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Abstract The purpose of this paper is to obtain a formula giving the number of all possible
one relator quotients of the modular group. By thinking of an element w of the modular group
as a word in terms of its generators a and b, one can find, by means of the formula given here,
the total number of all possible words having a given number of a′s and b′s in some order. A
formula for the number of cyclically reduced words is also given.

1 Introduction

The modular group Γ is the discrete subgroup of PSL(2,R) generated by

a(z) = −1
z

ve b(z) = − 1
z + λ

.

a is of order 2 and b is of order 3, respectively, [6]. A Fuchsian group is a finitely generated
discrete subgroup of PSL(2,R). Therefore Γ is a Fuchsian group. A Fuchsian group has the
following well-known represention:

Generators:

a1, a2, ..., ag, bg (hyperbolic)

x1, ..., xr (elliptic)

p1, ..., pt (parabolic)

h1, ..., hu (hyperbolic boundary elements)

Relations:

x
mj

j =
∏

[ai, bi]
∏

xj

∏
pk
∏

hl = 1.

Such a group is associated with a signature (g; m1, · · · , mr; t; u); where m1, · · · , mr are
integers ≥ 2, and are called the periods of the Fuchsian group. In modular group case, there
is no hyperbolic boundary elements and hence we omit u in the signature. Therefore Γ has a
presentation

a2 = b3 = (ab)∞ = 1

with signature (0; 2, 3; 1). Usually, in such a presentation, the last relation (ab)∞ = 1 is omit-
ted.

As Fuchsian groups act on the Riemann surfaces, all their normal subgroups also act on
Riemann surfaces and this fact combines algebra with analysis. In fact, the Hecke groups can
be considered as special triangle groups with an infinity, in the following sense: Recall that a
triangle group T (l, m, n) is a two generated group with representation

< a, b : al = bm = (ab)n = 1 > .
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It therefore has the signature (g; l, m, n). It is known that T (l, m, n) is finite precisely when
(1/l) + (1/m) + (1/n) > 1. The finite triangle groups occuring as the quotients of Γ are

T (1, n, n) ∼= Cn, the cyclic group of order n,
T (2, n, 2) ∼= Dn, the dihedral group of order 2n,
T (2, 3, 3) ∼= A4, the tetahedral group of order 12,
T (2, 4, 3) ∼= S4, the octahedral group of order 24,
T (2, 5, 3) ∼= A5, the icosahedral group of order 60.

In this paper, we study the normal subgroups of finite index in the modular group correspond-
ing to one-relator quotients obtained in [9]. As a result, all such subgroups are determined to be
either power subgroups, commutator subgroups, or congruence subgroups.

Theorem 1.1. [6] The commutator subgroup Γ ′ of Γ is of index 6 in Γ and is a free group of
rank 2, freely generated by

A = abab2 and B = ab2ab.

It has signature (1;−; 1) and
Γ/Γ ′ ∼= C6.

Let m ∈ N. The m-th power subgroup Γm of Γ is defined as the subgroup generated by the
m-th powers of the elements of Γ . It is well-known that Γm are normal in Γ .

We first have some specific cases:

Theorem 1.2. [6] a) Γ 2 is isomorphic to the free product of two cyclic groups of order 3, and

(Γ : Γ 2) = 2, Γ = Γ 2 ∪ aΓ 2, Γ 2 =< b, aba > .

The elements of Γ 2 may be characterized by the reqirement that the sum of the exponents of a is
divisible by 2. Γ 2 has signature (0; 3; 3; 1).

b) The group Γ 3 is the free product of three cyclic groups of order 2, and

(Γ : Γ 3) = 3, Γ = Γ 3 ∪ bΓ 3 ∪ b2Γ 3, Γ 3 =< a, bab2, b2ab > .

The elements of Γ 3 may be characterized by the reqirement that the sum of the exponents of a is
divisible by 3. Γ 3 has signature (0;2,2,2;1).

The principal congruence subgroup of level n of Γ , denoted by Γ (n), is defined by

Γ (n) = {T ∈ Γ : T ≡ ±I (n)}.

When one relator small quotients of Γ are considered, the only congruence subgroups ap-
pearing are Γ (2), Γ (3), Γ (4) and Γ (5), with signatures (0;-;3), (0;-;4), (0;-;6) and (0;-;12),
respectively.

In the calculation of the normal subgroups of the normal subgroups of Γ , we use a method
known as permutation method given by Singerman, [8].

2 Normal subgroups of Γ corresponding to one-relator quotients

We now determine the normal subgroups of Γ corresponding to small one relator quotients
of Γ , by means of the permutation method. We think of the quotient groups of Γ as images, in
the following sense, of Γ by the second isomorphism theorem.

Let the quotient group be G. Then we have a natural epimorpism from Γ onto G. The kernel
of this epimorphism is a normal subgroup N of Γ , where G ∼= Γ/N . First we consider cyclic
quotients. All cyclic quotients of Γ are found to be C1, C2, C3 and C6, see [8, 9].
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1. If we map Γ = (2, 3,∞) onto C1 ∼= (1, 1, 1), we get N = Γ .

