
Palestine Journal of Mathematics

Vol. 7(2)(2018) , 598–607 © Palestine Polytechnic University-PPU 2018

GORENSTEIN FI-FLAT DIMENSION WITH RESPECT TO
A SEMIDUALIZING MODULE

V. Biju, R. Udhayakumar and C. Selvaraj

Communicated by Ayman Badawi

MSC 2010 Classifications: 18G20, 18G25.

Keywords and phrases: GFIF -closed ring; GC -FI-flat module; GC -FI-flat dimension; Semidualizing module.

Abstract This paper presents some properties of GC-FI-flat modules, where C is a semid-
ualizing module and we investigate the relation between the GC-yoke with the C-yoke of a
module as well as the relation between the GC-FI-flat resolution and the FI-flat resolution of
a module over GFIF -closed rings. We also obtain a criterion for computing the GC-FI-flat
dimension of modules.

1 Introduction

Projective, injective and flat modules play an important role in basic homological algebra. Ho-
mological properties of the Gorenstein projective, injective and flat modules have been studied
by many authors, some references are [4, 5, 11]. The study of semidualizing modules over
commutative Noetherian rings was initiated independently (with different names) by Foxby [7],
Golod [10], and Vasconcelos [22]. Over a commutative Noetherian ring, Holm and Jørgensen in
[12] introduced the C-Gorenstein projective, C-Gorenstein injective and C-Gorenstein flat mod-
ules using semidualizing modules and their associated projective, injective and flat classes which
are also called GC-projective, GC-injective and GC-FI-flat module respectively. White intro-
duced in [23] the GC-projective modules and gave a functorial description of the GC-projective
dimension of modules with respect to a semidualizing module C over a commutative ring; and
in particular, many classical results about the Gorenstein projectivity of modules were general-
ized in [23]. Further, Selvaraj et. al introduced Gorenstein FI-injective and Gorenstein FI-flat
modules in [18] and studied the covers of Gorenstein FI-flat modules in [19] and Tate homol-
ogy in [20]. FI-cotorsion module was studied in [2] and Strongly FI-Cotorsion modules were
introduced by Biju et. al in [3]. Also, the dimension of Gorenstein FI-flat modules has been
analysed with respect to relative homology in [22]. In this paper we give a functorial description
of the GC-FI-flat dimension of modules with respect to a semidualizing module.

This paper is organized as follows. In Section 2, we recall some notions and definitions which
will be needed in the later section. In this section We also introduce C-FI-flat C-FI-injective
and GC-FI-flat modules and also establish the relation between the GC-yoke with the C-yoke
of a module as well as the relation between the GC-FI-flat resolution and the FI-flat resolution
of a module over a GFIF -closed ring. In Section 3, we discuss some properties of GC-FI-flat
dimension of modules. In particular, as an application of the results obtained in Section 2, we
obtain a criterion for computing such a dimension as in the following result.

Proposition 1.1. Let R be a GFIF -closed ring and let M be a left R-module and n ≥ 0. We
prove that the GC-FI-flat dimension of M is at most n if and only if for every non-negative
integer t such that 0 ≤ t ≤ n, there exists an exact sequence 0 → Xn → · · · → X1 → X0 →
M → 0 in R-Mod such that Xt is GC-FI-flat and Xi ∈ AddRC for i ̸= t.
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2 GC-FI-flat modules

Unless stated otherwise, throughout this paper all rings are associative with identity and all
modules are unitary modules. Let R be a ring, we denote by R-Mod (Mod-R) the category of
left (right) R-modules respectively. FI-injective and FI-flat modules were introduced by Mao
et al. [15]. A right R-module M is called FI-injective if Ext1

R(G,M) = 0 for any absolutely
pure right R-module G. A left R-module N is said to be FI-flat if TorR1 (G,N) = 0 for any
absolutely pure right R-module G.

At the beginning of this section, we recall some notions from [13, 23].

Definition 2.1. [23] A degree wise finite projective (resp., free) resolution of an R-module M is
a projective (resp., free) resolution P of M such that each Pi is a finitely generated projective
(resp., free). Note that M admits a degree wise finite projective resolution if and only if it
admits a degree wise finite free resolution. However, it is possible for a module to admit a
bounded degree wise finite projective resolution but not to admit a bounded degree wise finite
free resolution. For example, if R = k1 ⊕ k2, where k1 and k2 are fields, then M = k1 ⊕ 0 is a
projective R-module, but it does not admit a bounded free resolution.

