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Abstract The first goal of this paper is to propose a composite implicit iteration process
for a finite family of I-nonexpansive mappings in hyperbolic spaces. Next, some strong and
A-convergence theorems are established using the proposed iteration process. New results are
obtained as corollaries to the convergence theorems. Finally, we exhibit two finite families of
the mappings under consideration.

1 Introduction and Preliminaries

Let K be a nonempty subset of a metric space X. The mapping 7" : K — K is said to be
nonexpansive if d(Txz, Ty) < d(z,y) forall z,y € K.

In [1], Shahzad defines /-nonexpansive mappings in Banach spaces essentially as follows:
given two mappings T, I : K — K, T is called I-nonexpansive if d(T'z, Ty) < d(Iz, I'y) for all
z,y € K.

In what follows, we set J = {1,2,..., N} for the set of first N natural numbers and take {c, },
{Bn} sequences in (0, 1) .

Given x in K (a subset of Banach space), the Mann iteration process defined for a nonex-
pansive mapping as follows:

Tp = antn—1+ (1 — ) Txp_1, n > 1. (1.1

Xu and Ori [19] introduced the following implicit iteration process for a finite family of
nonexpansive mappings {7; : ¢ € J}.

Ty = anTn_1 + (1 — o) Tpzp, n > 1, (1.2)

where T;, = T, (moqn) and the mod N function takes values in J.
In 2007, Su and Li [20] introduced the composite implicit iteration process for finite family
of strictly pseudocontractive maps defined as follows:

Tp = OpTp—| + (1 - an) Tn [ﬁnxnfl + (1 - ﬁn) Tnxn] , n Z 17 (13)

where T), = T}, (;moan)-

In [2], Rhoades and Temir showed that the Mann iteration process converges weakly to a
common fixed point of 7" and [ in a Banach space by taking the map 7" to be /-nonexpansive.
Actually, they proved the following theorems.

Theorem 1.1. (Rhoades and Temir [2]) Let K be a closed convex bounded subset of a uniformly
convex Banach space X which satisfies Opial’s condition, and let T, I be self-mappings of K
with T be an I-nonexpansive mapping, I be a nonexpansive on K. Then, for xy € K, the
sequence {x,} of Mann iterates converges weakly to common fixed point of F(T) N F(I).

There are numerous papers dealing with the convergence of different iterative techniques for
these mappings and generalization of the class of I-nonexpansive mappings in Banach spaces
(see, for example, [3, 4, 5, 6, 7] and the references therein).



KOHLENBACH HYPERBOLIC SPACES 513

Motivated by the iteration process (1.3) of Su and Li [20], in this paper we define a new
modified composite implicit iteration process for a finite family of I;-nonexpansive mappings
{T; : i € J} and a finite family of nonexpansive mappings {I; : © € J} in hyperbolic spaces as
follows:

w (In—laTnyman)a (1.4)
Yn = W(mn—lalnxnaﬁn)a n > 1

Tn

where T), = T}, (moan) and I, = Iy (modn)-

Different notions of hyperbolic space [12, 13, 14, 15] can be found in the literature. We work
in the setting of hyperbolic spaces as introduced by Kohlenbach [11], which are slightly more
restrictive than the spaces of hyperbolic type [12] by (W4), but more general then the concept of
hyperbolic space from [15].

Definition 1.2. (Kohlenbach [11]) A hyperbolic space is a triple (X, d, W) where (X,d) is a
metric space and W : X? x [0, 1] — X is a mapping such that

WL d(u, W (z,y,a)) < (1 —a)d(u,z) + ad (u,y)

W2. d(W (z,y,0), W (z,y,8)) = la = B d(z,y)

W3. W (z,y,a) =W (y,z, (1 — a))

Wa. d(W (z,z,a), W (y,w,a)) < (1 —a)d(z,y) + ad (z,w)
forall z,y,z,w € X and , 8 € [0, 1].

If (X, d, W) satisfies only (W1), then it coincides with the convex metric space introduced by
Takahashi [16]. A subset K of a hyperbolic space X is convex if W (z,y,a) € K forallz,y € K
and o € [0, 1].

