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Abstract A typical case study of orthogonal polynomials related to a divergent and conver-
gent S-fractions connected to the Stern-Stolz series, namely,
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are presented.

1 Introduction

The convergent S-fraction
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was taken up as a case study in [8]. Four orthogonal polynomials were constructed and only one
pair showed classical nature. A similar case study was taken up for the convergent S-fraction
which has asymptotic expansion,namely, the Euler’s divergent series in the confluent hypergeo-
metric family [9].

Four powerful results available in the literature, namely, the main theorem on convergence
and divergence of S-fractions connected to Stern-Stolz series [6],
Ramanujan’s entry 17 in his second note book [3]on expanding a regular C-fraction into a power
series expansion, Favard’s theorem on orthogonality of polynomials [4] described by the three
term recurrence relations and the theorem which gives useful criteria to describe orthogonal poly-
nomials as classical or not [1], are applied to the typical case study of orthogonal polynomials
related to a divergent and convergent S-fractions connected to the Stern-Stolz series, namely,
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All the four orthogonal polynomials are nonclassical. The present investigation is aimed at
getting an intuitive picture of effects of convergence and divergence of S-fraction on classical
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nature of orthogonal polynomials. Still one has to find answer to the question “ Is there an S-
fraction corresponding to a divergent power series from which one can construct four orthogonal
polynomials such that all four polynomials are classical orthogonal polynomials?"

Motivated strongly by the above works, four orthogonal polynomials are extracted from
numerator as well as denominator polynomials of both even and odd order convergents of a
divergent S-fraction connected to Pade approximants for power series expansion. In Section
two, we construct the power series using divergent S-fraction and compute four sequences of
polynomials. In the third Section, we describe the orthogonality of the two polynomials extracted
from denominators and two polynomials extracted from numerators. In the last Section, we
shown that they are non classical orthogonal polynomials.

2 S-fraction and its power series expansion

In the literature [3, 10], each continued fraction can be converted into a power series and vice
versa. Making use of this we construct the power series from the known divergent and convergent
S-fractions. Following the literature, the divergent and convergent regular S - fractions are given
by the following theorem [6, 7] :

Theorem 2.1. The S-fraction K(anz/1) where all an > 0, has the following properties:

(i) Its even and odd parts converge locally uniformly in D = {z ∈ C; | arg(z)| < π} to
holomorphic functions.

(ii) It converges to a holomorphic function in D if and only if the Stern-Stolz series

∞∑
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a
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k

of K(an/1) diverges to ∞.

(iii) It diverges for all z ∈ D if the Stern-Stolz series converges.

Let us consider the divergent S-fraction
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and also consider the convergent S-fraction
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Following result of Ranamujan in his Notebook II, Entry 17 [3] guide us to compute co-efficients
of the power series starting from the regular C-fraction.
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Entry 17 : Write
1
1 +

a1x

1 +

a2x

1 +

a3x

1 + ···
=

∞∑
k=0

Ak(−x)k,

where A0 = 1. Let
Pn = a1a2 · · · an−1(a1 + a2 + a3 + · · ·+ an).

Then

P1 = A1,

P2 = A2,

P3 = A3 − a1A2

P4 = A4 − (a1 + a2)A3,

P5 = A5 − (a1 + a2 + a3)A4 + a1a3A3,

P6 = A6 − (a1 + a2 + a3 + a4)A5 + (a1a3 + a2a4 + a1a4)A4.

In general, for all n ≥ 1,
Pn =

∑
0≤k<n/2

(−1)kϕk(n)An−k,

where ϕ0(n) ≡ 1 and ϕr(n), r ≥ 1, is defined recursively by

ϕr(n+ 1)− ϕr(n) = an−1ϕr−1(n− 1).

Applying the above result, we obtain the following power series of the desired S-fractions

D(x) =
12

1 +

12 · 22x

1 +

22 · 32x

1 +

32 · 42x

1 + ··· +

(n− 1)2 · n2x

1 + ···
(2.1)

= 1 − C1x+ C2x
2 − C3x

3 + · · ·
= 1 − 4x+ 160x2 − 27136x3 + 13195264x4 −+ · · · .

and

Dc(x) =
1
1 +

1!x
1 +

2!x
1 +

3!x
1 + ··· +

n!x
1 + ···

(2.2)

= 1 − c1x+ c2x
2 − c3x

3 + · · ·
= 1 − x+ 3x2 − 21x3 + 459x4 − 48069x5 +− · · · .