Definition 2.2. [13] Let R and S be rings. An (S,R)-bimodule C is called semidualizing if the
following conditions are satisfied:

(1) SC admits a degree wise finite S-projective resolution;

(2) CR admits a degree wise finite Rop-projective resolution;

(3) The homothety map SSS → HomRop(C,C) is an isomorphism;

(4) The homothety map RRR → HomS(C,C) is an isomorphism;

(5) ExtiS(C,C) = 0 for any i ≥ 1;

(6) ExtiRop(C,C) = 0 for any i ≥ 1.

Definition 2.3. [13] Let C be a semidualizing module for a ring R. An R-module is C-projective
if it has the form C ⊗R P for some projective module P . An R-module is called C-injective if it
has the form HomR(C, I) for some injective module I . Set

PC(R) = {C ⊗R P |P is R− projective},

and

IC(R) = {HomR(C, I) | I is R− injective}.

Definition 2.4. [13] An R-module is called C-flat if it has the form C⊗RF for some flat module
F . Set FC(R) = {C ⊗R F |F is R-flat }.

Setting C = R in the above definitions, we see that PC(R), IC(R) and FC(R) are the classes
of ordinary projective, injective and flat R-modules, which we usually denote P(R), I(R) and
F(R) respectively.

Now we introduce C-FI-flat and C-FI-injective modules as follows.

Definition 2.5. An R-module is called C-FI-flat if it has the form C ⊗R F for some FI-flat
module F . Set FIfC(R) = {C ⊗R F |F is FI-flat }.

Definition 2.6. An R-module is called C-FI-injective if it has the form HomR(C,E) for some
FI-injective module E. Set FIiC(R) = {HomR(C,E) |E is FI-injective}.

When C = R, we omit the subscript and recover the classes of FI-flat and FI-injective
R-modules. Any semidualizing module defines two important classes of modules, namely the
Auslander and Bass classes, with a certain nice duality property.

Definition 2.7. [23] The Auslander class AC(R) with respect to C consists of all modules M
satisfying:
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(A1) TorRi (C,M) = 0 for any i ≥ 1;

(A2) ExtiR(C,C ⊗R M) = 0 for any i ≥ 1; and

(A3) The natural evaluation homomorphism µM : M → HomR(C,C⊗RM) is an isomorphism.

The Bass class BC(R) with respect to C consists of all modules N satisfying:

(B1) ExtiR(C,N) = 0 for any i ≥ 1;

(B2) TorRi (C,HomR(C,N)) = 0 for any i ≥ 1; and

(B3) The natural evaluation homomorphism νN : C ⊗R HomR(C,N) → N is an isomorphism.

Let M ∈ R-Mod. Write M I (resp., M (I)) is the direct product (resp., sum) of copies of a
module M indexed by a set I . We denote AddRM (resp., ProdRM ) the subclass of R-Mod
consisting of all modules isomorphic to direct summands of direct sums (resp., direct products)
of copies of M. We start with the following

Proposition 2.8. FIfC(R) = AddRC.

Proof. Let F ∈ R-Mod be FI-flat. Then F is isomorphic to a direct summand of K(J) for
some cardinal J , where K is FI-flat generator. So C ⊗R F is isomorphic to a direct summand
of C ⊗R K(J) (∼= C(J)), and hence C ⊗R F ∈ AddRC. Thus we have FIfC(R) ⊆ AddRC.
Conversely, for any M ∈ AddRC, there exists N ∈ R-Mod such that M ⊕N ∼= C(J) for some
cardinal J. Note that BC(R) is closed under direct sums and direct summands by [13, Proposition
4.2]. Since C ∼= C ⊗R R ∈ BC(R) by [13, Lemma 5.1], both C(J) and M are in BC(R). Since
HomR(C,M)⊕HomR(C,N) ∼= HomR(C,C(J)) ∼= R(J), HomR(C,M) ∈ R-Mod is FI-flat.
Thus M ∈ FIfC(R) by [13, Lemma 5.1]. Therefore AddRC ⊆ FIfC(R).

