X∼B) and G= B∩(X∼A), then H and G are
Ω -separated.

Proof. (1) Since P ⊂ A, (Ω-cl(P)) ⊂ (Ω-cl(A)). Then B ∩ (Ω-cl(A)) = ϕ implies Q ∩ (Ω-cl(A))
=ϕ and Q ∩ (Ω-cl(P)) =ϕ. Similarly P ∩ (Ω-cl(Q))=ϕ. Hence P and Q are Ω-separated.
(2) Since A= (Ω-cl(A)), B = (Ω-cl(B)) and A∩B = ϕ, (Ω-cl(A)) ∩ B = ϕ and (Ω-cl(B)) ∩ A

= ϕ. Hence A and B are Ω-separated sets. If A and B are Ω-open, then their complements are
Ω-closed.
(3) If A and B are Ω-open, then X-A and X-B are Ω-closed. Since H ⊂ X∼ B, (Ω-cl(H)) ⊂ (Ω-
cl(X∼B)) = X ∼ B and so (Ω-cl(H)) ∩ B = ϕ. Thus G ∩ Ω-Cl(H)= ϕ. Similarly, H ∩ (Ω-cl(G))
=ϕ. Hence H and G are Ω-separated sets.
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Theorem 3.12. Two sets A and B of a topological space (X, ℑ) are Ω-separated if and only if
there exist Ω-open sets U and V such that A ⊂ U, B ⊂ V, A∩V=ϕ and B ∩ U = ϕ.

Proof. Let A and B be Ω-separated sets. Let V = X∼(Ω-cl(A)) and U = X∼(Ω-cl(B)). Then U,
V are Ω-open sets such that A⊂ U, B ⊂ V, A∩V = ϕ and B ∩ V = ϕ. Conversely, let U,V be two
Ω-open subsets of X satisfying A ⊂ U, B ⊂ V, A∩V=ϕ and B∩U=ϕ. Since X∼V and X∼ U are
Ω-closed sets, (Ω-cl(A))⊂ X∼V ⊂ X∼B and (Ω-cl(B))⊂ X∼U ⊂ X∼A. Thus (Ω-cl(A)) ∩ B=ϕ
and (Ω-cl(B)) ∩ A = ϕ.

Theorem 3.13. Let A and B be non-empty disjoint subsets of a topological space(X, ℑ) and let
E be a subset of X such that E = A∪B. Then A and B are Ω-separated in X if and only if each of
A and B are Ω-closed (Ω-open) in E.

Proof. Let A and B be Ω -separated sets in X. Then A ∩ (Ω-cl(B)) =ϕ which implies that
(Ω-cl(B))⊂ (X∼A) i.e. B contains all Ω -limit points of B which are in A∪B = E. Hence B is
Ω-closed in E. Similarly A is also Ω-closed in E.

Theorem 3.14. Let (X, ℑ) be a topological space. If A and B are Ω-separations of X itself, then
A and B are Ω -closed sets of (X, ℑ) .

Proof. Since A and B are Ω-separated, A ∩ (Ω-cl(B)) = (Ω-cl(A)) ∩ B=ϕ. Then A ∩ (Ω-cl(B))
=ϕ if and only if B is Ω -closed in A∪B = X. Similarly, we can show that A is Ω-closed in X.

Theorem 3.15. X has Ω separation if and only if X has a subset which is both Ω-open and Ω-
closed.

Proof. Let A be such subset of X then X∼A is both Ω-open and Ω-closed such that A ∩ (X∼A)
= ϕ while A ∪ (X∼A) = X. Conversely, let X = A ∪ B such that both A and B are disjoint,
nonempty and Ω-open. Then A is Ω-closed also.

4 Properties Of Ω – Connected Spaces

In this section, we introduce and study Ω -connected spaces and also investigate some of their
basic properties.

