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Abstract A QTAG-module M is said to have the exchange property if whenever M ′ is a
module containing M and M ′ =M ⊕N = Σi∈IKi, then there are submodules Li ⊆ Ki (i ∈ I)
such that M ′ =M ⊕Σi∈ILi. The purpose of this paper is essentially to study exchange property
forQTAG-module. We show that every stiff module has the exchange property. We have further
studied stiff modules and modules with loose socles to constructing the modules that are neither
transitive nor fully transitive.

1 Introduction and preliminary terminology

Let R be any ring. Consider the following two conditions on a module MR:

(I) Every finitely generated submodule of any homomorphic image of M is a direct sum of
uniserial modules.

(II) Given any two uniserial submodules U and V of a homomorphic image of M , for any
submodule W of U , any non-zero homomorphism f : W → V can be extended to a
homomorphism g : U → V , provided the composition length d(U/W ) ≤ d(V/f(W )).

A module MR satisfying (I) and (II) is called a TAG-module, and a module satisfying
only condition (I) is called a QTAG-module. The study of QTAG-modules was initiated by
Singh [8]. This is a very fascinating structure that has been the subject of research of many
authors. Different notions and structures ofQTAG-modules have been studied, and a theory was
developed, introducing several notions, interesting properties, and different characterizations of
submodules. Many interesting results have been obtained, but there is still a lot to explore.

Let all rings discussed here be associative with unity (1 ̸= 0) and modules are unital QTAG-
modules. A module in which the lattice of its submodule is totally ordered is called a serial
module; in addition, if it has finite composition length it is called a uniserial module. An element
x ∈M is uniform, if xR is a non-zero uniform (hence uniserial) module, and for any R-module
M with a unique decomposition series, d(M) denotes its decomposition length. For a uniform

element x ∈M, e(x) = d(xR) and HM (x) = sup
{
d

(
yR

xR

)
: y ∈M, x ∈ yR and y uniform

}
are the exponent and height of x in M, respectively. Hn(M) denotes the submodule of M gen-
erated by the elements of height at least n and Hn(M) is the submodule of M generated by the

elements of exponents at most n. The module M is h-divisible if M = M1 =
∞∩
n=0

Hn(M) and

it is h-reduced if it does not contain any h-divisible submodule. In other words, it is free from
the elements of infinite height. The module M is said to be bounded, if there exists an integer n
such that HM (x) ≤ n for every uniform element x ∈M .

A submodule N of M is h-pure in M if N ∩Hn(M) = Hn(N), for every integer n ≥ 0. A
submodule B ⊆ M is a basic submodule of M , if B is h-pure in M , B = ⊕Bi, where each Bi

is the direct sum of uniserial modules of length i and M/B is h-divisible. A submodule N ⊆M
is said to be high, if it is a complement of M1 i.e., M = N ⊕M1. The sum of all simple sub-
modules of M is called the socle of M and is denoted by Soc(M). The cardinality of a minimal
generating set of M is denoted by g(M). For all ordinals α, fM (α) is the αth-Ulm Kaplansky
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invariant of M and it is equal to g
(
Soc(Hα(M))/Soc(Hα+1(M))

)
.

The submodules Hn(M), n ≥ 0 form a neighborhood system of zero, thus a topology known
as h-topology arises. Closed modules [5] are also closed with respect to this topology. Thus, the

closure of N ⊆ M is defined as N =
∞∩
n=0

(N +Hn(M)). Therefore, the submodule N ⊆ M is

closed with respect to h-topology if N = N and h-dense in M if N =M .

It is interesting to note that almost all the results which hold for TAG-modules are also valid
for QTAG-modules [6]. Notations and terminology are followed by [1, 2]. As usual, End(M)
denotes the endomorphism ring of a module M .

2 Some general results

We begin by defining the following.

Definition 2.1. Let µ be a cardinal. We say that aQTAG-moduleM has the µ-exchange property
if, for any QTAG-module M ′ containing M as a submodule, and for any submodules N and Ki

(i ∈ I) where the cardinal of I does not exceed µ, the condition M ′ =M⊕N = Σi∈IKi implies
that there exist submodules Li ⊆ Ki (i ∈ I) such that M ′ =M ⊕ Σi∈ILi.

