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Abstract The first goal of this paper is to propose a composite implicit iteration process
for a finite family of I-nonexpansive mappings in hyperbolic spaces. Next, some strong and
∆-convergence theorems are established using the proposed iteration process. New results are
obtained as corollaries to the convergence theorems. Finally, we exhibit two finite families of
the mappings under consideration.

1 Introduction and Preliminaries

Let K be a nonempty subset of a metric space X . The mapping T : K → K is said to be
nonexpansive if d(Tx, Ty) ≤ d(x, y) for all x, y ∈ K.

In [1], Shahzad defines I-nonexpansive mappings in Banach spaces essentially as follows:
given two mappings T, I : K → K, T is called I-nonexpansive if d(Tx, Ty) ≤ d(Ix, Iy) for all
x, y ∈ K.

In what follows, we set J = {1, 2, ..., N} for the set of first N natural numbers and take {αn},
{βn} sequences in (0, 1) .

Given x0 in K (a subset of Banach space), the Mann iteration process defined for a nonex-
pansive mapping as follows:

xn = αnxn−1 + (1 − αn)Txn−1, n ≥ 1. (1.1)

Xu and Ori [19] introduced the following implicit iteration process for a finite family of
nonexpansive mappings {Ti : i ∈ J} .

xn = αnxn−1 + (1 − αn)Tnxn, n ≥ 1, (1.2)

where Tn = Tn(modN) and the modN function takes values in J .
In 2007, Su and Li [20] introduced the composite implicit iteration process for finite family

of strictly pseudocontractive maps defined as follows:

xn = αnxn−1 + (1 − αn)Tn [βnxn−1 + (1 − βn)Tnxn] , n ≥ 1, (1.3)

where Tn = Tn(modN).
In [2], Rhoades and Temir showed that the Mann iteration process converges weakly to a

common fixed point of T and I in a Banach space by taking the map T to be I-nonexpansive.
Actually, they proved the following theorems.

Theorem 1.1. (Rhoades and Temir [2]) Let K be a closed convex bounded subset of a uniformly
convex Banach space X which satisfies Opial’s condition, and let T, I be self-mappings of K
with T be an I-nonexpansive mapping, I be a nonexpansive on K. Then, for x0 ∈ K, the
sequence {xn} of Mann iterates converges weakly to common fixed point of F (T ) ∩ F (I).

There are numerous papers dealing with the convergence of different iterative techniques for
these mappings and generalization of the class of I-nonexpansive mappings in Banach spaces
(see, for example, [3, 4, 5, 6, 7] and the references therein).
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Motivated by the iteration process (1.3) of Su and Li [20], in this paper we define a new
modified composite implicit iteration process for a finite family of Ii-nonexpansive mappings
{Ti : i ∈ J} and a finite family of nonexpansive mappings {Ii : i ∈ J} in hyperbolic spaces as
follows:

xn = W (xn−1, Tnyn, αn) , (1.4)

yn = W (xn−1, Inxn, βn) , n ≥ 1

where Tn = Tn(modN) and In = In(modN).
Different notions of hyperbolic space [12, 13, 14, 15] can be found in the literature. We work

in the setting of hyperbolic spaces as introduced by Kohlenbach [11], which are slightly more
restrictive than the spaces of hyperbolic type [12] by (W4), but more general then the concept of
hyperbolic space from [15].

Definition 1.2. (Kohlenbach [11]) A hyperbolic space is a triple (X, d,W ) where (X, d) is a
metric space and W : X2 × [0, 1] → X is a mapping such that

W1. d (u,W (x, y, α)) ≤ (1 − α) d (u, x) + αd (u, y)

W2. d (W (x, y, α) ,W (x, y, β)) = |α− β| d (x, y)

W3. W (x, y, α) = W (y, x, (1 − α))

W4. d (W (x, z, α) ,W (y, w, α)) ≤ (1 − α) d (x, y) + αd (z, w)

for all x, y, z, w ∈ X and α, β ∈ [0, 1].

If (X, d,W ) satisfies only (W1), then it coincides with the convex metric space introduced by
Takahashi [16]. A subset K of a hyperbolic space X is convex if W (x, y, α) ∈ K for all x, y ∈ K
and α ∈ [0, 1].

Definition 1.3. A hyperbolic space (X, d,W ) is said to be uniformly convex [17] if for all
u, x, y ∈ X , r > 0 and ε ∈ (0, 2], there exists a δ ∈ (0, 1] such that

d (x, u) ≤ r

d (y, u) ≤ r

d (x, y) ≥ εr

 ⇒ d

(
W

(
x, y,

1
2

)
, u

)
≤ (1 − δ) r.