2. If we map Γ onto C2 ∼= (2, 1, 2), then a goes to the generator while b goes to the identity
of the cyclic group:

a → (1 2)
b → (1)(2)
ab → (1 2).

Hence we have a permutation representation of Γ/N ∼= C2. By permutation method, N has the
signature (g; 3, 3; 1). Here g is the genus of the underlying Riemann surface on which the
group acts, which is 0 by the Riemann-Hurwitz formula. As a is of order 2, and as there is one
cycle of length 2, 2/2=1 and we omit it. As b is of order 5, and as there are two cycles of length 1
each, we have two 3/1=3’s in the signature. Finally, ab is of infinite order, and there is only one
cycle for ab giving ∞/1 = ∞, denoted by 1 in the signature. Finally the corresponding normal
subgroup has the signature (0; 3, 3; 1) which is Γ 2, by Theorem 1.2 (a).

3. Let us map Γ onto C3. As

a → (1)(2)(3)
b → (1 2 3)
ab → (1 2 3).

we have,

N = (0; 2(3); 1) = Γ 3,

by Theorem 1.2 (b).

4. We now map Γ onto a finite quotient C6. We use the finite quotient of (2, 3, 6) of order 6
to obtain the natural epimorphism:

C6 ∼= C2 × C3 ∼= (2, 3, 6)/N.

Then,

a → (1 2)(3 4)(5 6)
b → (1 3 5)(2 4 6)
ab → (1 4 5 2 3 6),

and we get N = (g;−, 1). By the Riemann-Hurwitz formula, one finds g = 1. This subgroup is
the commutator subgroup Γ ′ of the modular group. Secondly, we consider dihedral quotients of
the modular group. In fact there is only one:

5. If we map Γ onto the dihedral quotient D3 ∼= (2, 3, 2), we have

a → (1 2)(3 4)(5 6)
b → (1 5 3)(2 4 6)
ab → (1 4)(2 5)(3 6),

and we get N = (0;−, 3) = Γ (2).

Finally we consider the other finite quotients of the modular group:

6. If we map Γ onto A4 ∼= (2, 3, 3), then

a → (1 2)(3 4)(5 6)(7 8)(9 10)(11 12)
b → (1 7 6)(2 3 10)(4 5 12)(8 9 11)
ab → (1 3 5)(2 7 9)(4 10 11)(6 12 8),
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giving N = (0;−, 4) = Γ (3).

7. If we map Γ onto S4 ∼= (2, 3, 4), we get, similarly to the above cases, that N = (0;−, 6) =
Γ (4).

8. Finally mapping Γ onto PSL(2, 7) which is isomorphic to a finite quotient of (2, 3, 7)
of order 168, we get N = (g;−, 24). Here g can be found by the Riemann-Hurwitz formula as
g = 3. This is a free subgroup of Γ of rank 29, which is denoted by Γ (7).

3 Table

Let w ∈ Γ be a word. Then

w = abε1abε2 · · · abεn

with 1 ≤ εi ≤ 2. We denote the number of a’s and b’s in w by ea(w) and eb(w), respectively,
[7]. Here note that eb(w) =

∑
εi. For the sake of brevity, we let s = ea(w) and t = eb(w). In

the table at the end of the paper, we summarize all our results. In the first two columns we see the
values of s and t. Third column denotes the abstract group structure of the quotient group. The
latter columns respectively denote the signature, abstract group structure and the given name of
the normal subgroup N .

4 Number of one-relator quotients of the modular group

Now we find the number of non-reduced words and then, by means of this number, we calculate
the number of cyclically reduced words, which helps us in finding the number of one-relator
quotients of the modular group. Γ has the relations

a2 = b3 = (ab)∞ = 1.

We now add an extra relation w = R(a, b) = 1 where R(a, b) is a cylically reduced word of the
form R(a, b) = abε1abε2 · · · abεn with 1 ≤ εi ≤ 2, [5]. Then it is easy to see the following result:

Theorem 4.1. [9] If ea(w) = 0, then 1 ≤ eb(w) ≤ 2 and if ea(w) = n, then n ≤ eb(w) ≤ 2n.

5 Number of non-reduced words

We denote the number of all possible words w having ea(w) = s and eb(w) = t by ns,t(w).
Then we have the following result for ns,t(w):

Theorem 5.1. Let t ≥ s. Then

ns,t(w) =

(
s

t-s

)
.

Proof. Let w = abε1abε2 · · · abεn where εi = 1 or 2. As ea(w) = s, there are s times a in w, and
similarly as eb(w) = t, we have ε1 + ε2 + · · · + εn = t. As there are s a′s and a is of order 2,
we must have b′s exactly in s places between a′s and there is a power b at the end, i.e. the word
must finish by a power of b, as w is cyclically reduced. If we put s b′s in this way, there remain
t − s b′s. Therefore our problem turns into the one in which we want to put t − s black beads

to a necklace of s beads. This number is well known as the binomial coefficient

(
s

t-s

)
given

above.