Remark 2.2. If M has the µ-exchange property for every cardinal µ, then we say that M has the
exchange property.

From the above discussion, the following consequences are immediate:

(2a) If a QTAG-module M has the µ-exchange property, and if M ′ is any QTAG-module such
that M ′ =M ⊕N ⊕A = A⊕Σi∈IKi where the cardinal of I does not exceed µ, then there
are submodules Li ⊆ Ki (i ∈ I) such that M ′ =M ⊕A⊕ Σi∈ILi.

(2b) If M is a QTAG-module and M = M1 ⊕M2, then M has the µ-exchange property if and
only if M1 and M2 have the µ-exchange property.

(2c) If a QTAG-module M has the 2-exchange property, then M has the µ-exchange property
for every finite µ.

(2d) If a QTAG-module M is represented in two ways as a direct sum of countably generated
many submodules each having the ℵ0-exchange property, then these two direct decomposi-
tions of M have isomorphic refinements.

(2e) Every closed module has the exchange property.

To develop the study, we need to prove some results and we start with the following lemma.

Lemma 2.3. Let M be a QTAG-module with a decomposition M =M1 ⊕M2, and let ϕ be the
projection of M onto M1. If N is an h-pure submodule of M such that the restriction of ϕ to
Soc(N) is a height-preserving isomorphism of Soc(N) onto Soc(M1), then M = N ⊕M2.

Proof. Clearly N ∩ M2 = 0. If x ∈ Soc(M1), then there is a unique element y ∈ Soc(N)
such that ϕ(y) = x, and there is an element z ∈ Soc(M2) such that y = x + z. In particular,
x = y − z, so that Soc(M1) ⊆ N + M2. Thus Soc(M) ⊆ N + M2, and in order to show
that M = N ⊕M2 it suffices to show that N +M2 is h-pure in M . Choose any a ∈ Soc(M).
Then a = x + b with x ∈ Soc(M1) and b ∈ Soc(M2), and HM (a) = min{HM1(x),HM2(b)}.
Moreover, a = y − z + b and HM (x) = HM1(x) = HM (y) = HN (y) ≤ HM2(z). If
HM2(b) < HM1(x), then HM2(b − z) = HM2(b) < HN (y), and we have, in this case, that
HN+M2(a) = HM2(b) = HM (a). If HM2(b) ≥ HM1(x), then HM2(b− z) ≥ HM1(x) = HN (y),
and we infer that HN+M2(a) = HN (y) = HM1(x) = HM (a). Consequently, the height of an
element of exponent one is the same in N +M2 as in M , and we conclude that N +M2 is an
h-pure submodule of M . 2
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As an immediate consequence, we yield the following.

Lemma 2.4. If M is a QTAG-module such that M =M1 ⊕M2, and N is an h-pure submodule
of M for which Soc(N) = Soc(M1), then M = N ⊕M2.

Lemma 2.5. If M is a QTAG-module such that M = M1 ⊕ M2 ⊕ M3 = M4 ⊕ M5, and
Soc(M1) ⊆ Soc(M4) ⊆ Soc(M1) ⊕ Soc(M2), then there is a submodule N of M4 such that N
is isomorphic to a submodule of M2, Soc(N) = Soc(M4) ∩ Soc(M2), and M =M1 ⊕N ⊕M5.

Proof. Let ϕ be the projection ofM ontoM1⊕M2, and let ψ be the projection ofM ontoM4. Set
U = ψ(M1). Then Soc(U) = Soc(M1), and U is h-pure in M . Set V = ϕ(U) and W = ϕ(M4).
Then Soc(W ) = Soc(M4), and W is h-pure in M . Furthermore, Soc(V ) = Soc(M1), V is
h-pure in M , and V ⊆W ⊆M1 ⊕M2. Hence by Lemma 2.4, we infer that M1 ⊕M2 = V ⊕M2.
Moreover, if T = W ∩M2, then W = V ⊕ T . Since the restriction of ϕ to M4 is an isomor-
phism of M4 onto W , and ϕ(U) = V , it follows that M4 = U ⊕ N , where N is the submodule
of M4 onto T under ϕ. The restriction of ϕ to Soc(M4) is the identity mapping, and therefore
Soc(N) = Soc(T ) = Soc(M4) ∩ Soc(M2). This last formula also implies that the restriction to
N of the projection ofM ontoM2 is an isomorphism ofN intoM2. Finally, asM = U⊕N⊕M5,
it again follows by Lemma 2.4 that M =M1 ⊕N ⊕M5. 2

We are now in a position to state and prove the main result of this section.