A map η : (0,∞) × (0, 2] → (0, 1] which provides such a δ = η (r, ε) for given r > 0 and
ε ∈ (0, 2] is called modulus of uniform convexity. We call η monotone if it decreases with r (for
a fixed ε).

The notion of ∆-convergence in general metric spaces was introduced by Lim [8] in 1976.
Kirk and Panyanak [9] specialized this concept to CAT(0) spaces and showed that many Banach
space results involving weak convergence have precise analogs in this setting.

To give the definition of ∆-convergence, we first recall some notations.
Let {xn} be a bounded sequence in a hyperbolic space X. For x ∈ X , define a continuous

functional r (., {xn}) : X → [0,∞) by r (x, {xn}) = lim supn→∞ d (x, xn) .
Then the asymptotic radius ρ = r ({xn}) of {xn} is defined by ρ = inf {r (x, {xn}) : x ∈ X}

and the asymptotic center of a bounded sequence {xn} with respect to a subset K of X is defined
by AK ({xn}) = {x ∈ X : r (x, {xn}) ≤ r (y, {xn}) for any y ∈ K}. If the asymptotic center is
taken with respect to X, then it is simply denoted by A ({xn}).

A sequence {xn} in X is said to ∆-converge to x ∈ X if x is the unique asymptotic center of
{un} for every subsequence {un} of {xn}. In this case, we write ∆ -limn xn = x and call x as ∆
-limit of {xn}.

The proofs of the following lemmas can be found in Leustean [18] and Khan et al. [10].

Lemma 1.4. [18] Let (X, d,W ) be a complete uniformly convex hyperbolic space with monotone
modulus of uniform convexity. Then every bounded sequence {xn} in X has a unique asymptotic
center with respect to any nonempty closed convex subset K of X.
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Lemma 1.5. [10] Let (X, d,W ) be a uniformly convex hyperbolic space with monotone modulus
of uniform convexity η. Let x ∈ X and {αn} be a sequence in [b, c] for some b, c ∈ (0, 1). If {xn}
and {yn} are sequences in X such that lim supn→∞ d (xn, x) ≤ r, lim supn→∞ d (yn, x) ≤ r
and limn→∞ d (W (xn, yn, αn) , x) = r for some r ≥ 0, then limn→∞ d (xn, yn) = 0.

Lemma 1.6. [10] Let K be a nonempty closed convex subset of a uniformly convex hyperbolic
space and {xn} a bounded sequence in K such that A ({xn}) = {y} and r ({xn}) = ρ. If {ym}
is another sequence in K such that limn→∞ r (ym, {xn}) = ρ, then limn→∞ ym = y.

2 Main Results

Denote by F the set of common fixed points of the finite families of mappings {Ti : i ∈ J} and
{Ii : i ∈ J}.

Let X be a hyperbolic space, K be a nonempty closed convex subset of X . Let {Ti : i ∈ J} be
a finite family of Ii-nonexpansive mappings and {Ii : i ∈ J} be a finite family of nonexpansive
mappings. Let {xn} be defined by (1.4). Then x1 = W (x0, T1W (x0, I1x1, β1) , α1). Define a
mapping G1 : K → K by: G1x = W (x0, T1W (x0, I1x, β1) , α1) for all x ∈ K. Existence of x1
is guaranteed if G1 has a fixed point. Now for any u, v ∈ K, we have

d (G1u,G1v) = d (W (x0, T1W (x0, I1u, β1) , α1) ,W (x0, T1W (x0, I1v, β1) , α1))

≤ α1d (T1W (x0, I1u, β1) , T1W (x0, I1v, β1))

≤ α1d (I1W (x0, I1u, β1) , I1W (x0, I1v, β1))

≤ α1d (W (x0, I1u, β1) ,W (x0, I1v, β1))

≤ α1β1d (I1u, I1v)

≤ α1β1d (u, v)

Since α1β1 < 1, G1 is a contraction. By Banach contraction principle, G1 has a unique fixed
point. Thus the existence of x1 is established. Similarly, the existence of x2, x3, . . . is established.
Thus the implicit iteration process (1.4) is well defined.

We need the following lemma in order to prove our main theorems.

