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Abstract Cone associated with a Banach frame has been defined and studied. A sufficient
condition and a necessary condition for a cone associated with a Banach frame to be a generating
cone has been given. Also, we prove that a cone associated with an exact Banach frame neces-
sarily has an unbounded base and an extremal subset but it has no weakly compact (compact)
base. Finally, we prove that, in a reflexive Banach space, if the cone associated with an exact
Banach frame is normal and generating, then the Banach space X has an unconditional basis.

1 Introduction

Dennis Gabor [19] in 1946 gave a fundamental approach to signal decomposition in terms of
elementary signals. Later, in 1952, Duffin and Schaeffer [14] abstracted Gabor’s method to
define frames for Hilbert spaces. Let H be a real (or complex) separable Hilbert space with inner
product ⟨., .⟩. A countable sequence {fn} ⊂ H is called a frame ( or Hilbert frame ) for H, if
there exist numbers A, B > 0 such that

A∥f∥2
H ≤

∞∑
n=1

|⟨f, fn⟩|2 ≤ B∥f∥2
H, for all f ∈ H. (1.1)

The scalars A and B are called the lower and upper frame bounds of the frame, respectively.
These bounds are not unique. The inequality in (1.1) is called the frame inequality of the frame.
For more details related to frames and Riesz bases in Hilbert spaces, one may refer to [6, 10].
These ideas did not generate much interest outside of non-harmonic Fourier series and signal pro-
cessing for more than three decades until Daubechies, Grossmann and Meyer [12] reintroduced
frames. After this land mark paper the theory of frames begin to be studied widely and found
new applications to wavelet and Gabor transforms in which frames played an important role.
Frames are generalizations of orthonormal bases in Hilbert spaces. The main property of frames
which makes them useful is their redundancy. Representation of signals using frames is advan-
tageous over basis expansions in a variety of practical applications in science and engineering.
In particular, frames are widely used in sampling theory [2, 15], wavelet theory [13], wireless
communication [23, 29], signal processing [8], image processing [27], pseudo-differential oper-
ators [22], filter banks [4], geophysics [11], quantum computing [16], wireless sensor network
[24], coding theory [30] and many more. The reason for such wide applications is that frames
provide both great liberties in design of vector space.

Banach frames were developed for the theory of frames in the context of Gabor and Wavelet
analysis. They were introduced by Gröchenig [20] as an extension of frames for Hilbert spaces
and were further studied in [6, 7, 9, 10, 17]. Banach frames are used in applied mathematics
that provides applications to signal and image processing, sampling theory, etc. The sampling
theory in [1] amounts to the construction of Banach frames consisting of reproducing kernels for
a large class of shift invariant spaces. Aldroubi et al. [2] used Banach frames in various irregular
sampling problems. Gröchenig [21] emphasised that localization of a frame is a necessary con-
dition for its extension to a Banach frame for the associated Banach spaces. He also observed
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that localized frames are universal Banach frames for the associated family of Banach spaces.
Fornasier [18] studied Banach frames for α-modulation spaces. In fact, he gave a Banach frame
characterization for the α-modulation spaces. Carando et al. [5] relate Banach frames to vari-
ous properties of Banach spaces such as separability and reflexivity. They also observed that a
Banach frame for a Banach space with respect to a solid space admits a reconstruction formula
whenever the Banach space does not contain a copy of c0.
The notion of cone in Banach spaces or normed linear spaces had been studied by many authors
in various contexts [26, 3]. In the present paper, we relate Banach frames to another geometric
notion called cone and associated it with Banach frames and obtain interesting and new results
in the context of Banach frames. In fact, we obtain a sufficient condition and a necessary con-
dition for a cone associated with a Banach frame to be a generating cone. Also, we prove that a
cone associated with an exact Banach frame necessarily has an unbounded base and an extremal
subset but it has no weakly compact (compact) base. Finally, we prove that, in a reflexive Ba-
nach space, if the cone associated with an exact Banach frame is normal and generating, then the
Banach space X has an unconditional basis.