Definition 1.3. A hyperbolic space (X,d, W) is said to be uniformly convex [17] if for all
u,z,y € X,r>0and e € (0,2], there exists a § € (0, 1] such that

(E)i caw(end) ) <u-on

A map 7 : (0,00) x (0,2] — (0, 1] which provides such a § = 1 (r,¢) for given » > 0 and
e € (0,2] is called modulus of uniform convexity. We call  monotone if it decreases with r (for
a fixed ¢).

The notion of A-convergence in general metric spaces was introduced by Lim [8] in 1976.
Kirk and Panyanak [9] specialized this concept to CAT(0) spaces and showed that many Banach
space results involving weak convergence have precise analogs in this setting.

To give the definition of A-convergence, we first recall some notations.

Let {x,} be a bounded sequence in a hyperbolic space X. For x € X, define a continuous
functional r (., {z,,}) : X — [0,00) by r (2, {z,,}) = limsup,,_,  d(z,z,).

Then the asymptotic radius p = r ({x,,}) of {z,,} is defined by p = inf {r (z, {z,}) : . € X}
and the asymptotic center of a bounded sequence {x,, } with respect to a subset K of X is defined
by Ax ({zn}) ={z € X :r(z,{z,}) <r(y,{x,}) forany y € K}. If the asymptotic center is
taken with respect to X, then it is simply denoted by A ({z,}).

A sequence {x, } in X is said to A-converge to x € X if x is the unique asymptotic center of
{uy, } for every subsequence {u,} of {z,}. In this case, we write A -lim,, z,, =  and call z as A
-limit of {xz,}.

The proofs of the following lemmas can be found in Leustean [18] and Khan et al. [10].

Lemma 1.4. [18] Let (X, d, W) be a complete uniformly convex hyperbolic space with monotone
modulus of uniform convexity. Then every bounded sequence {z,} in X has a unique asymptotic
center with respect to any nonempty closed convex subset K of X.
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Lemma 1.5. [10] Let (X, d, W) be a uniformly convex hyperbolic space with monotone modulus
of uniform convexity n. Let x € X and {«,} be a sequence in [b, c| for some b,c € (0,1). If {z,}
and {y,} are sequences in X such that limsup, , _d(xz,,z) < r, limsup, , d(yn,z) < r
and limy, oo d (W (24, Yn, ) , &) = 7 for some r > 0, then limy, o0 d (T, yn) = 0.

Lemma 1.6. [10] Let K be a nonempty closed convex subset of a uniformly convex hyperbolic
space and {x,,} a bounded sequence in K such that A ({z,}) = {y} and r {zn}) = p. If {ym}
is another sequence in K such that lim,_, oo 7 (Ym, {xn}) = p, then lim,,_, oo Y = ¥.

2 Main Results

Denote by F' the set of common fixed points of the finite families of mappings {7; : i € J} and
{L;:ieJ}.

Let X be a hyperbolic space, K be a nonempty closed convex subset of X. Let {7} : i € J} be
a finite family of I;-nonexpansive mappings and {; : i € J} be a finite family of nonexpansive
mappings. Let {z,} be defined by (1.4). Then z; = W (xo, I W (x0, L121, 51) , ). Define a
mapping G : K — K by: Gioz = W (a0, 1W (x0, 1z, 81) , 1) for all z € K. Existence of x4
is guaranteed if G| has a fixed point. Now for any u,v € K, we have

d(Gu,Giv) = d(W (zo, IW (x0, [1u, B1) 1) , W (o, TIW (9, v, B1) , 1))
< aqd (MW (zo, L1u, B1) , TIW (20, L1v, B1))
< ayd (LW (o, Liu, B1), HW (z0, [1v, B1))
< ayd (W (zg, Lu, B1) , W (xg, L1v, 1))
< a6id (Liu, I1v)
< a161d (u,v)

Since a1 5; < 1, G| is a contraction. By Banach contraction principle, G| has a unique fixed
point. Thus the existence of z; is established. Similarly, the existence of x;, 3, . . . is established.
Thus the implicit iteration process (1.4) is well defined.

We need the following lemma in order to prove our main theorems.