Now we recall the following definitions.

Definition 2.9. [6] A left R-module M is said to be Gorenstein flat, if there exists an exact
sequence of flat left R-modules,

· · · → F1 → F0 → F 0 → F 1 → · · ·

such that M ∼= Im(F0 → F 0) and such that B ⊗R − leaves the sequence exact whenever B is
an injective right R-module. GF(R) denotes class of all Gorenstein flat R-modules.

Definition 2.10. [18] A left R-module M is said to be Gorenstein FI-flat if there is a A ⊗ −
exact exact sequence · · · −→ F1 −→ F0 −→ F 0 −→ F 1 −→ · · · of FI-flat left R-modules with
M = ker(F 0 −→ F 1) where A denotes class of all FI-injective right R-modules.

Example 2.11. Since every flat R-module is FI-flat and injective R-module is FI-injective, we
can see that Gorenstein flat modules are Gorenstein FI-flat R-modules. However, the converse
need not be true. But it is true by [15, Proposition 2.3].

Definition 2.12. [1] A ring R is said to be left GF -closed if GF(R) is closed under extensions.

Definition 2.13. [18] A ring R is said to be left GFIF -closed if GFIF(R) is closed under
extensions, i.e., for every short exact sequence 0 → M1 → M2 → M3 → 0 of left R-modules
if M1 and M3 are in GFIF(R), then M2 is in GFIF(R), where GFIF(R) is the class of all
Gorenstein FI-flat R-modules.

Example 2.14. Since Gorenstein flat modules are Gorenstein FI-flat modules, every GF -closed
rings are GFIF -closed rings.

Definition 2.15. A complete FIFC-resolution is a FIiC(R)⊗R − exact exact sequence:

X : · · · → F1 → F0 → C ⊗R F 0 → C ⊗R F 1 → · · · (2.1)

in R-Mod with all Fi and F i are FI-flat. A module M ∈ R-Mod is called GC-FI-flat if there
exists a complete FIFC-resolution as in (1) with M = Coker(F1 → F0). Set GFIfC(R) is the
class of GC-FI-flat modules in R-Mod.
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It is trivial that in case RCR = RRR, the GC-FI-flat modules are just the usual Gorenstein
FI-flat modules.

Using the definition, we immediately get the following results.

Proposition 2.16. If (Fi)i∈I is a family of GC-FI-flat modules, then
⊕

Fi is GC-FI-flat.

Proposition 2.17. A module M is GC-FI-flat if and only if TorR≥1(HomR(C,E),M) = 0 and
M admits a FIfC(R)-resolution Y with HomR(C,E)⊗R Y exact for any FI-injective E.

Recall the following definition.

Definition 2.18. [1] Let R be a ring and let X be a class of left R-modules.

(1) X is closed under extensions: If for every short exact sequence of left R-modules 0 → A →
B → C → 0, the conditions A and C are in X implies B is in X.

(2) X is closed under kernels of epimorphisms: If for every short exact sequence of left R-
modules 0 → A → B → C → 0, the conditions B and C are in X implies A is in X.

(3) X is projectively resolving: If it contains all projective modules and it is closed under both
extensions and kernels of epimorphisms. i.e., for every short exact sequence of R-modules
0 → A → B → C → 0 with C ∈ X, the conditions A ∈ X and B ∈ X are equivalent.

The following result is due to [17].

Proposition 2.19. Let C be a semidualizing R-module. Then the class GFIfC(R) is closed
under kernels of epimorphisms and extensions.

Proposition 2.20. If F is FI-flat R-module, then F and C ⊗R F are GC-FI-flat. Thus, every
R-module admits a GC-FI-flat resolution.

Proof. Follows from [12, Example 2.8(a), Propositions 2.1, 2.13(1) and 2.15] and since the class
of GC-FI-flat modules contains the class of FI-flat modules, every R-module admits a GC-FI-
flat resolution.

Theorem 2.21. Let R be a GFIF -closed ring and C is semidualizing module, then the class
GFIfC(R) of GC-FI-flat R-modules is projectively resolving and closed under direct sum-
mands.