2.1 A divergent S-fraction and its power series expansion

In the context of Pade table [2], the divergent S-fraction provides a staircase sequence of Pade
approximants

[0/0]D(x), [0/1]D(x), [1/1]D(x), [1/2]D(x), [2/2]D(x), . . . , [n− 1/n]D(x), [n/n]D(x), . . . ,
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.
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The even order convergents of divergent S-fraction:
Let us make use of definitions of even parts of S-fraction as given in [10]. [n−1/n]D(x) Pade

approximants can be computed using the even part of S-fraction (2.1):

1
1 + (1 · 22)x −

(1 · 22)(22 · 33)x2

1 + (22 + 42) 32x − ··· −

(2n− 1)2(2n)4(2n+ 1)2 x2

1 + ((2n)2 + (2n+ 2)2)(2n+ 1)2x − ···
.
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=

1
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,
A4(x)

B4(x)
=

1 + 180x
1 + 184x+ 576x2 , n = 2, 3, . . . .

The odd order convergents of divergent S-fraction:
Let us make use of definitions of odd parts of S-fraction as given in [10]. [n/n]D(x) Pade

approximants can be computed using the odd part of S-fraction (2.1):

1 − (1 · 22)x

1 + (12 + 32)22x−

(22 · 32)(32 · 42)x2

1 + (32 + 52)42x −···−

(2n)2(2n+ 1)4(2n+ 2)2x2

1 + ((2n+ 1)2 + (2n+ 3)2)(2n+ 2)2x−···
.

The nth convergent
A2n+1(x)
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is given by
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)
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with
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1
1
,

A3(x)

B3(x)
=

1 + 36x
1 + 40x

, n = 2, 3, . . . .

2.2 A convergent S-fraction and its power series expansion

In the context of Pade table [2], the convergent S-fraction provides a staircase sequence of Pade
approximants

[0/0]Dc(x), [0/1]Dc(x), [1/1]Dc(x), [1/2]Dc(x), [2/2]Dc(x), . . . , [n− 1/n]Dc(x), [n/n]Dc(x), . . . ,

which are given by

A1(x)

B1(x)
=

1
1
=

P
(0,0)
0 (x)

Q
(0,0)
0 (x)

,
A3(x)

B3(x)
=

1 + 2x
1 + 3x

=
P

(1,1)
1 (x)

Q
(1,1)
1 (x)

, . . . ,
A2n+1(x)

B2n+1(x)
=

P
(n,n)
n (x)

Q
(n,n)
n (x)

and
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=

1
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=
P

(0,1)
0 (x)

Q
(0,1)
0 (x)

,
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=
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.

The even order convergents of convergent S-fraction:
Let us make use of definitions of even parts of S-fraction as given in [10]. [n − 1/n]Dc(x)

Pade approximants can be computed using the even part of S-fraction (2.2):

1
1 + x −

1! · 2!x2

1 + (2! + 3!) x − ··· −

(2n!)(2n− 1)!x2

1 + ((2n!) + (2n+ 1)!)x − ···
.
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The nth convergent
A2n+2(x)

B2n+2(x)
is given by

(1 + ((2n)! + (2n+ 1)!)x)A2n(x)− (2n− 1)!(2n)! x2A2n−2(x)

(1 + ((2n)! + (2n+ 1)!)x)B2n(x)− (2n− 1)!(2n)! x2B2n−2(x)

with
A2(x)

B2(x)
=

1
1 + x

,
A4(x)

B4(x)
=

1 + 8x
1 + 9x+ 6x2 , n = 1, 2, 3, . . . .

The odd order convergents of convergent S-fraction:
Let us make use of definitions of odd parts of S-fraction as given in [10]. [n/n]Dc(x) Pade

approximants can be computed using the odd part of S-fraction (2.2):

1 − 1!x
1 + (1! + 2!)x−

(2! · 3!)x2

1 + (3! + 4!)x−···−

(2n)! · (2n+ 1)!x2

1 + ((2n+ 1)! + (2n+ 2)!)x−···
.

The nth convergent
A2n+3(x)

B2n+3(x)
is given by

(1 + ((2n+ 1)! + (2n+ 2)!)x)A2n+1(x)− (2n)!(2n+ 1)!x2A2n−1(x)

(1 + ((2n+ 1)! + (2n+ 2)!)x)B2n+1(x)− (2n)!(2n+ 1)!x2B2n−1(x)

with
A1(x)

B1(x)
=

1
1
,

A3(x)

B3(x)
=

1 + 2x
1 + 3x

, n = 1, 2, 3, . . . .