Lemma 2.1. Let K be a nonempty closed convex subset of a hyperbolic space X. Let {Ti : i ∈ J}
be a finite family of Ii-nonexpansive mappings and {Ii : i ∈ J} be a finite family of nonexpan-
sive mappings on K such that F ̸= ∅. Then for the sequence {xn} defined in (1.4), we have
limn→∞ d (xn, p) exists for p ∈ F.

Proof. Let p ∈ F . From (1.4), we have

d (yn, p) = d (W (xn−1, Inxn, βn) , p)

≤ (1 − βn) d (xn−1, p) + βnd (Inxn, p)

≤ (1 − βn) d (xn−1, p) + βnd (xn, p) . (2.1)

By (2.1) and (1.4), we obtain

d (xn, p) = d (W (xn−1, Tnyn, αn) , p)

≤ (1 − αn) d (xn−1, p) + αnd (Tnyn, p)

≤ (1 − αn) d (xn−1, p) + αnd (Inyn, p)

≤ (1 − αn) d (xn−1, p) + αnd (yn, p)

≤ (1 − αn) d (xn−1, p) + αn [(1 − βn) d (xn−1, p) + βnd (xn, p)]

≤ (1 − αnβn) d (xn−1, p) + αnβnd (xn, p) .

Consequently, we have
d (xn, p) ≤ d (xn−1, p) . (2.2)

Thus limn→∞ d (xn, p) exists for each p ∈ F .
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Lemma 2.2. Let K be a nonempty closed convex subset of a uniformly convex hyperbolic space
X with monotone modulus of uniform convexity η. Let {Ti : i ∈ J} be a finite family of Ii-
nonexpansive mappings and {Ii : i ∈ J} be a finite family of nonexpansive mappings on K such
that F ̸= ∅. Then for the sequence {xn} defined in (1.4), we have

lim
n→∞

d (xn, Tlxn) = lim
n→∞

d (xn, Ilxn) = 0 for each l = 1, 2, · · · , N.

Proof. In view of Lemma 2.1, we obtain that the limit of the sequence {d (xn, p)} exits for each
p ∈ F . Next, we assume that limn→∞ d (xn, p) = c, for some c > 0. It follows from (1.4) that

lim
n→∞

d (xn, p) = lim
n→∞

d (W (xn−1, Tnyn, αn) , p) = c. (2.3)

By means of limn→∞ d (xn, p) = c and nonexpansivity of Ti, we get

lim sup
n→∞

d (Tnyn, p) ≤ lim sup
n→∞

d (Inyn, p) ≤ lim sup
n→∞

d (yn, p)

= lim sup
n→∞

d (W (xn−1, Inxn, βn) , p)

≤ lim sup
n→∞

[(1 − βn) d (xn−1, p) + βnd (Inxn, p)]

≤ lim sup
n→∞

[(1 − βn) d (xn−1, p) + βnd (xn, p)]

≤ c. (2.4)

Now using (2.4) with limn→∞ d (xn, p) = c and applying Lemma 1.5 to (2.3), we get

lim
n→∞

d (xn−1, Tnyn) = 0. (2.5)

From (1.4) and (2.5) we obtain

d (xn, xn−1) = d (W (xn−1, Tnyn, αn) , xn−1)

≤ (1 − αn) d (xn−1, xn−1) + αnd (Tnyn, xn−1)

→ 0 (n → ∞),

which implies that
lim

n→∞
d (xn, xn+l) = 0, ∀l = 1, 2, . . . , N. (2.6)

Note that
d (xn, Tnyn) ≤ d (xn, xn−1) + d (xn−1, Tnyn) .

Next, taking limit on both sides in the above inequality we get

lim
n→∞

d (xn, Tnyn) = 0. (2.7)

Clearly,

d (xn, p) ≤ d (xn, xn−1) + d (xn−1, Tnyn) + d (Tnyn, p)

≤ d (xn, xn−1) + d (xn−1, Tnyn) + d (Inyn, p)

≤ d (xn, xn−1) + d (xn−1, Tnyn) + d (yn, p) .

Taking lim inf on both sides in the above estimate, from (2.5) and (2.6) we have

c ≤ lim inf
n→∞

d (yn, p) . (2.8)

Also, we get from (2.1)
lim sup
n→∞

d (yn, p) ≤ c

so that (2.8) gives
lim

n→∞
d (yn, p) = c. (2.9)
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Thus c = limn→∞ d (yn, p) = limn→∞ d (W (xn−1, Inxn, βn) , p) gives by

lim sup
n→∞

d (Inxn, p) ≤ c

and Lemma 1.5 that
lim

n→∞
d (xn−1, Inxn) = 0 (2.10)

On the other hand,
d (xn, Inxn) ≤ d (xn, xn−1) + d (xn−1, Inxn) .