Theorem 2.6. IfM is aQTAG-module without elements of infinite height, andM is represented
in two ways as a direct sum of submodules each having the 2-exchange property, then these two
direct decompositions of M possess isomorphic refinements.

Proof. By combining those direct summands of bounded order in the two decompositions of M ,
we may assume that the decompositions are of the form

M =M1 ⊕ Σi∈IMi =M2 ⊕ Σj∈JMj (2.1)

where M1 and M2 are direct sums of uniserial modules, and each Mi and each Mj is an un-
bounded module having the 2-exchange property. Notice that this implies that no Mi or no Mj

is a direct sum of uniserial modules. For each i ∈ I , choose a finite subset Ji ⊆ J and two
submodules Ai and Bi such that Bi is bounded, Mi = Ai ⊕Bi, and

Soc(Ai) ⊆ Σj∈JiMj (2.2)

Write B =M1 ⊕ Σi∈IBi. For each j ∈ J , choose a finite subset Ij ⊆ I and two submodules Kj

and Lj such that Lj is bounded, Mj = Kj ⊕ Lj , and

Soc(Kj) ⊆ Σi∈IjAi (2.3)

Write L =M2 ⊕ Σj∈JLj . Then

M = B ⊕ Σi∈IAi = L⊕ Σj∈JKj (2.4)

and B and L are direct sums of uniserial modules. Notice that in order to show that the decom-
positions (2.1) have isomorphic refinements, it suffices to show that the decompositions (2.4)
have isomorphic refinements.

We will now construct two transfinite sequences of subsets Iα ⊆ I and Jα ⊆ J such that the
following conditions hold for each ordinal α:

(i) Iα and Jα are each nonempty and countable;

(ii) Iα ∩ Iβ = Jα ∩ Jβ = ϕ for all β < α;

(iii) Σj∈Jα+1Soc(Kj) ⊆ Σi∈Iα+1Soc(Ai) ⊆ L⊕ Σj∈Jα+1Soc(Kj)

where Iα = ∪β<αI and Jα = ∪β<αJ .
First, let us suppose that the subsets Iα and Jα have been obtained for all α less than an

ordinal γ. It then follows from (iii) that

Σj∈JγSoc(Kj) ⊆ Σi∈IγSoc(Ai) ⊆ L⊕ Σj∈JγSoc(Kj) (2.5)
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Define Aγ = Σi∈IγAi, Uγ = Σi/∈IγAi, Kγ = Σj∈JγKj , V γ = Σj /∈JγKj .
Then

M = B ⊕Aγ ⊕ Uγ = L⊕Kγ ⊕ V γ , (2.6)

and (2.5) can be rewritten as Soc(Kγ) ⊆ Soc(Aγ) ⊆ L ⊕ Soc(Kγ). Therefore it follows from
Lemma 2.5 that there exists a submodule Wγ such that Wγ is isomorphic to a submodule of L,
Soc(Wγ) = Soc(Aγ) ∩ Soc(L), and

M = B ⊕Kγ ⊕Wγ ⊕ Uγ . (2.7)

Since each Ai and each Kj is not a direct sum of uniserial modules, it follows from (2.6) and
(2.7) that Iγ = I if and only if Jγ = J .

Suppose that Jγ ̸= J and choose an index j0 ∈ J − Jγ . With S0 = {j0} and T0 = Ij0 ,
define the sets Sn and Tn, for each positive integer n, by Sn = ∪i∈Tn−1Ji and Tn = ∪j∈SnIj . If
Iγ = ∪n<∞Tn − Iγ and Jγ = ∪n<∞Sn − Jγ , then Iγ and Jγ are countable, and it follows from
(2.2), (2.3), and (2.5) that (i)− (iii) hold for α = γ.

