A NOTE ON THE MINIMUM DOMINATING ENERGY OF A GRAPH

Hosamani S. M, Patil P. V and Malghan S. H
Communicated by Ayman Badawi

MSC 2010 Classifications: 05C50.
Keywords and phrases: dominating set, Energy, Minimum dominating energy.
The first-named author acknowledges the support by the Science and Engineering Research Board, New Delhi India under the Major Research Project No. SERB/F/4168/2012-13 Dated 03.10.2013.

Abstract

The minimum dominating energy of a graph has been reported recently in [15]. In this paper some new bounds for the minimum dominating energy $E_{D}(G)$ of a graph G are presented.

1 Introduction

The concept of energy of a graph was introduced by I. Gutman [6]. Let $G=(V, E)$ be a graph. The number of vertices of G we denote by n and the number of edges we denote by m, thus $|V(G)|=n$ and $|E(G)|=m$. For any integer $x,\lceil x\rceil$ is the largest integer greater than or equal to x. For undefined terminologies we refer the reader to [5].

For details on mathematical aspects of the theory of graph energy see the reviews [8], papers [$9,10,11,12$]. The basic properties including various upper bounds for energy of a graph have been established in [10, 11], and it is found remarkable chemical applications in the molecular orbital theory of conjugated molecules [7, 16].

2 The Minimum Dominating Energy

The minimum dominating matrix[15] has been defined as follows.
Definition 1. Let G be a simple graph of order n and size m. A subset D of V is called a dominating set if every vertex in $V-D$ is adjacent to at least one vertex in D. Any dominating set with minimum cardinality is called a minimum dominating set. Let D be any minimum dominating set of G. The minimum dominating matrix of G is the $n \times n$ matrix $A_{D}(G)=\left(a_{i, j}\right)$, where

$$
a_{i j}= \begin{cases}1, & \text { if } v_{i} v_{j} \in E \\ 1, & \text { if } i=j \text { and } v_{i} \in D \\ 0, & \text { otherwise }\end{cases}
$$

The characteristic polynomial of $A_{D}(G)$ is denoted by

$$
f_{n}(G, \lambda):=\operatorname{det}\left(\lambda I-A_{c}(G)\right)
$$

The minimum dominating eigenvalues of a graph G are the eigenvalues of $A_{D}(G)$. Since $A_{D}(G)$ is real and symmetric, its eigenvalues are real numbers and we label them in nonincreasing order $\lambda_{1} \geq \lambda_{2} \geq \cdots \geq \lambda_{n}$. The minimum dominating energy of G is then defined as

$$
E_{D}(G)=\sum_{i=1}^{n}\left|\lambda_{i}\right| .
$$

3 Main Results

For the sake of completeness, we mention below result which is important throughout the paper.

Lemma 3.1. [15] If $\lambda_{1}, \lambda_{2}, \cdots, \lambda_{n}$ are the eigenvalues of $A_{D}(G)$, then

$$
\begin{equation*}
\sum_{i=1}^{n}\left|\lambda_{i}\right|^{2}=2 m+|D| \tag{3.1}
\end{equation*}
$$

We need following result, which will be helpful to prove our result.
Theorem 1. [14] Suppose a_{i} and $b_{i}, 1 \leq i \leq n$ are positive real numbers, then

$$
\begin{equation*}
\sum_{i=1}^{n} a_{i}^{2} \sum_{i=1}^{n} b_{i}^{2} \leq \frac{1}{4}\left(\sqrt{\frac{M_{1} M_{2}}{m_{1} m_{2}}}+\sqrt{\frac{m_{1} m_{2}}{M_{1} M_{2}}}\right)^{2}\left(\sum_{i=1}^{n} a_{i} b_{i}\right)^{2} \tag{3.2}
\end{equation*}
$$

where $M_{1}=\max _{1 \leq i \leq n}\left(a_{i}\right) ; M_{2}=\max _{1 \leq i \leq n}\left(b_{i}\right) ; m_{1}=\min _{1 \leq i \leq n}\left(a_{i}\right)$ and $m_{2}=\min _{1 \leq i \leq n}\left(b_{i}\right)$