Definition 4.1. A subset A of a topological space (X, ℑ) is said to be Ω -connected if it cannot be
expressed as the union of two Ω -separated sets. Otherwise, the set A is called Ω-disconnected.

Example 4.2. Let N be the set of natural numbers equipped with the topology ℑ = {ϕ, X, Nm

: m ∈ N} where Nm ={m,m+1,m+2,. . . ..} then ℑΩ = discrete topology as N is countable and
therefore disconnected as every Ω-open set is Ω-closed whereas X is ℑ -connected.

Example 4.3. Let R be the real line having the topology ℑ = {ϕ, X, Q} then ℑΩ is cocountable
topology. Here both ℑ and ℑΩ are connected. Note that Q is open in ℑ while closed in ℑΩ.

Example 4.4. Let R be the real line equipped with real topology then ℑΩ is also discrete topology
and both the topologies are disconnected.

Example 4.5. Let R be the real line with point exclusion topology then ℑΩ is cocountable topol-
ogy therefore R is disconnected but Ω-connected.

Theorem 4.6. Let A ⊂ B ∪ C such that A is a nonempty Ω-connected set in a topological space
(X, ℑ) and B , C be Ω-separated sets. Then only one of the following conditions holds:
(a) A ⊂ B and A∩C = ϕ.
(b) A⊂ C and A∩B = ϕ.

Proof. If A ∩ C = ϕ then A ⊂ B. Similarly, if A∩B = ϕ, then A ⊂ C. Since A ⊂ B ∩ C, then
both A ∩ B = ϕ and A ∩ C = ϕ cannot hold simultaneously. Conversely, suppose that A∩B ̸= ϕ
and A ∩ C ̸=ϕ, then, A∩B and A∩C are Ω-separated sets such that A = (A∩B) ∪(A∩C) which
contradicts with the Ω-connectedness of A. Hence only one of the conditions (a) and (b) must
hold.
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Theorem 4.7. If A and B are Ω -separated sets in a topological space (X, ℑ) such that X=A ∪ B
and if an Ω-connected set S is contained in A∪B, then either S ⊂A or S ⊂ B.

Proof. We are given that X = A ∪ B. Now, S = X ∩ S = (A ∪ B)∩S = (S∩A) ∪ (S∩B). Since
(S∩A)⊂ A and(S∩B)⊂ B therefore they form separation of S. Since S is Ω-connected, therefore,
either (S∩A) is empty or(S∩ B) is empty that is either S ⊂ B or S⊂ A.

Theorem 4.8. Let B be a subset of a topological space(X , ℑ) such that there exists a Ω-connected
set A satisfying A ⊂B ⊂ (Ω-cl(A)) then B is also Ω -connected.

Proof. Let B= P∪ Q, where P and Q are Ω-separated sets. Then either A⊂P or A⊂ Q and hence
either B ⊂ (Ω-cl(A)) ⊂ (Ω-cl(P)) ⊂ (X∼ Q) or B⊂ (X∼ P). Therefore either P = ϕ or Q = ϕ.

Theorem 4.9. If A is Ω-connected set of a topological space(X, ℑ), then so is (Ω-cl(A)) .

Proof. Follows from Theorem 4.8.

Theorem 4.10. If {Cα: α ∈∆} is a family of Ω-connected sets in a topological space (X, ℑ)
satisfying the property that any two of them are not Ω-separated, then C =

∪
α ∈∆ Cα is Ω -

connected.

Proof. Let C = A∪B , where A and B are Ω-separated sets. Then for each α ∈ ∆ either Cα⊂A
or Cα⊂B. Since no two members of the family {Cα : α ∈∆} are Ω-separated, either Cα⊂ A for
each α ∈∆ or Cα⊂B for each α∈∆. So either B=ϕ or A=ϕ .

Theorem 4.11. If C =
∪

α ∈∆ Cα , where each Cα is Ω-connected set in a topological space(X,
ℑ) and also Cα∩Cα’̸= ϕ for α, α′∈ ∆, then C is Ω-connected.