Since each Iα and each Jα is nonempty, there must exist an ordinal δ such that Iδ = I and
Jδ = J .

Now for each α < δ, Kα+1 = Kα ⊕ Σj∈JαKj and Uα = Uα+1 ⊕ Σi∈IαAi.
Therefore taking in (2.7) successive values of γ, say γ = α and γ = α+ 1, we obtain

M = B ⊕Kα ⊕Wα ⊕ Uα+1 ⊕ Σi∈IαAi (2.8)

and
M = B ⊕Kα ⊕Wα+1 ⊕ Uα+1 ⊕ Σj∈JαKj (2.9)

Moreover, Soc(Wα) ⊆ Soc(Wα+1), and we infer from Lemma 2.5 that there exists a submodule
Nα of Wα+1 such that

M = B ⊕Kα ⊕Wα ⊕ Uα+1 ⊕Nα ⊕ Σj∈JαKj (2.10)

One consequence of (2.9) and (2.10) is that Soc(Wα) ⊕ Soc(Nα) = Soc(Wα+1) for all α < δ.
Since W0 = 0, a transfinite induction yields

Soc(Wα) = Σβ<αSoc(Nβ) (2.11)

Set Nα = Σβ<αNβ for each α ≤ δ. If Nα is an h-pure submodule of M , then it follows from
(2.10), (2.11), and Lemma 2.4 that Nα+1 is a direct summand and hence an h-pure submodule
of M . And Again a transfinite induction yields that Nα is h-pure in M for all α ≤ δ. If
γ = δ is substituted in (2.7), we obtain that M = B ⊕ Lδ ⊕ Wδ, and as Nδ is h-pure and
Soc(Nδ) = Soc(Wδ), it follows by Lemma 2.4 that

M = B ⊕Kδ ⊕Nδ = B ⊕Kδ ⊕ Σα<δNδ (2.12)

Comparing (2.4) and (2.12) we infer that

L ∼= B ⊕ Σα<δNδ (2.13)

and comparing (2.9) and (2.10) we infer that

Σi∈IαAi
∼= Nα ⊕ Σj∈JαKj (2.14)

The two decompositions of (2.14) have isomorphic refinements by (2d) for all α < δ, and this
fact, together with (2.13), imply that the decompositions (2.4) possess isomorphic refinements,
completing the proof of the theorem. 2

3 Stiff modules and loose socles

We start here with a few more definitions.

Definition 3.1. Let M be a QTAG-module. Then M is called essentially indecomposable if
whenever M =M1 ⊕M2, either M1 or M2 is bounded.
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Definition 3.2. A QTAG-module M is said to be stiff if for every endomorphism ψ of M there
is a decomposition M = M1 ⊕M2 and an integer t such that M1 is bounded and ψ(x) = tx for
all x ∈ Soc(M2).

From the above definitions, the following lemmas are immediate:

Lemma 3.3. If M and M ′ are both essentially indecomposable QTAG-modules, if the basic
submodules of M and M ′ are isomorphic, and if M has an unbounded direct summand which is
isomorphic to a direct summand of M ′, then M ∼=M ′.

Lemma 3.4. Every stiff QTAG-module is essentially indecomposable.

With the help of the above discussion we are able to infer the following result.

Lemma 3.5. Every stiff QTAG-module has the exchange property.

Proof. Let M be a stiff QTAG-module, and suppose that P is a module such that

P =M ⊕Q = A1 ⊕A2.

Suppose that φk is an isomorphism of Ak into M for k = 1, 2. Let ϕk denote the projection
of P onto Ak, let ϕ′k denote the restriction of ϕk to M , and let ψk = φkϕ

′
k (k = 1, 2). Then

each ψk is an endomorphism of M , and hence there exist a decomposition M = M1 ⊕M2 and
integers t1 and t2 such that M1 is bounded and, for each k, ψk(x) = tkx all x ∈ Soc(M2). Now
we may assume that φ1ϕ1(x) = φ1ϕ