Thus we have
lim

n→∞
d (xn, Inxn) = 0. (2.11)

Further, observe that

d (yn, xn−1) = d (W (xn−1, Inxn, βn) , xn−1)

≤ βnd (Inxn, xn−1) .

By (2.10), we have
lim

n→∞
d (yn, xn−1) = 0. (2.12)

Thus

d (xn, Tnxn) ≤ d (xn, Tnyn) + d (Tnyn, Tnxn−1) + d (Tnxn−1, Tnxn)

≤ d (W (xn−1, Tnyn, αn) , Tnyn) + d (yn, xn−1) + d (xn−1, xn)

≤ (1 − αn) d (xn−1, Tnyn) + d (yn, xn−1) + d (xn−1, xn)

together with (2.5), (2.6) and (2.12) implies that

lim
n→∞

d (xn, Tnxn) = 0. (2.13)

Since, for each l = 1, 2, · · · , N, we have

d (xn, Tn+lxn) ≤ d (xn, xn+l) + d (xn+l, Tn+lxn+l) + d (Tn+lxn+l, Tn+lxn)

≤ d (xn, xn+l) + d (xn+l, Tn+lxn+l) + d (In+lxn+l, In+lxn)

≤ 2d (xn, xn+l) + d (xn+l, Tn+lxn+l) , (2.14)

it follows from (2.6) and (2.13) that

lim
n→∞

d (xn, Tn+lxn) = 0

for all l ∈ J. Thus we get

lim
n→∞

d (xn, Tlxn) = 0 for any l ∈ J. (2.15)

Replacing Tn+l by In+l in the inequality (2.14), we get

lim
n→∞

d (xn, Ilxn) = 0 (2.16)

for all l ∈ J.

For further developments, we need the following concepts and technical result.
A sequence {xn} in a metric space X is said to be Fejér monotone with respect to K (a subset

of X) if d (xn+1, p) ≤ d (xn, p) for all p ∈ K and for all n ≥ 1. A map T : K → K is semi-
compact if any bounded sequence {xn} satisfying d (xn, Txn) → 0 as n → ∞ has a convergent
subsequence.

Lemma 2.3. [21] Let K be a nonempty closed subset of a complete metric space (X, d) and
{xn} be Fejér monotone with respect to K. Then {xn} converges to some p ∈ K if and only if
limn→∞ d (xn,K) = 0.
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Lemma 2.4. Let K be a nonempty closed convex subset of a complete uniformly convex hyper-
bolic space X with monotone modulus of uniform convexity η. {Ti : i ∈ J} be a finite family of
Ii-nonexpansive mappings and {Ii : i ∈ J} be a finite family of nonexpansive mappings on K
such that F ̸= ∅. Then the sequence {xn} defined in (1.4) converges strongly to p ∈ F if and
only if limn→∞ d (xn, F ) = 0.

Proof. It follows from (2.2) that {xn} is Fejér monotone with respect to F and limn→∞ d (xn, F )
exists. Now applying the Lemma 2.3, we obtain the result.

A mappings T : K → K with F (T ) ̸= ∅ is said to satisfy the Condition (A) [24] if there
exists a nondecreasing function f : [0,∞) → [0,∞) with f(0) = 0, f(r) > 0 for all r ∈ (0,∞)
such that d (x, Tx) ≥ f (d (x, F (T ))) for all x ∈ K.

Khan and Fukhar-ud-din [22], introduced the so-called Condition (A’) and gave a slightly
improved version of it in [23] as follows:

Two mappings T, I : K → K with F (T ) ∩ F (I) ̸= ∅ are said to satisfy the Condition (A’) if
there exists a nondecreasing function f : [0,∞) → [0,∞) with f(0) = 0, f(r) > 0 for all r ∈
(0,∞) such that either d (x, Tx) ≥ f (d (x, F (T ) ∩ F (I))) or d (x, Ix) ≥ f (d (x, F (T ) ∩ F (I)))
for all x ∈ K.