2 Preliminaries

Throughout this paper X will denotes an infinite dimensional real Banach space, X ∗ denotes the
conjugate space of X . For a sequence {xn} ∈ X and {fn} ∈ X ∗, [xn] denotes the closure of lin-
ear span of {xn} in the norm topology of X and [̃fn] the closure of {fn} in the weak∗−topology
of X ∗. A sequence space S is called a BK-space if it is a Banach space and the co-ordinate func-
tionals are continuous on S i.e. the relations xn = {αj

(n)}, x = {αj} ∈ S and lim
n−→∞

xn = x

imply lim
n−→∞

α
(n)
j = αj (j = 1, 2, 3, ...). The notion of Banach frames was introduced and

studied by Gröcheing [20]. He gave the following definition:

Definition 2.1. [20] Let X be a Banach space over K (R,C)and Xd be an associated Banach
space of scalar-valued sequences, indexed by N. Let {fn} ⊂ X ∗ and S : Xd −→ X be given.
Then Φ = ({fn}, S) is called a Banach frame for X with respect to Xd if the following
statements holds:

(i) {fn(x)} ∈ Xd, for each x ∈ X .

(ii) There exist positive constants A and B with 0 < A ≤ B <∞ such that

A∥x∥X ≤ ∥{fn(x)}∥Xd
≤ B∥x∥X , x ∈ X . (2.1)

(iii) S is a bounded linear operator such that

S({fn(x)}) = x, x ∈ X .

The positive constants A and B, respectively, are called lower and upper frame bounds of the
Banach frame Φ = ({fn}, S). The operator S : Xd −→ X is called the reconstruction operator
(or, the pre-frame operator). The inequality (2.1) is called the frame inequality. The Banach
frame Φ = ({fn}, S) is called tight if A = B and is called normalized tight if A = B = 1.

A Banach frame Φ = ({fn}, S) is called exact if there exists a sequence {xn} ∈ X such that
fi(xj) = δi,j , for all i, j ∈ N. The sequence {xn} is called an admissible sequence to the
Banach frame Φ. Next, we give the following result in the form of a lemma which will be used
throughout the paper.

Lemma 2.2. [25] . Let X be a Banach space and {fn} ⊂ X ∗ be a sequence such that
{x ∈ X : fn (x) = 0, for all n ∈ N} = {0}. Then X is linearly isometric to the Banach space
Xd = {{fn (x)} : x ∈ X}, where the norm is given by ∥{fn(x)}∥Xd

= ∥x∥X , x ∈ X .
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3 Main Result

Let X be a real Banach space and let Φ = ({fn}, S) ({fn} ⊂ X ∗, S : Xd −→ X ) be a
Banach frame for X . Define CΦ = {x ∈ X : fn(x) ≥ 0, for all n ∈ N}. Then CΦ is a
cone associated with the Banach frame Φ and satisfies the following properties:

(i) CΦ is a closed set satisfying

CΦ + CΦ ⊂ CΦ and λCΦ ⊂ CΦ (λ ≥ 0)

(ii) CΦ ∩ (−CΦ) = {0}.

Definition 3.1. The cone CΦ associated with a Banach frame Φ is called

(a) generating if

X = {y − z : y, z ∈ CΦ}

(b) normal if there exists a constant L > 0 such that

0 ≤ x ≤ y ⇒ ∥x∥ ≤ L∥y∥; x, y ∈ X .

Recall that the cone CΦ induces a natural partial order relation on X namely x ≥ y if and only if
x− y ∈ CΦ.
A subset B of CΦ is called a base of CΦ if it is closed and convex and if for every x ∈ CΦ \ {0}
has a unique representation of the form x = λy, λ > 0, y ∈ B.
A set E contained in CΦ is called an extremal subset of CΦ if x, y ∈ CΦ with λx+(1−λ)y ∈ E
and (0 ≤ λ ≤ 1) imply x, y ∈ E .

In the following examples, we show the existence of normal and generating cones.

