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Abstract In this paper, we will introduce the fractional analogue of Jensen’s inequality using
conformable fractional integral operator.

1 Introduction

The idea of fractional derivation is as old as ordinary derivation and integration. In 1695,
L’Hospital asked "what would be the one-half derivative of x?" to Leibniz. From that time,
many scientists tried to give a definition of fractional derivative to bring about a coherent theory
of fractional derivation and integration. By the beginning of 20th century, some definitions of
fractional derivation, are introduced, most notedly Riemann-Liouville, Caputo, and Grünwald-
Letnikov derivatives. Since fractional derivation and integration has more exponent applications
in different disciplines of sciences like engineering, physics, chemistry etc., many mathemati-
cians start to study of aspects of it. For more information about the history and applications, we
refer [5, 6, 12, 16] .

The definitions we mentioned above used the integral form of derivative. The idea Riemann-
Liouville fractional integral is based on iterating n times and replacing it by one integral, and then
using the Cauchy formula with replacing n! with Gamma function. Hence Riemann-Liouville
fractional integral is defined as

Jα
a f(x) =

1
Γ(α)

x∫
a

(x− t)α−1f(t)dt.

Using this definition, fractional derivative is defined as

Dα
a f(x) = DmJm−α

a f(x),

where m = ⌈α⌉ and D represents ordinary derivative.
Riemann-Liouville or any of other definitions for fractional derivative does not satisfies all

properties of ordinary derivative. As an example, Riemann-Liouville derivation does not satisfy
well-known formula of the product of two functions

D(f(t)g(t)) = g(t)Df(t) + f(t)Dg(t).

Because of this difficulties, recently some authors tried to give new definitions for fractional
derivatives. To handle these difficulties, in 2014 Khalil et al. [11] gave a new definition as

Tα(f)(t) = lim
ε→0

f(t+ εt1−α)− f(t)

ε
.

This well-behaved definition, called conformable fractional derivative, satisfies many properties
of ordinary derivations like product rule, chain rule etc.

Since inequalities are useful tools in mathematics, many mathematicians studied about exten-
sions, generalizations and discretizations of them, see [13, 14, 15] and references cited therein.
And mathematicians started to transfer this inequalities into fractional settings both continuous
and discrete cases to make a coherent theory of fractional calculus [2, 3, 7, 8, 10].
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2 Preliminaries

In this section, we give basic definitions and results of conformable fractional operators derived
from [11] .

Definition 2.1. The conformable fractional derivative of a function f : [0,∞) → R of order
0 ≤ α ≤ 1 is defined by

Tα(f)(t) = lim
ε→0

f(t+ εt1−α)− f(t)

ε

for all t > 0.

We note that if the conformable fractional derivative of f of order α exists, we say f is
α-differentiable.

Theorem 2.2. Let α ∈ (0, 1] and functions f and g be α-differentiable at point t > 0. Then
following properties are hold:

(i) Tα(af + bg)(t) = aTα(f)(t) + bTα(g)(t), for all a, b ∈ R.
(ii) Tα(tm) = mtm−1, for all m ∈ R.
(iii) Tα(c) = 0, for all constant functions f(t) = c.
(iv) Tα(fg)(t) = g(t)Tα(f)(t) + f(t)Tα(g)(t).

(v) Tα(
f
g )(t) =

g(t)Tα(f)(t)− f(t)Tα(g)(t)

(g(t))2

(vi) If, in addition, f is differentiable, then Tα(f)(t) = t1−α df

dt
.

Now, we give conformable fractional derivative of some functions:
(1) Tα(tm) = mtm−1, for all m ∈ R.
(2) Tα(1) = 0.
(3) Tα(eat) = at1−αeat, a ∈ R.
(4) Tα(e

1
α tα) = e

1
α tα .

(5) Tα(sin at) = at1−α cos at, a ∈ R.
(6) Tα(cos at) = −at1−α sin at, a ∈ R.
(7) Tα(sin 1

α t
α) = cos 1

α t
α.

(8) Tα(cos 1
α t

α) = − sin 1
α t

α.

Definition 2.3. The conformable fractional integral of a function f : [0,∞) → R of order α is
defined by

Iaα(f)(t) = Ia1 (t
α−1f)(t) =

t∫
a

f(s)

t1−α
ds,

where the integral is the usual Riemann improper integral, and α ∈ (0, 1).

Theorem 2.4. TαI
a
α(f)(t) = f(t), for t ≥ a, where f is any continuous function in the domain

of Iα.

I0
1/2(

√
t cos t) =

t∫
0

cos sds = sin t.

For more information and applications on conformable fractional derivative and integral, we
refer [1, 4, 11, 17].