Proof. Obvious and hence omitted.

Theorem 4.12. If C=
∪

α ∈∆ Cα , where each Cα is Ω-connected in a topological space (X, ℑ)
and

∩
α ∈∆ Cα ̸= ϕ for each α ∈ ∆,then C is Ω-connected.

Proof. Suppose that C is not Ω -connected. Let C = A∪B, where A and B are Ω-separated
sets. Then for each α ∈∆ either Cα⊂ A or Cα⊂ B. Since

∩
α ∈∆ Cα ̸= ϕ, we have a point x

∈
∩

α ∈∆ Cα. Then either x ∈A or x∈ B. Let x ∈ A. Since x ∈ Cα for each α ∈∆, then Cα ∈ A
for each α ∈∆ which means that B contains no element of C as A and B are disjoint. Hence B is
empty. Similarly if x ∈ B then due to same reason A will be empty. Thus C is Ω-connected.

Theorem 4.13. For a topological space(X, ℑ) , the following statements are equivalent:
(1) X is Ω -connected.
(2) X cannot be expressed as the union of two nonempty disjoint Ω -open sets.
(3) X contains no nonempty proper subset which is both Ω -open and Ω -closed.

Proof. (1) ⇒ (2): Suppose that X is Ω-connected and if X can be expressed as the union of two
nonempty disjoint sets A and B such that A and B are Ω-open sets. Consequently A⊂ X∼ B.
Then (Ω-cl(A)) ⊂ Ω-cl(X∼ B) = X∼B. Therefore, (Ω-cl(A)) ∩ B = ϕ. Similarly we can prove
A ∩ (Ω-cl(B)) =ϕ. This is a contradiction to the fact that X is Ω-connected. Therefore, X cannot
be expressed as the union of two nonempty disjoint Ω-open sets.
(2) ⇒ (3): Suppose that X cannot be expressed as the union of two nonempty disjoint sets A and
B such that both A and B are Ω-open sets. If X contains a nonempty proper subset A which is
both Ω-open and Ω-closed. Then X = A∪(X∼ A). Hence A and X∼ A are disjoint Ω -open sets
whose union is X. This is the contradiction to our assumption. Hence, X contains no nonempty
proper subset which is both Ω-open and Ω-closed.
(3) ⇒ (1): Suppose that X contains no nonempty proper subset which is both Ω -open and Ω

-closed and X is not Ω -connected. Then X can be expressed as the union of two nonempty
disjoint sets A and B such that (A∩ (Ω-cl(B)) ∪(( (Ω-cl(A))∩B) =ϕ. Since A∩B = ϕ, A = X∼
B and B = X∼ A. Since (Ω-cl(A))∩B=ϕ, (Ω-cl(A))⊂ X∼ B. Hence (Ω-cl(A))⊂ A. Therefore, A
is Ω-closed. Similarly, B is Ω-closed. Since A = X∼ B, A is Ω-open. Therefore, there exists a
non-empty proper subset A which is both Ω-open and Ω-closed. This is a contradiction to our
assumption. Therefore, X is Ω-connected.
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Theorem 4.14. A topological space(X, ℑ) is Ω-connected if and only if for every pair of points
x , y in X , there is a Ω -connected subset of X which contains both x and y.

Proof. The necessity is immediate since the Ω-connected space itself contains these two points.
For the sufficiency, suppose that for any two points x and y, there is a Ω-connected subset Cx,y

of X such that x , y ∈Cx,y. Let a ∈ X be a fixed point and consider the family {Ca,x:x∈X} of all
Ω-connected subsets of X which contain the points a and x. Then X=

∪
x∈X Ca,x and

∩
x∈X Ca,x ̸=

ϕ. Therefore X is Ω-connected.