Example 3.2. Let X = c0. Define {xn} ⊂ X and {fn} ⊂ X ∗ by

xn = (1, 1, ...1︸ ︷︷ ︸
n−terms

, 0, 0, ...), n ∈ N,

fn(x) = ηn − ηn+1, for all x = {ηn} ∈ X .

Then, by Lemma 2.2, there exists an associated Banach space Xd = {fn(x) : x ∈ X} with norm
given by ∥{fn(x)}∥Xd

= ∥x∥X , x ∈ X and a bounded linear operator S : Xd −→ X such that
Φ = ({fn}, S) is a Banach frame for X . Define

CΦ = {x = {ηn} ∈ X : η1 ≥ η2 ≥ η3...}.

Then CΦ is a cone associated with the Banach frame Φ. Also, note that if x = {ηn} and y = {ξn}
are any two elements in X such that 0 ≤ x ≤ y. Then

∥x∥ = sup
1≤n<∞

|ηn| ≤ sup
1≤n<∞

|ξn| = ∥y∥.

Thus CΦ is a normal cone.

Example 3.3. Let X = c0 and let {en} be the sequence of standard unit vectors in X . Define
{xn} ⊂ X and {fn} ⊂ X ∗ by

xn =
n∑

i=1

(−1)n+iei, n ∈ N

and

fn(x) = ηn + ηn+1, for all n ∈ N and x = {ηn} ∈ X .
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Then, by Lemma 2.2, there exists an associated Banach space Xd = {fn(x) : x ∈ X} and a
bounded linear operator S : Xd −→ X such that Φ = ({fn}, S) is a Banach frame for X . Define

CΦ = {x = {ηn} ∈ c0 : η1 + η2 ≥ 0, η2 + η3 ≥ 0, ....}.

Then CΦ is a cone associated with the Banach frame Φ. Also, let x = {ηn} ∈ c0 be any arbitrary
element. Write ηn = ϕn − ψn, n ∈ N, where ϕn ≥ 0 and ψn ≥ 0. Then y = {ϕn} ∈ CΦ
and z = {ψn} ∈ CΦ are such that every x ∈ X can be expressed as x = y − z. Hence CΦ is a
generating cone.

The following result gives a sufficient condition for a cone associated with a Banach frame
to be a generating cone.

Theorem 3.4. Let Φ = ({fn}, S) be a Banach frame for X with associated cone CΦ. If for every
x ∈ X , there exists an element z ∈ X such that

fn(z) = |fn(x)|, for all n ∈ N, (3.1)

then the cone CΦ is generating.

Proof. Let x ∈ X be any element and let z ∈ X satisfies (3.1). Write c1 = x+z
2 and c2 = −x+z

2 .
Then c1 − c2 = x. Thus, in order to show that CΦ is generating , we need to show that fn(ci) ≥
0, for all n ∈ N and i = 1, 2. Note that, for all n ∈ N, fn(c1) =

1
2(fn(x) + |fn(x)|) ≥ 0 and

fn(c2) =
1
2(−fn(x) + |fn(x)|) ≥ 0. Hence CΦ is generating.

Remark 3.5. The converse of Theorem 3.4 is not true.(see the following example)

Example 3.6. Let CΦ be the cone associated with the Banach frame Φ as given in Example 3.3.
Note that Φ is a generating cone. We claim that the condition (3.1) in Theorem 3.4 is not satisfied.
Suppose on the contrary that for every x = {ηn} ∈ X there exists an element z = {ξn} ∈ X
such that fn(z) = |fn(x)|, for all n ∈ N. Then

∞∑
i=1

(−1)i|ηi + ηi+1| =
∞∑
i=1

(−1)i|fi(x)|

=
∞∑
i=1

(−1)i(ξi + ξi+1)

= −ξ1.

Thus, for every x = {ηn} ∈ X , the infinite series
∞∑
i=1

(−1)i|ηi + ηi+1| is convergent. But if we

choose

η1 = 0 and η2n = −η2n+1 =
∞∑

i=n+1

(−1)i

i
, n ∈ N,

then x = {ηn} ∈ X is such that

|η2n + η2n+1| = 0 and |η2n+1 + η2n+2| =
1

n+ 1
.