Lemma 2.1. Let K be a nonempty closed convex subset of a hyperbolic space X. Let {T; i € J}
be a finite family of I;-nonexpansive mappings and {I; : i € J} be a finite family of nonexpan-
sive mappings on K such that F' # (). Then for the sequence {x,} defined in (1.4), we have
lim,, o0 d (zy, p) exists for p € F.

Proof. Letp € F. From (1.4), we have

d(ynap) - d(W (mnfly—[nxnyﬁn) 7p)
< (1 - ﬂn) d(xn—hp) + ﬂnd (Inxnap)
< (1=Ba)d(wn—1,p) + Bnd (zn,p) - (2.1)

By (2.1) and (1.4), we obtain

d(xn,p) d(W (xnflaTnyn7an)7p)
Tn—1, ) + and (Tnynvp)

IN AN

(

(Tn—1,p) + and (InYn, p)
(Tn-1,p) + and (yn,p)
(Zn-1,p)
)

IN

+ ap [( - ﬂn) d (xn—lap) + Bnd (Zmp)]
d (xn—hp) + anfnd (xn,p) .

IN
~— — — ~—~ —
—_—
I
Q2
3
~

IN

Consequently, we have
d (xn7p) S d (xnflap) . (22)

Thus lim,, o, d (z,,, p) exists foreach p € F'. O
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Lemma 2.2. Let K be a nonempty closed convex subset of a uniformly convex hyperbolic space
X with monotone modulus of uniform convexity n. Let {T; : i € J} be a finite family of I;-
nonexpansive mappings and {I; : i € J} be a finite family of nonexpansive mappings on K such

that F # 0. Then for the sequence {x,} defined in (1.4), we have

lim d(z,, Tjz,) = lim d(xy, [jz,) =0 foreachl=1,2,---  N.
n—oo

n— oo

Proof. In view of Lemma 2.1, we obtain that the limit of the sequence {d (z,,,p)} exits for each
p € F. Next, we assume that lim,,_,o. d (2, p) = ¢, for some ¢ > 0. It follows from (1.4) that

lim d(z,,p) = i_>m d(W (zn—1,TnYn, ) ,p) = c.

n—oo

By means of lim,,_, o, d (x,,, p) = ¢ and nonexpansivity of T;, we get

limsupd (T, yn,p) < limsupd (I,yn,p) <limsupd (yn,p)

o oo n—o00
= linlsupd (W (@n—1, Inn, Bn) s D)
< limsup (1= Bn) d(zn—1,p) + Bnd (Intn,p)]
< ligsolip (1 = Bn) d(zn—1,p) + Bnd (x4, p)]
< e

Now using (2.4) with lim,,_, o d (x,,, p) = c and applying Lemma 1.5 to (2.3), we get

lim d(zy,—1,Thyn) = 0.

n—oo

From (1.4) and (2.5) we obtain

d(xnyxnfl) = d(W (xnthnynvan)yxnfl)
§ (1 *an)d(xn—laxn—l)+and(Tnynaxn—l)
— 0(n— o00),

which implies that
lim d(zp,zp1) =0, VI=1,2,...,N.

n— 00

Note that
d(zn, Toyn) < d(zn,Tn—1) +d(@n-1,Tnyn) -

Next, taking limit on both sides in the above inequality we get

lim d(z,, Thyn) = 0.
n— o0

Clearly,
d(mnap) S d(mn»xn71> +d(xnflanyn) +d(Tnyn7p)
< d(JCnal‘n—l) +d(xn—17Tnyn) +d(1nyn7p)
< d(xnawnfl)+d(xn717Tnyn)+d(ynap)-

Taking lim inf on both sides in the above estimate, from (2.5) and (2.6) we have
¢ < liminfd (yn,p) .
n—oo

Also, we get from (2.1)
limsupd (y,,p) < c

n—oo
so that (2.8) gives
lim d (yn,p) = c.

n—00

(2.3)

(2.4)

(2.5)

(2.6)

2.7

(2.8)

(2.9)
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Thus ¢ = lim;, oo d (yn7p) =1lim, o d (W (zn—] s InTn, ﬂn) 7p) gives by

limsupd (I,xn,p) < c
n—oo
and Lemma 1.5 that
lim d(zp—1, Inz,) =0 (2.10)

n—oo

On the other hand,
d (l'n» Inxn) < d (xnv xnfl) +d (xnflv Inmn) .
Thus we have
lim d(zy, I,x,) = 0. 2.11)

n—oo

Further, observe that

d(ynvxn—l) = d(W(mn—hInxTHBn)7In—l)
ﬂnd (Inmny xn—l) .