3 Orthogonal polynomials extracted from S- fraction

In this Section, we describe the orthogonal polynomials thus extracted from S-fraction.
The desired orthogonal polynomials:

pn(x) = xnA2n+2

(
1
x

)
, qn(x) = xnB2n

(
1
x

)
,

rn(x) = xnA2n+1

(
1
x

)
, sn(x) = xnB2n+1

(
1
x

)
,

n = 0, 1, 2, . . . , where B0

(
1
x

)
:= 1.

3.1 Orthogonal polynomials extracted from divergent S- fraction

Orthogonality of qn(x) of divergent S- fraction :
Consider the series

D(x) = 1 − C1x+ C2x
2 − C3x

3 + C4x
4 − C5x

5 + · · ·+ (−1)nCnx
n + · · · ,

where D indicates that the power series is divergent. The linear moment generating function
with respect to D(x) denoted by LD has nth moment,

LD{xn} = (−1)nCn.

The three term recurrence relation of qn(x) is

qn+1(x) =
(
x+ (2n+ 1)2((2n)2 + (2n+ 2)2)

)
qn(x)

− (2n− 1)2(2n)4(2n+ 1)2qn−1(x),

q0(x) = 1, q1(x) = x+ 4, n = 2, 3, . . . . (3.1)
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As a result of applying Favard’s theorem, we obtain the orthogonality of qn(x) is

LD{qm(x)qn(x)} =

{
0, m ̸= n;
λ1λ2 · · ·λn+1, m = n,

where λ1 = 1, and λk = (2k − 2)2(2k − 3)2(2k − 1)2 k = 2, 3, . . . , n+ 1.

Orthogonality of sn(x) of divergent S- fraction:
Following the literature [2], we obtain the series

D1(x) =
1 −D(x)

x
= C1 − C2x+ C3x

2 − C4x
3 + · · ·+ (−1)nCn+1x

n + · · ·

The linear moment generating function with respect to D1(x) denoted by LD1 has nth moment

LD1{xn} = (−1)nCn+1.

The three term recurrence relation of sn(x) is

sn+1(x) = (x+ (2n+ 2)2((2n+ 1)2 + (2n+ 3)2))sn(x)

− (2n)2(2n+ 1)4(2n+ 2)2sn−1(x),

s0(x) = 1, s1(x) = x+ 40, n = 1, 2, 3, . . . . (3.2)

As a result of applying Favard’s theorem, we obtain the orthogonality of sn(x) is

LD1{sm(x)sn(x)} =

{
0, m ̸= n;
λ1λ2 · · ·λn+1, m = n,

where λ1 = 1 and λk = (2n− 2)2(2n− 1)2(2n)2, k = 2, 3, . . . , n+ 1.

Orthogonality of rn(x) of divergent S- fraction :
Following the literature [2], we obtain the series

1
D(x)

= 1 − E1x+E2x
2 − E3x

3 + · · ·+ (−1)nEnx
n + · · ·

and

D2(x) =

1
D(x) − 1

x
= E1 − E2x+E3x

2 − E4x
3 + · · ·+ (−1)nEn+1x

n + · · · .

The linear moment generating function with respect to D2(x) denoted by LD2 has nth moment

LD2{xn} = (−1)nEn+1.

The three term recurrence relation of rn(x) is

rn+1(x) = (x+ (2n+ 2)2((2n+ 1)2 + (2n+ 3)2))rn(x)

− (2n)2(2n+ 1)2(2n+ 2)2rn−1(x),

r0(x) = 1, r1(x) = x+ 36, n = 1, 2, 3, . . . . (3.3)

As a result of applying Favard’s theorem, we obtain the orthogonality of rn(x) is

LD2{rm(x)rn(x)} =

{
0, m ̸= n;
λ1λ2 · · ·λn+1, m = n,

where λ1 = 1 and λk = (2k − 2)2(2k − 1)2(2n)2, k = 2, 3, . . . , n+ 1.
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Suppose rn(x) = xn + rn−1x
n−1 + · · · + r1x + r0. Since LD2{r0(x)rn(x)} = 0, we can

compute En using

En = −[rn−1En−1 + · · ·+ r1E1 + r0], E0 = 1, n = 1, 2, . . . .

Orthogonality of pn(x) of divergent S- fraction:
Following the literature [2], we obtain the series

D3(x) =

1
D(x) − 1 − x

x2 = 1 − F1x+ F2x
2 − F3x

3 + · · ·+ (−1)nFnx
n + · · · .

The linear moment generating function with respect to D3(x) denoted by LD3 has nth moment

LD3{xn} = (−1)nFn.