Theorem 2. Let G be a graph of order n and size m with $|D|=k$. Suppose zero is not an eigenvalue of $A_{D}(G)$. Then

$$
\begin{equation*}
E_{D}(G) \geq \frac{2 \sqrt{\lambda_{1} \lambda_{n}} \sqrt{(2 m+k) n}}{\lambda_{1}+\lambda_{n}} \tag{3.3}
\end{equation*}
$$

where λ_{1} and λ_{n} are minimum and maximum of the absolute value of $\lambda_{i}^{\prime} s$.
Proof. Suppose $\lambda_{1}, \lambda_{2}, \cdots, \lambda_{n}$ are the eigenvalues of $A_{D}(G)$. We assume that $a_{i}=\left|\lambda_{i}\right|$ and $b_{i}=1$, which by Theorem 1 implies

$$
\begin{aligned}
\sum_{i=1}^{n}\left|\lambda_{i}\right|^{2} \sum_{i=1}^{n} 1^{2} & \leq \frac{1}{4}\left(\sqrt{\frac{\lambda_{n}}{\lambda_{1}}}+\sqrt{\frac{\lambda_{1}}{\lambda_{n}}}\right)^{2}\left(\sum_{i=1}^{n}\left|\lambda_{i}\right|\right)^{2} \\
(2 m+k) n & \leq \frac{1}{4}\left(\frac{\left(\lambda_{1}+\lambda_{n}\right)^{2}}{\lambda_{1} \lambda_{n}}\right)\left(E_{D}(G)\right)^{2} \\
E_{D}(G) & \geq \frac{2 \sqrt{\lambda_{1} \lambda_{n}} \sqrt{(2 m+k) n}}{\lambda_{1}+\lambda_{n}}
\end{aligned}
$$

Theorem 3. [13] Let a_{i} and $b_{i}, 1 \leq i \leq n$ are nonnegative real numbers, then

$$
\begin{equation*}
\sum_{i=1}^{n} a_{i}^{2} \sum_{i=1}^{n} b_{i}^{2}-\left(\sum_{i=1}^{n} a_{i} b_{i}\right)^{2} \leq \frac{n^{2}}{4}\left(M_{1} M_{2}-m_{1} m_{2}\right)^{2} \tag{3.4}
\end{equation*}
$$

where M_{i} and m_{i} are defined similarly to Theorem 1.

Theorem 4. Let G be a graph of order n and size m with $|D|=k$, then

$$
\begin{equation*}
E_{D}(G) \geq \sqrt{(2 m+k) n-\frac{n^{2}}{4}\left(\lambda_{n}-\lambda_{1}\right)^{2}} \tag{3.5}
\end{equation*}
$$

where λ_{1} and λ_{n} are minimum and maximum of the absolute value of $\lambda_{i}^{\prime} s$.

Proof. Suppose $\lambda_{1}, \lambda_{2}, \cdots, \lambda_{n}$ are the eigenvalues of $A_{D}(G)$. We assume that $a_{i}=1$ and $b_{i}=\left|\lambda_{i}\right|$, which by Theorem 3 implies

$$
\begin{aligned}
\sum_{i=1}^{n} 1^{2} \sum_{i=1}^{n}\left|\lambda_{i}\right|^{2}-\left(\sum_{i=1}^{n}\left|\lambda_{i}\right|\right)^{2} & \leq \frac{n^{2}}{4}\left(\lambda_{n}-\lambda_{1}\right)^{2} \\
(2 m+k) n-\left(E_{D}(G)\right)^{2} & \leq \frac{n^{2}}{4}\left(\lambda_{n}-\lambda_{1}\right)^{2} \\
E_{D}(G) & \geq \sqrt{(2 m+k) n-\frac{n^{2}}{4}\left(\lambda_{n}-\lambda_{1}\right)^{2}}
\end{aligned}
$$