IN

By (2.10), we have

nli_g;@d(yn,xn_l) =0. (2.12)
Thus
d(@n, Tnrn) < d(@n, Toyn) + d(Tayn, Town—1) + d (Tawn—1, Tntn)
< dW (n—1,Tn¥n,n) s Tnyn) + d (Yn, Tn—1) + d (Tn_1, Tn)

< (1 *an)d(l‘n—thyn)+d(ynaxn—l)+d(xn—laxn)
together with (2.5), (2.6) and (2.12) implies that

lim d(zy, Thz,) =0. (2.13)
n—oo
Since, foreach [ = 1,2,--- , N, we have
d (xn; Tn+lmn) < d («T’ru xn+l> +d (xn-&-ly Tn+lxn+l) +d (Tn—}—lmn-‘rl, Tn+lxn)
< d (xnv l'n+l) +d (xn+la Tn+lxn+l) +d (In+l$n+la InJrl:L'n)
< 2 ($na xn+l) +d (anrlv Tn+l$n+l) ) (2.14)

it follows from (2.6) and (2.13) that

lim d(zp, Tht1xn) =0

n— oo

forall [ € J. Thus we get
lim d(zn, Tjz,) =0 forany [eJ. (2.15)

n—o0

Replacing T;,,; by I,,; in the inequality (2.14), we get
lim d(zy, Ljz,) =0 (2.16)

n—oo

foralll € J. O

For further developments, we need the following concepts and technical result.

A sequence {x,, } in a metric space X is said to be Fejér monotone with respect to K (a subset
of X)if d(zpt1,p) < d(zp,p) forallp € K andforalln > 1. Amap T : K — K is semi-
compact if any bounded sequence {z,,} satisfying d (z,,, Tx,,) — 0 as n — oo has a convergent
subsequence.

Lemma 2.3. [21] Let K be a nonempty closed subset of a complete metric space (X,d) and
{xn} be Fejér monotone with respect to K. Then {x,} converges to some p € K if and only if
lim,, o0 d (z,,, K) = 0.
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Lemma 2.4. Let K be a nonempty closed convex subset of a complete uniformly convex hyper-
bolic space X with monotone modulus of uniform convexity n. {T; : i € J} be a finite family of
I;-nonexpansive mappings and {I; : i € J} be a finite family of nonexpansive mappings on K
such that F' # (). Then the sequence {x,} defined in (1.4) converges strongly to p € F if and
only iflim,,_, o d (2, F') = 0.

Proof. Tt follows from (2.2) that {x,, } is Fejér monotone with respect to F and lim,,_, oo d (2, F)
exists. Now applying the Lemma 2.3, we obtain the result. O

A mappings T : K — K with F(T) # 0 is said to satisfy the Condition (A) [24] if there
exists a nondecreasing function f : [0,00) — [0, c0) with f(0) =0, f(r) > O for all r € (0, c0)
such that d (z,Tz) > f (d(z, F(T))) forall z € K.

Khan and Fukhar-ud-din [22], introduced the so-called Condition (A’) and gave a slightly
improved version of it in [23] as follows:

Two mappings 7, [ : K — K with F(T) N F(I) # 0 are said to satisfy the Condition (A’) if
there exists a nondecreasing function f : [0,00) — [0,00) with f(0) = 0, f(r) > O forall r €
(0, 00) such that either d (z, Tx) > f (d (z, F(T)N F(I)))ord (z,Iz) > f (d(z, F(T) N F(I)))
forall x € K.