′
1(x) = x, all x ∈ Soc(M2). It follows that the restriction

of ϕ1 to M2 is one-one, and that ϕ1 restricted to Soc(M2) preserves heights. Set N = ϕ1(M2)
and K = φ1(N). Then as elements of exponent one have the same height in N or K as in P ,
N and K are h-pure submodules of P . Furthermore, Soc(M2) = Soc(K), and consequently
by Lemma 2.4, we get M = M1 ⊕ K. Now φ1(N) = K ⊆ φ1(A1) ⊆ M , and therefore
φ1(A1)/φ1(N) is bounded. Hence A1/N is bounded, and it follows that N is a direct summand
of A1, say A1 = N ⊕ L. If ϕ is the projection of P onto N determined by the decomposition
P = N ⊕ L ⊕ A2, then the restrictions of ϕ and ϕ1 to Soc(M2) are equal. Thus by Lemma 2.3,
we get

P =M1 ⊕M2 ⊕Q =M2 ⊕ L⊕A2.

and an application of (2a) and (2e) completes the argument. 2

Analysis. Let c denote the cardinal of the continuum. Let C be a closed module and B is a
basic submodule of C such that d(Hω(Bi)) = i, for all i. Then there exist an h-pure submodule
T of C which contains B, and an element c ∈ Soc(C) which is not contained in T such that the
following condition is satisfied:

(∗) If U and V are h-pure submodules of C both containing T and such that c /∈ V , and if ψ
is a homomorphism of U into V , then there exist a decomposition U =M1 ⊕M2 and an integer
t such that M1 is bounded, and ψ(x) = tx for all x ∈ Soc(M2).

Moreover, there exist 2c distinct h-pure submodules Ui (i ∈ I) such that Ui ⊇ T , c /∈ Ui

and Ui = Uj if and only if Soc(Ui) = Soc(Uj), (i, j ∈ I). In view of (∗), each Ui is certainly
stiff. Furthermore, there is an isomorphism of Ui into Uj only if Soc(Ui) ⊆ Soc(Uj), and hence
distinct modules of the family Ui (i ∈ I) are nonisomorphic. Now applying Theorem 2.6, in
conjunction with Lemmas 3.3-3.5, to the direct sums of the modules Ui (i ∈ I), we obtain the
following result.

Theorem 3.6. If µ is a cardinal such that c ≤ µ ≤ 2c, then there are 2µ nonisomorphic QTAG-
modules without elements of infinite height and of cardinal µ.

Motivated by stiff modules, we introduce the following:

Definition 3.7. Let M be a QTAG-module. An h-dense subsocle S of M is said to be loose if
whenever ψ ∈ End(M) and ψ(S) ⊆ S there exists an integer t < ω such that ψ|Soc(Ht(M)) is
multiplication by an integer.

It is obvious that a module M is stiff if it has a loose socle.
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Now we are able to prove the following.

Theorem 3.8. Let M be a QTAG-module such that M1 = 0, M has a countably generated
basic submodule and g(M/M) < 2ℵ0 ; where M is the closure of M . Then M contains a loose
subsocle of M and, consequently, an h-pure, h-dense stiff submodule.

Proof. Since M has a countably generated basic submodule, End(M) has cardinality of the
continuum. Let F be the family of all ψ ∈ End(M) such that, for every t < ω, ψ|Soc(Ht(M))
is not multiplication by an integer. We need only find an h-dense subsocle S of M such that
ψ(S) * S for all ψ ∈ F . Such an S will be a loose subsocle of M , and if K is maximal among
the submodules of M supported by S, then K is an h-pure, h-dense submodule of M . Since M
is also the closure of any such K, K will be stiff.

In order to construct S, we first fix a well-ordering {ψα}α<β of F where β does not exceed
the first ordinal having cardinality of the continuum. Let U = Soc(B) where B is a basic
submodule of M and z be a fixed element of Soc(M) not contained in U . We wish to find
two families {xα}α<β and {yα}α<β of elements of Soc(M) such that (i) ψα(xα) = yα + z
for all α < β and (ii) the submodule S generated by U and all the xα’s and yα’s has a direct
decomposition S = U⊕

⊕
α<β[⟨xαR⟩⊕⟨yαR⟩] and does not contain z. We proceed by induction.