We can modify this definition for two finite families of mappings as follows. Let {Ti : i ∈ J}
and {Ii : i ∈ J} be two finite families of nonexpansive mappings of K with nonempty fixed
points set F . These families are said to satisfy Condition (B) on K if there exists a nondecreasing
function f : [0,∞) → [0,∞) with f(0) = 0, f(r) > 0 for all r ∈ (0,∞) such that either
max
i∈J

d (x, Tix) ≥ f (d (x, F )) or max
i∈J

d (x, Iix) ≥ f (d (x, F )) for all x ∈ K. The Condition (B)

reduces to the Condition (A’) when T1 = T2 = · · · = TN = T and I1 = I2 = · · · = IN = I .
Note that the Condition (A) is weaker than both the semicompactness of the mapping T :

K → K and the compactness of its domain K, see [24]. Thus the Condition (A’) is weaker than
both the semicompactness of the mappings T, I : K → K and the compactness of their domain
K. In this direction Condition (B) is weaker than both the semicompactness of {Ti : i ∈ J} and
{Ii : i ∈ J} and the compactness of their domain K.

We are now ready to state and prove our strong convergence theorems.

Theorem 2.5. Let K be a nonempty closed convex subset of a complete uniformly convex hyper-
bolic space X with monotone modulus of uniform convexity η. Let {Ti : i ∈ J} be a finite family
of Ii-nonexpansive mappings and {Ii : i ∈ J} be a finite family of nonexpansive mappings on
K such that F ̸= ∅. Suppose that {Ti : i ∈ J} and {Ii : i ∈ J} satisfy condition (B). Then the
sequence {xn} defined in (1.4) converges strongly to p ∈ F.

Proof. Let p ∈ F . As proved in Lemma 2.1, d (xn, p) ≤ d (xn−1, p) for all n ∈ N. This implies
that

d (xn, F ) ≤ d (xn−1, F ) .

Thus limn→∞ d (xn, F ) exists. Since {Ti : i ∈ J} and {Ii : i ∈ J} satisfy Condition (B), there-
fore

either max
i∈J

d (xn, Tixn) ≥ f (d (xn, F )) or max
i∈J

d (xn, Iixn) ≥ f (d (xn, F )) .

It follows from (2.15) and (2.16) that limn→∞ f (d (xn, F )) = 0. Since f is a nondecreasing
function and f(0) = 0, so it follows that limn→∞ d (xn, F ) = 0. Therefore, Lemma 2.4 implies
that {xn} converges strongly to a point p in F .

Theorem 2.6. Let K be a nonempty closed convex subset of a complete uniformly convex hyper-
bolic space X with monotone modulus of uniform convexity η. Let {Ti : i ∈ J} be a finite family
of Ii-nonexpansive mappings and {Ii : i ∈ J} be a finite family of nonexpansive mappings on
K such that F ̸= ∅. Suppose that either K is compact or one of the map in {Ti : i ∈ J} and
{Ii : i ∈ J} is semi-compact. Then the sequence {xn} defined in (1.4) converges strongly to
p ∈ F .

Proof. For any i ∈ J , we first suppose that Ti and Ii are semicompact. By (2.15) and (2.16), we
have

lim
n→∞

d (xn, Tixn) = lim
n→∞

d (xn, Iixn) = 0.
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From the semicompactness of Ti and Ii, there exists a subsequence {xni} of {xn} such that
{xni} converges strongly to a q ∈ K. Using (2.15) and (2.16), we have

lim
i→∞

d (xni , Tixni) = d (q, Tiq) = 0 and lim
i→∞

d (xni , Iixni) = d (q, Iiq) = 0

for all i ∈ J. This implies that q ∈ F. Since limn→∞ d (xni , q) = 0 and limn→∞ d (xn, q) exists
for all q ∈ F by Lemma 2.1, therefore

lim
n→∞

d (xn, q) = 0.

Next, assume the compactness of K, then again there exists a subsequence {xni} of {xn} such
that {xni} converges strongly to a q ∈ K and the proof follows the above lines.

Next, we give and prove our ∆−convergence theorem.

Theorem 2.7. Let K be a nonempty closed convex subset of a complete uniformly convex hyper-
bolic space X with monotone modulus of uniform convexity η. Let {Ti : i ∈ J} be a finite family
of Ii-nonexpansive mappings and {Ii : i ∈ J} be a finite family of nonexpansive mappings on K
such that F ̸= ∅. Then the sequence {xn} defined in (1.4) ∆−converges to a common fixed point
of {Ti : i ∈ J} and {Ii : i ∈ J}.