We can modify this definition for two finite families of mappings as follows. Let {T; : ¢ € J}
and {I; : i € J} be two finite families of nonexpansive mappings of K with nonempty fixed
points set F'. These families are said to satisfy Condition (B) on K if there exists a nondecreasing
function f : [0,00) — [0,00) with f(0) = 0, f(r) > 0 for all » € (0,00) such that either
glea}(d(x,Tix) > f(d(z, F))or glea}d(x,lix) > f(d(x, F)) forall z € K. The Condition (B)

reduces to the Condition (A’) when Ty =T, =--- =TIy =Tand I, =L =---=1Iy = 1.
Note that the Condition (A) is weaker than both the semicompactness of the mapping 7 :
K — K and the compactness of its domain K, see [24]. Thus the Condition (A’) is weaker than
both the semicompactness of the mappings 7,/ : K — K and the compactness of their domain
K. In this direction Condition (B) is weaker than both the semicompactness of {T; : ¢ € J} and
{I; : i € J} and the compactness of their domain K.
We are now ready to state and prove our strong convergence theorems.

Theorem 2.5. Let K be a nonempty closed convex subset of a complete uniformly convex hyper-
bolic space X with monotone modulus of uniform convexity n. Let {T; : i € J} be a finite family
of I;-nonexpansive mappings and {I; : i € J} be a finite family of nonexpansive mappings on
K such that F # . Suppose that {T; : i € J} and {I; : i € J} satisfy condition (B). Then the
sequence {x,} defined in (1.4) converges strongly to p € F.

Proof. Letp € F. As proved in Lemma 2.1, d (2, p) < d(2,,—1,p) for all n € N. This implies
that
d(In,F) < d(xn—lvF) .

Thus lim,,—, o d (2, F) exists. Since {7} : < € J} and {I; : i € J} satisfy Condition (B), there-
fore

either ma}(d(xn,Tixn) > f(d(zn, F)) or r_na;(d(xm]ixn) > f(d(z,, F)).
1€ 1€.
It follows from (2.15) and (2.16) that lim,,— f (d (x, F')) = 0. Since f is a nondecreasing
function and f(0) = 0, so it follows that lim,,_, d (2, F') = 0. Therefore, Lemma 2.4 implies
that {x,,} converges strongly to a point p in F. ]

Theorem 2.6. Let K be a nonempty closed convex subset of a complete uniformly convex hyper-
bolic space X with monotone modulus of uniform convexity n. Let {T; : i € J} be a finite family
of I;-nonexpansive mappings and {I; : i € J} be a finite family of nonexpansive mappings on
K such that F # 0. Suppose that either K is compact or one of the map in {T; :i € J} and
{I; : i € J} is semi-compact. Then the sequence {x,} defined in (1.4) converges strongly to
p€EF.

Proof. For any i € J, we first suppose that 7; and I; are semicompact. By (2.15) and (2.16), we
have
lim d(z,, Tiz,) = lim d(zy,, Liz,) = 0.

n— oo n—oo
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From the semicompactness of 7T; and I;, there exists a subsequence {z,,} of {z,} such that
{zn,} converges strongly to a ¢ € K. Using (2.15) and (2.16), we have

lim d (z,,,, T;xn;) = d(q,T;q) = 0and lim d(z,,, Liz,,) = d(q,I;q) =0

1—)00 11— 00
for all ¢ € J. This implies that ¢ € F. Since lim,,,o0 d (z,,q) = 0 and lim,,_, o, d (2., q) exists
for all ¢ € F by Lemma 2.1, therefore

nlgr;o d(zn,q) =0.

Next, assume the compactness of K, then again there exists a subsequence {x,, } of {z,} such
that {x,,, } converges strongly to a ¢ € K and the proof follows the above lines. |

Next, we give and prove our A—convergence theorem.

Theorem 2.7. Let K be a nonempty closed convex subset of a complete uniformly convex hyper-
bolic space X with monotone modulus of uniform convexity n. Let {T; : i € J} be a finite family
of I;-nonexpansive mappings and {I; : i € J} be a finite family of nonexpansive mappings on K
such that F' # 0. Then the sequence {x.,,} defined in (1.4) A—converges to a common fixed point
of {T; :ie€ J}yand{I; :i € J}.