Corollary 5.2. Let m ≥ 1 be an integer. Then

nm,m(w) + nm,m+1(w) = nm+1,m+2(w),

and for 0 ≤ k ≤ 2n,

nm,m+k(w) + nm,m+k+1(w) = nm+1,m+k+2(w).
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Proof. It is obvious since

(
n
k

)
+

(
n

k+1

)
=

(
n+1
k+1

)
.

Example 5.3. Let s = 3. Then w = abε1abε2abε3 with εi = 1 or 2 for i = 1, 2, 3. If t = 3,
then w = ababab. If t = 4, then w = ab2abab, w = abab2ab or w = ababab2. If t = 5, then
w = ab2ab2ab, w = abab2ab2 or w = ab2abab2. Finally if t = 6, then w = ab2ab2ab2. Note that

the total number of words in each case is 1, 3, 3, 1, which are

(
3
0

)
,

(
3
1

)
,

(
3
2

)
and(

3
3

)
, respectively.

6 Number of non-equivalent cyclically reduced words

Let w ∈ Γ be a word. We denote the number of non-equivalent cyclically reduced words w
having ea(w) = s and eb(w) = t by Ns,t.

Example 6.1. In Example 5.3, we have found all non-reduced words. When s = t = 3, there
is only one word. For t = 4, there are three words and they give the same cyclically reduced
word. Similarly when t = 5, the three words obtained are cyclically the same. So N3,3(w) =
N3,4(w) = N3,5(w) = N3,6(w) = 1.

For the higher values of s, it is not easy to calculate Ns,t. We may think of this problem in
the following way:

There are s black beads and t white beads to be put onto a necklace, where t ≥ s. We think
of a necklace because of cyclic reduction. When t = s, there is only one possible situation with
every white bead is between two blacks. If s = t+ 1, then after putting t white beads between s
black beads, we need a place to put the excess one. Thinking of cyclic reduction, there is, again,
one possible case.

In general, as we have s black and t white beads to be ordered on a necklace, so that no two
black beads are next to each other, we need to express the number t as the ordered sum of s
positive integers, counting only ones those ordered sums that can be transformed onto each other
by a cyclic permutation. This number, we denoted by Ns,t earlier, which is given in [4], is also
valid for the number of cyclically reduced words.

Theorem 6.2. Let t ≥ s. Then the number of non-equivalent cyclically reduced words in Γ with
ea(w) = s and eb(w) = t is

Ns,t =
1
s

∑
d|(s,t−s)

φ(d)

(
s/d

(t-s)/d

)
.

Knowing the total number of possible words w in the modular group Γ one can easily find
the normal subgroups of Γ corresponding to one relator quotients.
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s t Γ/N triangle group abstract structure of N N

0 1 C2 (0;3,3;1) C3 ∗ C3 Γ 2

0 2 C2 (0;3,3;1) C3 ∗ C3 Γ 2

1 0 C3 (0;2âĄ¡ÂşâĄ¿,1) C2 ∗ C2 ∗ C2 Γ 3

1 1 C1 (0;2,3;1) C2 ∗ C3 Γ

1 2 C1 (0;2,3;1) C2 ∗ C3 Γ

2 2 D3 (0;-;3) F2 Γ (2)
2 3 C6 (1;-;1) F2 Γ ′

2 4 D3 (0;-;3) F2 Γ (2)
3 3 A4 (0;-;4) F3 Γ (3)
3 4 C2 (0;3,3;1) C3 ∗ C3 Γ 2

3 5 C2 (0;3,3;1) C3 ∗ C3 Γ 2

3 6 A4 (0;-,4) F3 Γ (3)
4 4 S4 (0;-,6) F5 Γ (4)
4 5 D3 (0;-,3) F2 Γ (2)
4 7 D3 (0;-,3) F2 Γ (2)
4 8 S4 (0;-,6) F5 Γ (4)
5 5 A5 (0;-,12) F11 Γ (5)
5 6 A4 (0;-;4) F3 Γ (3)
5 7 C2 (0;3,3;1) C3 ∗ C3 Γ 2

5 8 C2 (0;3,3;1) C3 ∗ C3 Γ 2

5 9 A4 (0;-;4) F3 Γ (3)
5 10 A5 (0;-;12) F11 Γ (5)
6 7 C2 (0;3,3;1) C3 ∗ C3 Γ 2

6 8 D3 (0;-;4) F2 Γ (2)
6 10 D3 (0;-;4) F2 Γ (2)
6 11 C2 (0;3,3;1) C3 ∗ C3 Γ 2

7 7 PSL(2, 7) (3;-;24) F29 Γ (7)
7 8 C1 (0;2,3;1) C2 ∗ C3 Γ

7 9 D3 (0;-;3) F2 Γ (2)
7 10 C2 (0;3,3;1) C3 ∗ C3 Γ 2

7 11 C2 (0;3,3;1) C3 ∗ C3 Γ 2

7 12 D3 (0;-;4) F2 Γ (2)
7 13 C1 (0;2,3;1) C2 ∗ C3 Γ

7 14 PSL(2, 7) (3;-;24) F29 Γ (7)
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