Hence
∞∑
i=1

(−1)i|ηi + ηi+1| → −∞, a contradiction.

Next, we give a necessary condition for a generating cone associated with an exact Banach
frame Φ satisfying certain conditions.

Theorem 3.7. Let CΦ be the cone associated with an exact Banach frame Φ = ({fn}, S) with
admissible sequence {xn} ⊂ X . If CΦ is a generating cone and if for every x ∈ CΦ, the set
CΦ ∩ (x− CΦ) is bounded (norm), then for every x ∈ X ,

sup
1≤n<∞

∥
n∑

i=1

fi(x)xi∥ <∞.
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Proof. Note that for n ∈ N and x ∈ CΦ, we have

fj(
n∑

k=1

fk(x)xk) =

{
fj(x), j = 1, 2, 3, ...n
0, j > n.

This gives

0 ≤
n∑

i=1

fi(x)xi ≤ x, for all n ∈ N, x ∈ CΦ.

Since CΦ ∩ (x− CΦ) is norm bounded, we have

0 ≤ ∥
n∑

i=1

fi(x)xi∥ <∞, for every x ∈ CΦ.

Let x ∈ X be any arbitrary element. Since CΦ is a generating cone, x = y − z, where y, z ∈ CΦ.
Hence, for every x ∈ X ,

sup
1≤n<∞

∥
n∑

i=1

fi(x)xi∥ ≤ sup
1≤n<∞

∥
n∑

i=1

fi(y)xi∥+ sup
1≤n<∞

∥
n∑

i=1

fi(z)xi∥

< ∞.

Next, we prove that a cone associated with an exact Banach frame necessarily has an un-
bounded base and an extremal subset but it has no weakly compact base.

Theorem 3.8. Let X be an infinite dimensional real Banach space, Φ = ({fn}, S) be an exact
Banach frame for X with admissible sequence {xn} ⊂ X and let CΦ be the cone associated with
Φ. Then

(a) CΦ has an unbounded base.

(b) CΦ has no weakly compact (compact) base.

(c) For each j ∈ N, the set Sj = {λxj : 0 ≤ λ <∞} is an extremal subset of CΦ.

Proof. (a) Define f ∈ X ∗ by

f(x) =
∞∑
k=1

1
2k∥fk∥

fk(x), x ∈ X

and A = {a ∈ CΦ : f(a) = 1}. Clearly A is a closed and convex set. We claim that A is
a base for CΦ. Let 0 ̸= x ∈ CΦ. Take y = x

f(x) . Then f(y) = 1. So y ∈ A. Now x = λy,

where λ = f(x) > 0. If x = λ1y1 = λ2y2, where λ1, λ2 > 0 and y1, y2 ∈ A, then f(x) =
λ1 = λ2. Therefore the representation x = λy is unique. Hence A is a base for CΦ. Write
an = 2n∥fn∥xn, n ∈ N. Since fi(xj) = δi,j , for all i, j ∈ N, ∥an∥ > 2n, for all n ∈ N.
Hence the base A is unbounded.

(b) Suppose that CΦ has a weakly compact base say B. Let {xn} be a sequence in CΦ such that
xn ̸= 0, n ∈ N. Then for each n, there exist λn > 0 and yn ∈ B such that xn = λnyn, n ∈
N. Also the representation of each xn is unique. By assumption, B is weakly sequentially
compact and so the sequence {yn} has a subsequence {ynk

} that converges weakly to an
element say y0 ∈ B. Note that fl(ynk

) = 0, for nk > l; l, k ∈ N. So lim
k→∞

fl(ynk
) = 0. This

gives fl(y0) = 0, for all l ∈ N. Therefore, by the lower frame inequality for the Banach
frame ({fn}, S), y0 = 0. This is a contradiction as B is a base to the cone CΦ. Hence, we
conclude that the cone CΦ has no weakly compact (or compact) base.
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(c) Suppose that a, b ∈ CΦ be any two elements such that α0a+(1−α0)b ∈ Sj (0 < α0 < 1).
Then α0a+ (1 − α0)b = λ0xj (λ0 ≥ 0). Therefore

α0fi(a) + (1 − α0)fi(b) =

{
λ0, if i = j

0, if i ̸= j.