Theorem 4.15. For a topological space (X,ℑ) the following are equivalent:
(1). (X,ℑ) is Ω-connected
(2). The only subsets of (X,ℑ) which are both Ω-open and Ω-closed are the empty set ϕ and X.
(3). Each Ω-continuous map of (X,ℑ) into a discrete space (Y,σ) with at least two points is a
constant map.

Proof. (1) ⇒ (2) : Let G be an Ω-open and Ω-closed subset of (X,ℑ). Then X∼ G is also both
Ω-open and Ω-closed. Then X = G∪ (X∼ G) a disjoint union of two non-empty Ω-open sets
which contradicts the fact that (X,ℑ) is Ω -connected. Hence G = ϕ or X.
(2) ⇒ (1): Suppose that X = A ∪ B where A and B are disjoint non-empty Ω -open subsets of
(X,ℑ). Since A = X -B, then A is both Ω-open and Ω-closed. By assumption A = ϕ or X, which
is a contradiction. Hence (X,ℑ) is Ω-connected.
(2) ⇒ (3): Let f : (X,ℑ) → (Y, σ) be a Ω-continuous map, where (Y, σ) is discrete space with at
least two points. Then f−1{y} is Ω - closed and Ω -open for each y ∈Y. By assumption, f−1{y}
= ϕ or X for each y ∈Y .If f−1{y} = ϕ for each y ∈Y , then f fails to be a map. Therefore there
exists a point say z∈Y such that f−1{z} = X. This shows that f is a constant map.
(3) ⇒ (2): Let G be both Ω-open and Ω-closed in (X,ℑ). Suppose G ̸= ϕ. Let f : (X,ℑ) → (Y,
σ) be a Ω -continuous map defined by f(G) = a and f(X -G) = b where a ̸= b and a; b ∈Y . By
assumption, f is constant so G = X.

Theorem 4.16. Every Ω-connected space is connected .

Proof. Let X be Ω-connected and if possible let X be disconnected then there is a proper subset
A of X which is both open and closed. But such a set is also both Ω-open and Ω-closed which is
a contradiction thus Ω-connected is connected.

Theorem 4.17. Let f : (X,ℑ)→ (Y, σ) be an Ω-continuous surjection and (X,ℑ) be Ω-connected,
then (Y, σ) is connected.

Proof. Suppose that (Y, σ) is not connected. Let Y = A ∪B where A and B are disjoint non-
empty open subsets in (Y, σ)). Since f is Ω-continuous, X = f−1(A) ∪f−1(B), where f−1(A) and
f−1(B) are disjoint non-empty Ω-open subsets in (X,ℑ). This contradicts the fact that (X,ℑ) is
Ω-connected. Hence (Y, σ) is connected.

Definition 4.18. A function f : (X,ℑ) →(Y, σ) is said to be strongly Ω-continuous function if
inverse image of every Ω-closed set is closed.

Definition 4.19. A function f : (X,ℑ) →(Y, σ) is said to be Ω-irresolute function if inverse image
of every Ω-closed set is Ω-closed.

The Proofs of the following theorem are straightforward and hence omitted.

Theorem 4.20. Let f : (X,ℑ) →(Y, σ) be a Ω-irresolute surjection and (X,ℑ) is Ω-connected,
then (Y, σ) is Ω-connected.

Theorem 4.21. The image of a connected space under strongly Ω-continuous map is Ω-connected.

Theorem 4.22. If (X,ℑ) is Ω-disconnected and ℑ’ is finer than ℑ then (X,ℑ’) is Ω-disconnected.

Theorem 4.23. If (X,ℑ) is Ω-connected and ℑ’ is coarser than ℑ then (X,ℑ’) is Ω-connected.