Proof. Using the dual of Theorem 2.8 in [23] and together with the [17, Lemma 5.2], we see
that GFIfC(R) is projectively resolving. Now, comparing Proposition 2.5 with Proposition 1.4
in [11], we get GFIfC(R) is closed under direct summands.

Proposition 2.22. Let R be a GFIF -closed ring. Then every cokernel in a complete FIFC-
resolution is GC-FI-flat.

Proof. Follows from Proposition 2.17, Theorem 2.21 and [17, Lemma 5.4].

Lemma 2.23. Let R be a GFIF -closed ring and let M ∈ R-Mod be GC-FI-flat. Then there
exists FIiC(R)⊗− exact sequences:

0 → M → G → N → 0

and

0 → K → F → M → 0

in R-Mod with N,K are GC-FI-flat, G ∈ AddRC, and F is FI-flat.

Proof. It follows from the definition of GC-FI-flat modules and Proposition 2.22 .

The following result plays a crucial role in this section.
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Lemma 2.24. Let R be a GFIF -closed ring and suppose that

0 → A → G1
f→ G0 → M → 0 (2.2)

is an exact sequence in R-Mod with G0, G1 are GC-FI-flat. Then we have the following exact
sequences:

0 → A → C1 → G → M → 0, (2.3)

and

0 → A → H → F → M → 0 (2.4)

with C1 ∈ AddRC, F is FI-flat, and G,H are GC-FI-flat.

Proof. Since G1 is GC-FI-flat, there exists a short exact sequence 0 → G1 → C1 → G′ → 0
with C1 ∈ AddRC and G′ is GC-FI-flat by Lemma 2.23. Then we have the following pushout
diagram:

0

��

0

��
0 // A // G1 //

��

Im(f)

��

// 0

0 // A // C1

��

// B

��

// 0

G′

��

G′

��
0 0.

Consider the following pushout diagram:

0

��

0

��
0 // Im(f) //

��

G0 //

��

M // 0

0 // B //

��

G

��

// M // 0

G′

��

G′

��
0 0.

Since G0 and G′ are GC-FI-flat, G is also GC-FI-flat by Theorem 2.21. Connecting the middle
rows in the above two diagrams, we get the first desired exact sequence (2.3).

Since G0 is GC-FI-flat, there exists an exact sequence 0 → G′′ → F → G0 → 0 with F is
FI-flat and G′′ is GC-FI-flat by Lemma 2.23. Then we have the following pullback diagram:
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0

��

0

��
G′′

��

G′′

��
0 // N //

��

F

��

// M // 0

0 // Im(f) //

��

G0 //

��

M // 0

0 0.

Consider the following pullback diagram:

0

��

0

��
G′′

��

G′′

��
0 // A // H

� �

// N

��

// 0

0 // A // G1

��

// Im(f)

��

// 0

0 0

Since G1 and G′′ are GC-FI-flat, H is also GC-FI-flat by Theorem 2.21. Connecting the middle
rows in the above two diagrams, we get the second desired exact sequence (2.4).

Gao et al. [8] investigated yoke and Gorenstein yoke modules, i.e., yoke of Gorenstein flat
resolutions of modules over a right coherent ring. In a similar manner we introduce C-yoke and
GC-yoke module as follows.

Definition 2.25. Let n be a positive integer. An R-module A is called an C-yoke module (of M )
if there exists an exact sequence

0 → A → Fn−1 → · · · → F1 → F0 → M → 0

in R-Mod with all Fi are C-FI-flat.

Definition 2.26. Let n be a positive integer, a module A is called an GC-yoke module (of M ) if
there exists an exact sequence

0 → A → Gn−1 → · · · → G1 → G0 → M → 0

in R-Mod with all Gi are GC-FI-flat.

The following result establishes the relation between the GC-yoke with the C-yoke of a
module as well as the relation between the GC-FI-flat resolution and the FI-flat resolution of a
module.



604 V. Biju, R. Udhayakumar and C. Selvaraj

Lemma 2.27. Let R be a GFIF -closed ring and let n ≥ 1 and

0 → A → Gn−1 → · · · → G1 → G0 → M → 0

be an exact sequence in R-Mod with all Gi are GC-FI-flat. Then we have the following:

(i) There exist exact sequences:

0 → A → Cn−1 → · · · → C1 → C0 → N → 0

and

0 → M → N → G → 0

in R-Mod with all Ci ∈ AddRC and G is GC-FI-flat.