Suppose γ < β and that for each α < γ we have an xα and yα satisfying (i) and such that the
submodule V generated by U and all the xα’s and yα’s with α < γ has the direct decomposition
V = U ⊕

⊕
α<γ [⟨xαR⟩ ⊕ ⟨yαR⟩] and z /∈ V . We wish to find an xγ ∈ Soc(M) such that

⟨V, (xγψγ(xγ))R⟩ does not contain z and has the direct decomposition V ⊕⟨xγR⟩⊕⟨ψγ(xγ)R⟩.
Assume that no such xγ exists and write Soc(M) = V ⊕ ⟨zR⟩ ⊕ T . Then for each a ∈ T there
exists b ∈ V ⊕ ⟨zR⟩ and a positive integer k such that ψγ(a) = b + ka. It is easily seen that
the integer k is independent of the choice of a. Thus the endomorphism ϕ = k − ψγ maps
T into the submodule V ⊕ ⟨zR⟩ which has cardinality less than that of the continuum. Since
g(Soc(M)/Soc(M)) < 2ℵ0 , we then conclude that g(ϕ(M)) < 2ℵ0 . Therefore, there exists
t < ω such that Soc(Ht(M)) ⊆ Kerϕ, which contradicts the fact that ψγ ∈ F . The desired xγ
exists and we set yγ = ψγ(xγ)− z.

We conclude then that there exists an S = U ⊕
⊕

α<β[⟨xαR⟩ ⊕ ⟨yαR⟩]Soc(M) such that
z /∈ S and, for each α, ψα(xα) = yα + z. S is an h-dense subsocle of M (and, consequently, an
h-dense subsocle of M ) since U is an h-dense subsocle of M . Since ψα(xα) = yα + z /∈ S for
each α, we have that ψ(S) * S for all ψ ∈ F . 2

Along similar lines we have the following theorem.

Theorem 3.9. Let M a QTAG-module. If the closure M of M is an unbounded closed module
with a countably generated basic submodule and if N is a countably generated submodule of M ,
then M contains a loose subsocle S such that S ∩N = 0.

4 Applications

The Ulm-sequence of x is defined as U(x) = (H(x), H(x1), H(x2), . . . ). This is analogous
to the U -sequences in groups [1]. These sequences are partially ordered because U(x) ≤ U(y)
if H(xi) ≤ H(yi) for every i. Ulm invariants and Ulm sequences play an important role in
the study of QTAG-modules. Using these concepts transitive and fully transitive modules were
defined in [7]. A QTAG-module M is fully transitive if for x, y ∈ M , U(x) ≤ U(y), there is
an endomorphism ψ of M such that ψ(x) = ψ(y) and it is transitive if for any two elements
x, y ∈ M , with U(x) ≤ U(y), there is an automorphism ϕ of M such that ϕ(x) = ϕ(y). It is
well known that countably generated h-reduced QTAG-modules and QTAG-modules without
element of infinite height (i.e. Hω(M) = 0) are both transitive and fully transitive. The question
of whether all QTAG-modules are transitive or fully transitive was unanswered. But some results
were given of QTAG-modules that are neither transitive nor fully transitive earlier in [3]. Here
we continue the similar study of modules that are neither transitive nor fully transitive with the
aid of stiff modules and modules with loose socles.
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We need the following lemma.

Lemma 4.1. Let M a QTAG-module such that either (i) M/M1 is stiff or (ii) M has a high
submodule having a loose socle. If ψ ∈ End(M) and if x ∈ M1, then there is an integer t such
that ψ(x)− tx ∈ H1(M1).

Proof. Let ψ ∈ End(M/M1) be defined by ψ(y +M1) = ψ(y) +M1.
(i) Suppose that M/M 1 is stiff. Then choose t and k such that ψ|Soc(Hk(M/M1)) is

multiplication by t. Let z ∈ Hk(M) − M1 be such that d
(
zR

xR

)
= 1. Then z + M 1 ∈

Soc(Hk(M/M 1)) and therefore (ψ(z) − tz) = u ∈ M1. Thus (ψ(x) − tx) = v ∈ H1(M1)

where d
(
vR

uR

)
= 1.