Proof. It follows from Lemma 2.1 that {xn} is bounded. Since {xn} bounded sequence in a
nonempty closed convex subset of a complete uniformly convex hyperbolic space, then {xn}
has a unique asymptotic center, that is, A ({xn}) = {xn}. Assume that {un} is any subsequence
of {xn} such that A ({un}) = {un} . Then by (2.15) and (2.16), we have limn→∞ d (un, Tlun) =
limn→∞ d (un, Ilun) = 0 for each l = 1, 2, · · · , N. Now we prove that u is the common fixed
point of {Ti : i ∈ J} and {Ii : i ∈ J} .
Define a sequence {vn} in K by vm = Tmu, where Tm = Tm(modN).
Clearly,

d (vn, un) ≤ d (Tmu, Tmun) + d (Tmun, Tm−1un) + · · ·+ d (Tun, un)

≤ d (u, un) +
m−1∑
i=1

d (un, Tiun) .

Thus, we have

r (vm, {un}) = lim sup
n→∞

d (vm, un) ≤ lim sup
n→∞

d (u, un) = r (u, {un}) .

This implies that |r (vm, {un})− r (u, {un})| → 0 as m → ∞. By Lemma 1.6, we obtain
Tm(modN)u = u, which implies that u is the common fixed point of {Ti : i ∈ J} . Similarly,
we can show that u is the common fixed point of {Ii : i ∈ J}. Therefore u ∈ F . Moreover,
limn→∞ d (xn, u) exists by Lemma 2.1.
Assume x ̸= u. By the uniqueness of asymptotic centers,

lim sup
n→∞

d (un, u) < lim sup
n→∞

d (un, x)

≤ lim sup
n→∞

d (xn, x)

< lim sup
n→∞

d (xn, u)

= lim sup
n→∞

d (un, u)

a contradiction. Thus x = u. Since {un} is an arbitrary subsequence of {xn}, therefore
A ({un}) = {u} for all subsequences {un} of {xn}. This proves that {xn} ∆−converges to
a common fixed point of {Ti : i ∈ J} and {Ii : i ∈ J}.

Although the followings are corollaries of our main theorems, yet they are new in themselves.
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Theorem 2.8. Let K be a nonempty closed convex subset of a complete uniformly convex hy-
perbolic space X with monotone modulus of uniform convexity η. Let T be a I-nonexpansive
mapping and I be a nonexpansive mapping on K such that F = F (T ) ∩ F (I) ̸= ∅. Suppose T
and I satisfy the condition (A’). Then the sequence {xn} defined by

xn = W (xn−1, T yn, αn) ,

yn = W (xn−1, Ixn, βn) , n ≥ 1

converges strongly to p ∈ F .

Proof. Choose Ti = T and Ii = I for all i ∈ J in Theorem 2.5.

Theorem 2.9. Let K be a nonempty closed convex subset of a complete uniformly convex hy-
perbolic space X with monotone modulus of uniform convexity η. Let T be a I-nonexpansive
mapping and I be a nonexpansive mapping on K such that F = F (T ) ∩ F (I) ̸= ∅. Suppose
that either K is compact or one of the map T and I is semi-compact. Then the sequence {xn}
defined by

xn = W (xn−1, T yn, αn) ,

yn = W (xn−1, Ixn, βn) , n ≥ 1

converges strongly to p ∈ F .

Proof. Choose Ti = T and Ii = I for all i ∈ J in Theorem 2.6.

Theorem 2.10. Let K be a nonempty closed convex subset of a complete uniformly convex hy-
perbolic space X with monotone modulus of uniform convexity η. Let T be a I-nonexpansive
mapping and I be a nonexpansive mapping on K such that F = F (T ) ∩ F (I) ̸= ∅. Then the
sequence {xn} defined by

xn = W (xn−1, T yn, αn) ,

yn = W (xn−1, Ixn, βn) , n ≥ 1,

∆−converges to a common fixed point of T and I .

Proof. Choose Ti = T and Ii = I for all i ∈ J in Theorem 2.7.

Finally, we give an example to show that there do exist two finite families of mentioned
mappings with a nonempty common fixed point set.

Example 2.11. Let X = R. Define Tn : X → X and In : X → X as Tnx = n2−2x+1
2n2 and

Inx = 2x+n−1
2n for all n ∈ N. Then {Ii : i ∈ J} is a finite family of nonexpansive mappings and

{Ti : i ∈ J} is a finite family of Ii-nonexpansive mappings on X with common fixed point set
F =

{ 1
2

}
.

Remark 2.12. Our result generalize, extend and improve resuls of Gunduz and Akbulut [25, 26,
27, 28] and Khan et al. [10] in view of more general class of mappings.
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