(ii) There exist exact sequences

0 → B → Fn−1 → · · · → F1 → F0 → M → 0

and

0 → H → B → A → 0

in R-Mod with all Fi are FI-flat and H is GC-FI-flat.

Proof. We proceed by induction on n.
(i) When n = 1, we have an exact sequence 0 → A → G0 → M → 0 in R-Mod. Since

we have a FIiC(R) ⊗R − exact exact sequence 0 → G0 → C0 → G → 0 in R-Mod with
C0 ∈ AddRC and G is GC-FI-flat by Lemma 2.23, we get the following pushout diagram:

0

��

0

��
0 // A // G0 //

��

M

��

// 0

0 // A // C0

��

// N

��

// 0

G

��

G

��
0 0.

The middle row and the last column in the above diagram are the desired two exact sequences.
Now assume that n ≥ 2 and we have an exact sequence 0 → A → Gn−1 → · · · → G1 →

G0 → M → 0 in R-Mod with all Gi are GC-FI-flat. Put K = Coker(Gn−1 → Gn−2). By
Lemma 2.24, we have an exact sequence

0 → A → Cn−1 → G′
n−2 → K → 0

in R-Mod with Cn−1 ∈ AddRC and G′
n−2 is GC-FI-flat. Put A′ = Im(Cn−1 → G′

n−2). Then
we get an exact sequence 0 → A′ → G′

n−2 → Gn−3 → · · · → G1 → G0 → M → 0 in R-Mod.
Hence, by the induction hypothesis, we obtain the assertion.

(ii) When n = 1, we have an exact sequence 0 → A → G0 → M → 0 in R-Mod. Since we
have a FIiC(R) ⊗R − exact exact sequence 0 → H → F0 → G0 → 0 in R-Mod with F0 is



GC -FI-FLAT DIMENSION 605

FI-flat and H is GC-FI-flat by Lemma 2.23, we get the following pushout diagram:

0

��

0

��
H

��

H

��
0 // B //

��

F0

��

// M // 0

0 // A //

��

G0 //

��

M // 0

0 0.

The middle row and the first column in the above diagram are the desired two exact sequences.
Now assume that n ≥ 2 and we have an exact sequence 0 → A → Gn−1 → · · · → G1 →

G0 → M → 0 in R-Mod with all Gi are GC-FI-flat. Put K = Ker(G1 → G0). By Lemma
2.24, we get an exact sequence

0 → K → G′
1 → F0 → M → 0

in R-Mod with F0 is FI-flat and G′
1 is GC-FI-flat. Put M ′ = Im(G′

1 → P0). Then we have an
exact sequence 0 → A → Gn−1 → · · · → G2 → G′

1 → G0 → M → 0 in R-Mod. So, by the
induction hypothesis, we obtain the assertion.

Here is a version of Schannuel’s Lemma for FIFC-resolutions.

Proposition 2.28. Let M be a left R-module, and consider two exact sequences of left R-
modules,

0 → Gn → Gn−1 → · · · → G0 → M → 0,

and

0 → Hn → Hn−1 → · · · → H0 → M → 0,

where G0, · · · , Gn−1 and H0, · · · ,Hn−1 are GC-FI-flat. If R is GFIF -closed, then Gn is GC-
FI-flat if and only if Hn is GC-FI-flat.

Proof. It follows from Proposition 2.16 and Proposition 2.21 .

3 GC-FI-flat dimensions of modules

The class of GC-FI-flat modules can be used to define the GC-FI-flat dimension.

Definition 3.1. For a module M ∈ R-Mod, the GC-FI-flat dimension of M , denoted by GC −
FIfdR(M), is defined as inf{n| there exists an exact sequence 0 → Gn → · · · → G1 → G0 →
M → 0 in R-Mod with all Gi are GC-FI-flat }.
We have GC − FIfdR(M) ≥ 0, and GC − FIfdR(M) = ∞ if no such integer exists.

We start with the following standard result.

Lemma 3.2. Let 0 → L → M → N → 0 be an exact sequence in R-Mod.