Since a, b ∈ CΦ, for each i ∈ N, fi(a) ≥ 0 and fi(b) ≥ 0. Therefore fi(a) = 0 =
fi(b), for all i ̸= j. This gives fi(fj(a)xj − a) = 0, for all i ∈ N. Hence by the
Banach frame inequality for the Banach frame ({fn}, S), a = fj(a)xj ∈ Sj . Similarly,
b ∈ Sj . Hence Sj is an extremal subset of CΦ.

In the following result, we show that if the cone associated with an exact Banach frame is
both normal and generating then the admissible sequence to the exact Banach frame become an
unconditional basis of X provided X is reflexive.

Theorem 3.9. Let X be a reflexive Banach space and let Φ = ({fn}, S) be an exact Banach
frame with admissible sequence {xn} ∈ X . If the cone CΦ associated with Φ is normal and
generating, then {xn} is an unconditional basis of X .

Proof. Let x ∈ CΦ be any element. Define

Sn(x) =
n∑

i=1

fi(x)xi, n ∈ N.

Then, for each n ∈ N

fi(Sn(x)) =

{
fi(x), i = 1, 2, ..., n
0, for i = n+ 1, n+ 2, ....

Thus, for each i ∈ N, {fi(Sn(x))} is a bounded above and monotonically increasing sequence in
R. Therefore for each i ∈ N, lim

n→∞
fi(Sn(x)) exists. Since X is reflexive, lim

n→∞
f(Sn(x)) exists

for all f ∈ X ∗. Also, we have 0 ≤ Sn(x) ≤ x, n ∈ N. Since CΦ is normal, there exists a
constant L such that

∥Sn(x)∥ ≤ L∥x∥, for all n ∈ N.

Thus {Sn(x)} is a weak Cauchy sequence in X . Now X being reflexive is weakly complete.
Therefore Sn(x) converges weakly to some elements say s ∈ X . Thus, for each i ∈ N, we have

fi(s) = fi(x), for all i ∈ N.

Then, by the lower frame inequality for the Banach frame Φ = ({fn}, S), s = x. Thus, for
every x ∈ CΦ, {Sn(x)} converges weakly to x. Now, let x ∈ X be any arbitrary element.
Since CΦ is generating, we may write x = x1 − x2, where x1, x2 ∈ CΦ. Then

Sn(x) = Sn(x1)− Sn(x2), for all n ∈ N.

As x1, x2 ∈ CΦ, Sn(x1) and Sn(x2) converges weakly to x1 and x2 respectively. So Sn(x)
converges weakly to x. Consequently x ∈ [xn]. Therefore {xn} is a basis of X . Let Π denote the
set of all permutation on N and σ ∈ Π be any arbitrary elements of Π. Then, by Lemma 2.2, there
exist a Banach space Xσ(d) = {{fσ(n)(x)} : x ∈ X} with norm ∥{fσ(n)(x)}∥Xσ(d)

= ∥x∥X , x ∈
X and a bounded linear operator Sσ : Xσ(d) −→ X such that ({fσ(n)}, Sσ) is an exact Banach
frame for X with admissible sequence {xσ(n)}. Thus {xσ(n)} is a basis of X . Hence {xn} is an
unconditional basis of X .

Finally, towards the converse of the Theorem 3.9, we prove the following result.
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Theorem 3.10. Let X be a real Banach space and let Φ = ({fn}, S) be an exact Banach frame
with admissible sequence {xn} ∈ X . Then {xn} is an unconditional basis of X with associated
sequence of coefficient functional {fn} if and only if the cone CΦ associated with Φ is normal,
generating and

0 ≤ η1 ≤ η2 ≤ ...,≤ η ⇒ {ηn} is norm convergent. (3.2)

Proof. Suppose first that CΦ is generating and the relation (3.2) holds. Let x ∈ CΦ be any
arbitrary element. Define

Sn(x) =
n∑

i=1

fi(x)xi, n ∈ N.