3 Main results

In this section, we will give fractional analogue of Jensen inequality given below:
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Theorem 3.1. If g ∈ C([a, b], (c, d)) and F ∈ C([a, b],R) is convex, then

F

(∫ b

a
g(s)ds

b− a

)
≤ 1

b− a

b∫
a

F (g(s))ds. (3.1)

Before stating our results, we begin with a lemma that will be used in the proofs from [9].

Lemma 3.2. Let f ∈ C([a, b],R) be convex. Then for each t ∈ (c, d), there exists λ ∈ R such
that

f(x)− f(t) ≥ λ(x− t), for all x ∈ (c, d). (3.2)

If f is strictly convex, then inequality sign "≥ ” in (3.2) should be replaced with sign "> ”.

We start with our first result.

Theorem 3.3. Let a, t, c, d ∈ R, with a < t. Let g ∈ C([a, t], (c, d)) and F ∈ C([c, d],R) is
convex. Then

F

(
αIaαg(t)

tα − aα

)
≤ α

tα − aα
IaαF (g(t)) (3.3)

holds.
If F is strictly convex, then inequality sign "≤ ” in (3.3) should be replaced with sign "< ”.

Proof. Take
τ =

α

tα − aα
Iaαg(t).

Now,

IaαF (g(t))− tα − aα

α
F

(
αIaαg(t)

tα − aα

)
= IaαF (g(t))− tα − aα

α
F (τ)

= Iaα{F (g(t))− F (τ)}.

Since F is convex, there is a λ ∈ R such that (3.2) holds. Hence, we have

IaαF (g(t))− tα − aα

α
F

(
αIaαg(t)

tα − aα

)
≥ λIaα{g(t)− τ}

= λIaα{g(t)− τ
tα − aα

α
}

= λ [Iaαg(t)− Iaαg(t)}]
= 0.

This completes the proof.

Remark 3.4. When we take α = 1 in (3.3), we have inequality

F

(∫ t

a
g(s)ds

t− a

)
≤ 1

t− a

t∫
a

F (g(s))ds, (3.4)

where upper limit of integral is a variable. And taking t = b in (3.4) gives

F

(∫ b

a
g(s)ds

b− a

)
≤ 1

b− a

b∫
a

F (g(s))ds,

and this inequality is Jensen’s inequality given in (3.1).



Fractional Jensen’s Inequality 557

Secondly, we present a more general result given below.

Theorem 3.5. Let a, t, c, d ∈ R, with a < t. Let g ∈ C([a, t], (c, d)) and h ∈ C([a, t],R) with

Iaαh(t) > 0.

If F ∈ C([c, d],R) is convex, then

F

(
Iaα{|h(t)| g(t)}
Iaα {|h(t)|}

)
≤ Iaα{|h(t)|F (g(t))}

Iaα {|h(t)|}
(3.5)

holds.
If F is strictly convex, then inequality sign "≤ ” in (3.5) should be replaced with sign "< ”.

Proof. Take

τ =
Iaα{|h(t)| g(t)}
Iaα {|h(t)|}

.

Now,

Iaα{|h(t)|F (g(t))} − Iaα {|h(t)|}F
(
Iaα{|h(t)| g(t)}
Iaα {|h(t)|}

)
= Iaα{|h(t)|F (g(t))} − Iaα {|h(t)|}F (τ)

= Iaα{|h(t)| [F (g(t))− F (τ)]}.

Since F is convex, there is a λ ∈ R such that (3.2) holds. Therefore, we have

Iaα{|h(t)|F (g(t))} − Iaα {|h(t)|}F
(
Iaα{|h(t)| g(t)}
Iaα {|h(t)|}

)
≥ λIaα{|h(t)| [g(t)− τ ]}
= λ [Iaα{|h(t)| g(t)} − τIaα {|h(t)|}]

= λ

[
Iaα{|h(t)| g(t)} −

Iaα{|h(t)| g(t)}
Iaα {|h(t)|}

Iaα {|h(t)|}
]

= 0.

This completes the proof.

Remark 3.6. If the convexity of F changed by concavity, then the sign in (3.5) should be
reversed.

Remark 3.7. One can show easily that the function defined as F (t) = tr is concave for r ∈ (0, 1)
and convex for r < 0 or r > 1.

As a consequence of these two remarks, we state following result.

Corollary 3.8. Let g ∈ C([a, t], (c, d)) with g(t) ≥ 0 on [a, t] and h ∈ C([a, t],R) with Iaαh(t) >
0. Then, for r < 0 or r > 1 (

Iaα{|h(t)| g(t)}
Iaα {|h(t)|}

)r

≤ Iaα{|h(t)| gr(t)}
Iaα {|h(t)|}

,

and for r ∈ (0, 1) (
Iaα{|h(t)| g(t)}
Iaα {|h(t)|}

)r

≥ Iaα{|h(t)| gr(t)}
Iaα {|h(t)|}

are hold.
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