(i) GC −FIfdR(N) ≤ max {GC −FIfdR(M), GC −FIfdR(L)+ 1}, and the equality holds
if GC − FIfdR(M) ̸= GC − FIfdR(L).

(ii) GC −FIfdR(L) ≤ max {GC −FIfdR(M), GC −FIfdR(N)− 1}, and the equality holds
if GC − FIfdR(M) ̸= GC − FIfdR(N).
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(iii) GC − FIfdR(M) ≤ max {GC − FIfdR(L), GC − FIfdR(N)}, and the equality holds if
GC − FIfdR(N) ̸= GC − FIfdR(L) + 1.

Proof. It is immediate.

The proof of the following Theorem is similar to [11, Theorem 3.15].

Theorem 3.3. Assume that R is GFIF -closed and C-is a semidualizing module. If any two of the
modules M , M ′ or M ′′ in a short exact sequence 0 → M ′ → M → M ′′ have finite GC-FI-flat
dimension, then so has the third.

Proposition 3.4. Let 0 → L → M → N → 0 be an exact sequence in R-Mod. If L ̸= 0 and N
is GC-FI-flat, then GC − FIfdR(L) = GC − FIfdR(M).

Proof. It follows by Lemma 3.2(3).

We give a criterion for computing the GC-FI-flat dimension of modules as follows. It gen-
eralizes [11, Theorem 3.14]. We denote AddRC = AddRC ∪AddRR.

Proposition 3.5. Let R be a GFIF -closed ring. The following statements are equivalent for any
M ∈ R-Mod and n ≥ 0 :

(i) GC − FIfdR(M) ≤ n;

(ii) For every non-negative integer t such that 0 ≤ t ≤ n, there exists an exact sequence
0 → Xn → · · · → X1 → X0 → M → 0 in R-Mod such that Xt is GC-FI-flat and
Xi ∈ AddRC for i ̸= t.

Proof. (ii) ⇒ (i). It is trivial.
(i) ⇒ (ii). We proceed by induction on n. Suppose GC − FIfdR(M) ≤ 1. Then there exists
an exact sequence 0 → G1 → G0 → M → 0 in R-Mod with G0 and G1 are GC-FI-flat.
By Lemma 2.24 with A = 0, we get the exact sequences 0 → C1 → G′

0 → M → 0 and
0 → G′

1 → F0 → M → 0 in R-Mod with C1 ∈ AddRC, F0 is FI-flat, and G′
0, G

′
1 are GC-FI-

flat.
Now suppose GC − FIfdR(M) = n ≥ 2. Then there exists an exact sequence 0 → Gn →

· · · → G1 → G0 → M → 0 in R-Mod with Gi are GC-FI-flat for any 0 ≤ i ≤ n. Set
A = Coker(G3 → G2). By applying Lemma 2.24 to the exact sequence 0 → A → G1 →
G0 → M → 0, we get an exact sequence 0 → Gn → · · · → G2 → G′

1 → F0 → M → 0 in
R-Mod with G′

1 are GC-FI-flat and F0 is FI-flat. Set N = Coker(G2 → G′
1). Then we have

GC − FIfdR(N) ≤ n− 1. By the induction hypothesis, there exists an exact sequence

0 → Xn → · · · → Xt → · · · → X1 → F0 → M → 0

in R-Mod such that F0 is FI-flat and Xt is GC-FI-flat and Xi ∈ AddRC for i ̸= t and 1 ≤ t ≤
n.

Now we need only to prove (ii) for t = 0. Set B = Coker(G2 → G1). By the induction
hypothesis, we get an exact sequence 0 → Xn → · · · → X3 → X2 → G′

1 → B → 0 in R-Mod
with G′

1 GC-FI-flat and Xi ∈ AddRC for any 2 ≤ i ≤ n. Set D = Coker(X3 → X2). Then by
applying Lemma 2.24 to the exact sequence 0 → D → G′

1 → G0 → M → 0, we get the exact
sequence 0 → D → C1 → G′

0 → M → 0 in R-Mod with C1 ∈ AddRC and G′
0 is GC-FI-flat.

Thus we obtain the desired exact sequence

0 → Xn → · · · → X2 → X1 → G′
0 → M → 0

in R-Mod with all Xi ∈ AddRC and G′
0 is GC-FI-flat.
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