Then, for each i ∈ N, we have

0 ≤ Sn(x) ≤ Sn+1(x) ≤ ... ≤ x.

Therefore, by relation (3.2), lim
n→∞

Sn(x) exists. Let lim
n→∞

Sn(x) = x0 ∈ X . Then, for each i ∈ N,
we have

fi(x) = fi(x0), for all i ∈ N.

Then, by the lower frame inequality for the Banach frame Φ, x = x0. So lim
n→∞

Sn(x) = x. Now
let x ∈ X be arbitrary, since CΦ is generating x = x1 − x2, where x1, x2 ∈ CΦ. Then, for each
x ∈ X , we have

lim
n→∞

Sn(x) = lim
n→∞

Sn(x1)− lim
n→∞

Sn(x2)

= x1 − x2

= x.

Thus {xn} is a basis of X . Further, it is easy to verify that {xn} is an unconditional basis of X .
Conversely, let x, y ∈ X be such that 0 ≤ x ≤ y. Then for each i ∈ N, 0 ≤ fi(x) ≤ fi(y).
Therefore, for each i ∈ N, there exists a real no λi (0 ≤ λi ≤ 1) such that

fi(x) = λifi(y), i ∈ N. (3.3)

Since {xn} is an unconditional basis of X with associated sequence of coefficient functional
{fn}, we have

x = lim
n→∞

n∑
i=1

fi(x)xi

Therefore using (3.3) one can find a constant L > 0 such that ∥x∥ ≤ L∥y∥. Thus CΦ is normal.
Also, for every x ∈ X , there exists a z ∈ X such that fn(z) = |fn(x)|, n ∈ N. Then, by
Theorem 3.4, CΦ is generating.
Now, let 0 ≤ η1 ≤ η2 ≤ ... ≤ η. Then for each i ∈ N, we have 0 ≤ fi(ηn) ≤ fi(ηn+1) ≤ ... ≤
fi(η), n ∈ N. Clearly, lim

n→∞
fi(ηn) exist for each i ∈ N. Let lim

n→∞
fi(ηn) = αi (i ∈ N). Then

0 ≤ αi ≤ fi(η), i ∈ N. So

0 ≤
n+m∑
i=n+1

αixi ≤
n+m∑
i=n+1

fi(η)xi, for all n, m ∈ N.

Since the cone CΦ is normal, there exists a constant M > 0 such that

∥
n+m∑
i=n+1

αixi∥ ≤M∥
n+m∑
i=n+1

fi(η)xi∥, for all n, m ∈ N.
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Thus lim
n→∞

n∑
i=1

αixi exists (= a ∈ X ).

Finally, we prove that lim
n→∞

∥ηn − a∥ = 0. Let ϵ > 0 be given. Choose N such that

∥
∞∑

i=N+1

fi(η)xi∥ ≤ ϵ

3M
.

Since CΦ is normal, we have

max{∥
∞∑

i=N+1

fi(a)xi∥, ∥
∞∑

i=N+1

fi(ηn)xi∥} ≤ M∥
∞∑

i=N+1

fi(η)xi∥

<
ϵ

3
, for all n ∈ N.

Also, for each i ∈ N

fi(a) = fi( lim
n→∞

n∑
i=1

αixi)

= αi

= lim
n→∞

fi(ηn).

Thus, for each ϵ > 0, there exists a positive integer K such that

∥
N∑
i=1

(fi(a)− fi(ηn))xi∥ <
ϵ

3
, for all n ≥ K.

Therefore

∥ηn − a∥ = ∥
∞∑
i=1

(fi(a)− fi(ηn))xi∥

≤ ∥
N∑
i=1

[fi(a)− fi(ηn)]xi∥+ ∥
∞∑

i=N+1

fi(a)xi∥+ ∥
∞∑

i=N+1

fi(ηn)xi∥

< ϵ, for all n ≥ K.

Hence lim
n→∞

∥ηn − a∥ = 0.
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