The three term recurrence relation of pn(x) is

pn+1(x) =
(
x+ (2n+ 3)2((2n+ 2)2 + (2n+ 4)2)

)
pn(x)

− (2n+ 1)2(2n+ 2)2(2n+ 3)2pn−1(x),

p0(x) = 1, p1(x) = x+ 180, n = 1, 2, 3, . . . . (3.4)

As a result of applying Favard’s theorem, we obtain the orthogonality of pn(x) is

LD3{pm(x)pn(x)} =

{
0, m ̸= n;
λ1λ2 · · ·λn+1, m = n,

where λ1 = 1 and λk = (2k − 1)2(2k)2(2k + 1)2, k = 2, 3, . . . , n+ 1.

Suppose pn(x) = xn + pn−1x
n−1 + · · · + p1x + p0. Since LD3{p0(x)pn(x)} = 0, we can

compute Fn using

Fn = −[pn−1Fn−1 + · · ·+ p1F1 + p0], F0 = 1, n = 1, 2, . . . .

3.2 Orthogonal polynomials extracted from convergent S- fraction

Orthogonality of qn(x) of convergent S- fraction :
Consider the series

Dc(x) = 1 − c1x+ c2x
2 − c3x

3 + c4x
4 − c5x

5 + · · ·+ (−1)ncnxn + · · · ,

where Dc indicates that the power series is divergent and the continued fraction is convergent.
The linear moment generating function with respect to Dc(x) denoted by LDc has nth moment,

LDc{xn} = (−1)ncn.

The three term recurrence relation of qn(x) is

qn+1(x) = (x+ ((2n)! + (2n+ 1)!)) qn(x)− (2n− 1)!(2n)!qn−1(x),

q0(x) = 1, q1(x) = x+ 1, n = 1, 2, 3, . . . . (3.5)

As a result of applying Favard’s theorem, we obtain the orthogonality of qn(x) is

LDc{qm(x)qn(x)} =

{
0, m ̸= n;
λ1λ2 · · ·λn+1, m = n,

where λ1 = 1, and λk = (2k − 2)!(2k − 3)! k = 2, 3, . . . , n+ 1.



534 R. Rangarajan and Shashikala P.

Orthogonality of sn(x) of convergent S- fraction:
Following the literature [2], we obtain the series

D1c
(x) =

1 −Dc(x)

x
= c1 − c2x+ c3x

2 − c4x
3 + · · ·+ (−1)ncn+1x

n + · · ·

The linear moment generating function with respect to D1c
(x) denoted by LD1c

has nth moment

LD1c
{xn} = (−1)ncn+1.

The three term recurrence relation of sn(x) is

sn+1(x) = (x+ ((2n+ 1)! + (2n+ 2)!))sn(x)− (2n)!(2n+ 1)!sn−1(x),

s0(x) = 1, s1(x) = x+ 3, n = 1, 2, 3, . . . . (3.6)

As a result of applying Favard’s theorem, we obtain the orthogonality of sn(x) is

LD1c
{sm(x)sn(x)} =

{
0, m ̸= n;
λ1λ2 · · ·λn+1, m = n,

where λ1 = 1 and λk = (2n− 2)!(2n− 1)!, k = 2, 3, . . . , n+ 1.

Orthogonality of rn(x) of convergent S- fraction :
Following the literature [2], we obtain the series

1
Dc(x)

= 1 − e1x+ e2x
2 − e3x

3 + · · ·+ (−1)nenxn + · · ·

and

D2c
(x) =

1
Dc(x)

− 1

x
= e1 − e2x+ e3x

2 − e4x
3 + · · ·+ (−1)nen+1x

n + · · · .

The linear moment generating function with respect to D2c
(x) denoted by LD2c

has nth moment

LD2c
{xn} = (−1)nen+1.

The three term recurrence relation of rn(x) is

rn+1(x) = (x+ ((2n+ 1)! + (2n+ 2)!))rn(x)− (2n)!(2n+ 1)!rn−1(x),

r0(x) = 1, r1(x) = x+ 2, n = 1, 2, 3, . . . . (3.7)

As a result of applying Favard’s theorem, we obtain the orthogonality of rn(x) is

LD2c
{rm(x)rn(x)} =

{
0, m ̸= n;
λ1λ2 · · ·λn+1, m = n,

where λ1 = 1 and λk = (2k − 2)!(2k − 1)!, k = 2, 3, . . . , n+ 1.

Suppose rn(x) = xn + rn−1x
n−1 + · · · + r1x + r0. Since LD2c

{r0(x)rn(x)} = 0, we can
compute en using

en = −[rn−1en−1 + · · ·+ r1e1 + r0], e0 = 1, n = 1, 2, . . . .

Orthogonality of pn(x) of convergent S- fraction:
Following the literature [2], we obtain the series

D3c
(x) =

1
Dc(x)

− 1 − x

x2 = 1 − f1x+ f2x
2 − f3x

3 + · · ·+ (−1)nfnxn + · · · .