Proof. Tt follows from Lemma 2.1 that {z,} is bounded. Since {z,} bounded sequence in a
nonempty closed convex subset of a complete uniformly convex hyperbolic space, then {x,}
has a unique asymptotic center, that is, A ({z,,}) = {z,,}. Assume that {u, } is any subsequence
of {z,,} such that A ({u,}) = {un}. Then by (2.15) and (2.16), we have lim,,_, o, d (vp, Tjup,) =

lim,, 00 d (up, Lju,) = 0 foreach I = 1,2,--- | N. Now we prove that u is the common fixed
pointof {T;:i € J}and {I; : i € J}.

Define a sequence {v, } in K by vy, = Ty u, where Ty, = Toy(moan)-

Clearly,

IN

m—1
(u,un) + g d (tn, Tyuy,) .
i=1

Thus, we have

7 (Um, {un}) = limsup d (v, un) < limsupd (u, u,) = 7 (u, {un}) .

n—oo n— oo

This implies that |r (v, {un}) — 7 (u, {u,})] — 0 as m — oo. By Lemma 1.6, we obtain
T(moan)¥ = u, which implies that u is the common fixed point of {7; : i € J}. Similarly,
we can show that « is the common fixed point of {I; : ¢ € J}. Therefore v € F. Moreover,
lim,,_, o0 d (7, u) exists by Lemma 2.1.

Assume = # u. By the uniqueness of asymptotic centers,

limsupd (un,u) < limsupd (uy,z)

n— oo n—roo

< limsupd (z,,)

n—oQ

< limsupd (z,,u)

n—oo
= limsupd (up,u)

n—oo

a contradiction. Thus # = wu. Since {u,} is an arbitrary subsequence of {z,}, therefore
A ({un}) = {u} for all subsequences {u,} of {x,}. This proves that {x,} A—converges to
a common fixed point of {T; : ¢ € J} and {I; : i € J}. ]

Although the followings are corollaries of our main theorems, yet they are new in themselves.
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Theorem 2.8. Let K be a nonempty closed convex subset of a complete uniformly convex hy-
perbolic space X with monotone modulus of uniform convexity n. Let T be a I-nonexpansive
mapping and I be a nonexpansive mapping on K such that F = F(T) N F(I) # 0. Suppose T
and I satisfy the condition (A’). Then the sequence {x,,} defined by

T, = W («In—laTynyo‘n) )
y’ﬂ - W(xnflalmnyﬁn)a nzl
converges strongly top € F.
Proof. Choose T; = T and I; = I for all i € J in Theorem 2.5. O

Theorem 2.9. Let K be a nonempty closed convex subset of a complete uniformly convex hy-
perbolic space X with monotone modulus of uniform convexity n. Let T be a I-nonexpansive
mapping and I be a nonexpansive mapping on K such that F = F(T) N F(I) # 0. Suppose
that either K is compact or one of the map T and I is semi-compact. Then the sequence {x}
defined by

T, = W (xn—] Ty, an) s
yn - W($n7171xn;/8n)7 nZ 1
converges strongly top € F.
Proof. Choose T; =T and I; = I for all i € J in Theorem 2.6. O

Theorem 2.10. Let K be a nonempty closed convex subset of a complete uniformly convex hy-
perbolic space X with monotone modulus of uniform convexity n. Let T be a I-nonexpansive
mapping and I be a nonexpansive mapping on K such that F = F(T) N F(I) # 0. Then the
sequence {x,} defined by

xn - W(x’nflaTynvan)7
Yn = W(x'n—lalxn76n)7nzlv

A—converges to a common fixed point of T and I.
Proof. Choose T; = T and I; = I for all i € J in Theorem 2.7. O

Finally, we give an example to show that there do exist two finite families of mentioned
mappings with a nonempty common fixed point set.

Example 2.11.Let X = R. Define 7, : X —» X and [, : X —» X as T,z = "ZE% and
I,z = 29“57:;’1 for all n € N. Then {I; : i € J} is a finite family of nonexpansive mappings and
{T; : i € J} is a finite family of I;-nonexpansive mappings on X with common fixed point set

F= {3},
Remark 2.12. Our result generalize, extend and improve resuls of Gunduz and Akbulut [25, 26,
27, 28] and Khan et al. [10] in view of more general class of mappings.
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