Theorem 4.24. If every two points of E⊂ X are contained in some Ω-connected space of E then
E is Ω-connected subset of X.
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Proof. Let E be not Ω-connected then for some A,B ⊂ X , E = A ∪ B such that Ω-cl(A) ∩ B =ϕ
= A ∩(Ω-cl(B)). Since both A and B are nonempty let a ∈ A and b ∈ B for some a,b ∈ E then
there exists a Ω-connected subset F of E such that a,b ∈ F. Since F ⊂ A ∪ B either F ⊂ A or F ⊂
B.Without loss of generality let we assume that F ⊂ A then a,b ∈ A which means that A ∩ B̸=
which is a contradiction. Hence E has to be Ω-connected.

5 Locally Ω-Connected

Definition 5.1. A subset A of a topological space (X, ℑ) is said to be locally Ω-connected at x ∈
X if for every Ω-open set U containing x there exists a Ω-open and Ω-connected set V containing
x and contained in U. If X is locally Ω-connected at each of its points then X is said to be locally
Ω-connected.

Example 5.2. Let R be the set of real numbers with usual topology then R is Ω-connected and
locally Ω-connected as well.

Example 5.3. The subspace (1,2) ∪ (2,3) of the real line is Ω disconnected but locally Ω-
connected.

Example 5.4. In discrete topology R is Ω-disconnected but locally Ω-connected.

Definition 5.5. A function f : (X,ℑ)→ (Y; σ) is said to be oΩ-open function if image of every
open set in X is Ω-open in Y.

Definition 5.6. A function f : (X,ℑ) → (Y; σ) is said to be Ωo-open function if image of every
Ω-open set in X is open in Y.

Definition 5.7. A function f : (X,ℑ) → (Y; σ) is said to be ΩΩ-open function if image of every
Ω-open set in X is Ω-open in Y.

Theorem 5.8. The image of a locally Ω-connected space under Ωo-continuous, Ω-open map is
locally connected.

Proof. Let f : (X,ℑ) → (Y; σ) be a Ω-continuous, Ωo-open map of X into Y. Let y ∈ Y then there
exists x ∈ X such that f(x) = y. LetVy be an open set containing y then f−1(V y) is a Ω-open set
containing x. Since X is locally Ω-connected it contains a Ωopen-set Uy which is Ω-connected.
This implies that y∈ f(Uy) such that f(Uy) is open (as f is Ωo-open ) and connected (as f is Ω
-continuous) and f(Uy) is contained in Vy . Hence Y is locally connected.

Theorem 5.9. The image of a locally Ω-connected space under Ω-irresolute, ΩΩ -open map is
locally Ω−connected.

Proof. Let f : (X,ℑ) → (Y; σ) be an ΩΩ-irresolute, Ω-open map of X into Y. Let y ∈Y then
there exists x ∈ X such that f(x) = y. Let Vy be an Ω-open set containing y then f−1(V y) is an
Ω-open set containing x. Since X is locally Ω-connected it contains a Ω-open set Uy which is Ω-
connected and implies that y∈ f(Uy) such that f(Uy) is Ω-open (as f is Ω-open ) and Ω-connected
(as f is Ω-irresolute) and f(Uy) is contained in Vy . Hence Y is locally Ω-connected .

Theorem 5.10. The image of a locally connected space under strongly Ω -continuous, oΩ-open
map is locally Ω-connected.

Proof. Let f : (X,ℑ) → (Y; σ) be a strongly Ω-continuous,oΩ-open map of X into Y. Let y ∈ Y
then there exists x∈X such that f(x) = y. Let Vy be a Ω-open set containing y then f−1(V y) is an
open set containing x. Since X is locally connected it contains an open set Uy which is connected.
This implies that y∈ f(Uy) such that f(Uy) is Ω-open (as f is oΩ-open ) and Ω-connected (as f is
strongly Ω-continuous) and f(Uy) is contained in Vy . Hence Y is locally Ω-connected .

Theorem 5.11. A Ω-open subset of a locally Ω-connected space is locally Ω-connected.

Theorem 5.12. A space (X,ℑ) is locally Ω-connected if and only if it has a basis consisting of
Ω-connected Ω-open sets.

Proof. Follows from the definition of locally Ω− connectedness.
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