The linear moment generating function with respect to D3c
(x) denoted by LD3c

has nth moment

LD3c
{xn} = (−1)nfn.
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The three term recurrence relation of pn(x) is

pn+1(x) = (x+ ((2n+ 2)! + (2n+ 3)!)) pn(x)− (2n+ 1)!(2n+ 2)!pn−1(x),

p0(x) = 1, p1(x) = x+ 8, n = 1, 2, 3, . . . . (3.8)

As a result of applying Favard’s theorem, we obtain the orthogonality of pn(x) is

LD3c
{pm(x)pn(x)} =

{
0, m ̸= n;
λ1λ2 · · ·λn+1, m = n,

where λ1 = 1 and λk = (2k)!(2k + 1)!, k = 2, 3, . . . , n+ 1.

Suppose pn(x) = xn + pn−1x
n−1 + · · · + p1x + p0. Since LD3c

{p0(x)pn(x)} = 0, we can
compute fn using

fn = −[pn−1fn−1 + · · ·+ p1f1 + p0], f0 = 1, n = 1, 2, . . . .

4 Nature of orthogonal polynomials

The following theorem [1], gives necessary and sufficient conditions for classical orthogonality
of polynomials:

Theorem 4.1. The pair
{
Pn(x),

d

dx

(
Pn+1(x)

n+ 1

)}
is a classical orthogonal polynomials if and

only if

A. Pn(x) form orthogonal polynomials with respect to L.

B. Pn(x) =
d

dx

(
Pn+1(x)

n+ 1

)
− αn

d

dx

(
Pn(x)

n

)
− αn−1

d

dx

(
Pn−1(x)

n− 1

)
,

n = 2, 3, . . . , where αn and αn−1 are non-zero numbers.

Let us reconsider the divergent S- fraction (2.1) and derive the following result.

Theorem 4.2. The polynomials qn(x), sn(x), rn(x) and pn(x) of the divergent S- fraction are
non-classical orthogonal polynomials.

Proof. Using (3.1), (3.2), (3.3) and (3.4), we directly obtain the result that qn(x), sn(x), rn(x)
and pn(x) of divergent S- fraction are orthogonal polynomials with respect to LD, LD1 , LD2

and LD3 respectively. Now, we observe that qn(x), sn(x), rn(x) and pn(x) do not satisfy the
condition B of Theorem 4.1, because

q3(x) =
q′4(x)

4
− 3304

q′3(x)

3
+

1553536
3

q′2(x)

2
+

9742592
3

q′1(x)

1
.

s3(x) =
s′4(x)

4
− 5428

s′3(x)

3
+

4841632
3

s′2(x)

2
+ 30581376

s′1(x)

1

r3(x) =
r′4(x)

4
− 5429

r′3(x)

3
+

4835368
3

r′2(x)

2
+

105060112
3

r′1(x)

1

p3(x) =
p′4(x)

4
− 8368

p′3(x)

3
+

12794536
3

p′2(x)

2
+

563096000
3

p′1(x)

1
.

Hence qn(x), sn(x), rn(x) and pn(x) of divergent S- fraction are non-classical orthogonal poly-
nomials.

Let us reconsider the convergent S- fraction (2.2) and derive the following result.

Theorem 4.3. The polynomials qn(x), sn(x), rn(x) and pn(x) of the convergent S- fraction are
non-classical orthogonal polynomials.
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Proof. Using (3.5), (3.6), (3.7) and (3.8), we directly obtain the result that qn(x), sn(x), rn(x)
and pn(x) of convergent S- fraction are orthogonal polynomials with respect to LDc , LD1c

, LD2c

and LD3c
respectively. Now, we observe that qn(x), sn(x), rn(x) and pn(x) do not satisfy the

condition B of Theorem 4.1, because

q3(x) =
q′4(x)

4
− 17127

4
q′3(x)

3
+

79755
2

q′2(x)

2
+

2907
4

q′1(x)

1
.

s3(x) =
s′4(x)

4
− 135207

4
s′3(x)

3
+

6799350
4

s′2(x)

2
+

480627
4

s′1(x)

1

r3(x) =
r′4(x)

4
− 33802

r′3(x)

3
+

5099080
3

r′2(x)

2
+

341216
3

r′1(x)

1

p3(x) =
p′4(x)

4
− 300922

p′3(x)

3
+ 288528520

p′2(x)

2
+ 14591514688

p′1(x)

1
.

Hence qn(x), sn(x), rn(x) and pn(x) of convergent S- fraction are non-classical orthogonal
polynomials.
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