(ii) Suppose that M has a high submodule N such that N has a loose socle. Let σ : M →
M/M1 be the canonical map. It is easily seen that ψ(σ(Soc(N))) ⊆ σ(Soc(N)). Since σ|N
is an isomorphism of N onto an h-pure, h-dense submodule of M/M1, the closure of M/M1

is also the closure of σ(N) ∼= N . Therefore σ(Soc(N)) is a loose subsocle of M/M1. Thus
there is k < ω such that ψ|Soc(Hk(M/M 1)) is multiplication by an integer. The proof is now
completed as in the first case. 2

Remark 4.2. If N and K are high submodules of M , it is easily verified that σ(Soc(N)) =
σ(Soc(K)). Consequently, every high submodule of M has a loose socle if one does.

Theorem 4.3. Let M be an h-reduced QTAG-module such that either (i)M/M1 is stiff or (ii)
M has a high submodule with a loose socle. Then

(a) if M1 is the direct sum of two or more uniserial modules, then M is neither transitive nor
fully transitive; and

(b) if M1 is not uniserial, then M is not fully transitive.

Proof. (a) Suppose M1 =
⊕

i∈I⟨xiR⟩. Then H1(M1) = 0 and each xi has (ω,∞,∞, . . . ) as its
Ulm sequence. However, if i ̸= j, there is no endomorphism of M mapping xi to xj . Indeed,
Lemma 4.1 implies that each ⟨xiR⟩ is a fully invariant submodule of M .

(b) Assume that M1 is not uniserial. Then there exist elements x and y in M1 such that
⟨xR, yR⟩ = ⟨xR⟩ ⊕ ⟨yR⟩ is an h-pure submodule of M1 and UM (x) ≤ UM (y). We shall
show that ψ(x) ̸= y for all ψ ∈ End(M). If ψ ∈ End(M), we have, by Lemma 4.1, that
ψ(x)− tx ∈ H1(M 1) and y /∈ x+H1(M1) because of the h-purity of ⟨xR⟩ ⊕ ⟨yR⟩ in M1. 2

Theorem 4.4. Let M a QTAG-module. If the closure M of M is an unbounded closed module
with a countably generated basic submodule and suppose N is an h-pure submodule such that
M/N is an h-divisible module of cardinality less than 2ℵ0 . Then if L is a non-uniserial h-reduced
QTAG-module with a countably generated basic submodule, there exists a QTAG-module P
such that (i) P/P 1 ∼= N (ii) P 1 = L (iii) P is not fully transitive.

Proof. It is clear that the proof of Theorem 3.8 can be slightly modified so as to yield a loose
subsocle S of M contained in N and such that Soc(N)/S is countably generated. Then, if E is
the injective envelope of L and if K is an h-pure submodule of N supported by S, N/K ∼= E/L.
Let P be a subdirect sum of N and E with kernels K and L. Then it follows that P/P 1 ∼= N ,
P 1 = L and K is a high submodule of P . Since K has a loose socle, the desired conclusion
follows from Theorem 4.3. 2

We close the study with

5 Concluding discussion

We construct a counter example to a conjecture due to Mehdi et al. [4]. Recall that two QTAG-
modules M , M ′ are quasi-isomorphic (denoted by M ∼̇= M ′) if there exist submodules N and
N ′ of M and M ′, respectively, such that N ∼= N ′ and M/N and M ′/N ′ are bounded. They
have raised the following question: Let M and M ′ be two quasi-isomorphic QTAG-modules
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such that M/M 1 ∼= M ′/M ′1. What are the conditions under which M ∼= M ′? Although an
affirmative answer can be given when M/M1 is a direct sum of uniserial modules, the answer
is in the negative for the general case. On the basis of techniques already used in this paper, we
construct a module M with the following properties: M/M1 ∼= M , M 1 ∼= M and M contains
a high submodule having a loose socle, where M is the closure of M . An argument similar
to that M is isomorphic to no proper submodule of itself. We then have M ∼̇= H1(M) and
M/M1 ∼=M ∼= H1(M) ∼= H1(M/M1) = H1(M)/(H1(M))1, but M � H1(M).
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