Theorem 5. [1] Suppose a_{i} and $b_{i}, 1 \leq i \leq n$ are positive real numbers, then

$$
\begin{equation*}
\left|n \sum_{i=1}^{n} a_{i} b_{i}-\sum_{i=1}^{n} a_{i} \sum_{i=1}^{n} b_{i}\right| \leq \alpha(n)(A-a)(B-b) \tag{3.6}
\end{equation*}
$$

where a, b, A and B are real constants, that for each $i, 1 \leq i \leq n, a \leq a_{i} \leq A$ and $b \leq b_{i} \leq B$. Further, $\alpha(n)=n\left\lfloor\frac{n}{2}\right\rfloor\left(1-\frac{1}{n}\left\lfloor\frac{n}{2}\right\rfloor\right)$.

Theorem 6. Let G be a graph of order n and size m with $|D|=k$. Let $\lambda_{1} \geq \lambda_{2} \geq \cdots \geq \lambda_{n}$ be a non-increasing arrangement of eigenvalues of $A_{D}(G)$. Then

$$
\begin{equation*}
E_{D}(G) \geq \sqrt{2 m n+n k-\alpha(n)\left(\left|\lambda_{1}\right|-\left|\lambda_{n}\right|\right)^{2}} \tag{3.7}
\end{equation*}
$$

where $\alpha(n)=n\left\lfloor\frac{n}{2}\right\rfloor\left(1-\frac{1}{n}\left\lfloor\frac{n}{2}\right\rfloor\right)$.
Proof. Suppose $\lambda_{1}, \lambda_{2}, \cdots, \lambda_{n}$ are the eigenvalues of $A_{D}(G)$. We assume that $a_{i}=\left|\lambda_{i}\right|=b_{i}$, $a=\left|\lambda_{n}\right|=b$ and $A=\left|\lambda_{1}\right|=b$, which by Theorem 5, implies

$$
\begin{equation*}
\left.\left|n \sum_{i=1}^{n}\right| \lambda_{i}\right|^{2}-\left(\sum_{i=1}^{n}\left|\lambda_{i}\right|\right)^{2} \mid \leq \alpha(n)\left(\left|\lambda_{1}\right|-\left|\lambda_{n}\right|\right)^{2} \tag{3.8}
\end{equation*}
$$

Since, $E_{D}(G)=\sum_{i=1}^{n}\left|\lambda_{i}\right|, \sum_{i=1}^{n}\left|\lambda_{i}\right|^{2}=2 m+k$, the above inequality becomes,

$$
(2 m+k) n-E_{D}(G)^{2} \leq \alpha(n)\left(\left|\lambda_{1}\right|-\left|\lambda_{n}\right|\right)^{2}
$$

wherefrom (7) follows.

Theorem 7. [4] Let a_{i} and $b_{i}, 1 \leq i \leq n$ are nonnegative real numbers, then

$$
\begin{equation*}
\sum_{i=1}^{n} b_{i}^{2}+r R \sum_{i=1}^{n} a_{i}^{2} \leq(r+R)\left(\sum_{i=1}^{n} a_{i} b_{i}\right) \tag{3.9}
\end{equation*}
$$

where r and R are real constants, so that for each $i, 1 \leq i \leq n$, holds, $r a_{i} \leq b_{i} \leq R a_{i}$.

Theorem 8. Let G be a graph of order n and size m with $|D|=k$. Let $\lambda_{1} \geq \lambda_{2} \geq \cdots \geq \lambda_{n}$ be a non-increasing arrangement of eigenvalues of $A_{D}(G)$. Then

$$
\begin{equation*}
E_{D}(G) \geq \frac{\left|\lambda_{1}\right|\left|\lambda_{n}\right| n+2 m+k}{\left|\lambda_{1}\right|+\left|\lambda_{n}\right|} \tag{3.10}
\end{equation*}
$$

where λ_{1} and λ_{n} are minimum and maximum of the absolute value of $\lambda_{i}^{\prime} s$.

Proof. Suppose $\lambda_{1}, \lambda_{2}, \cdots, \lambda_{n}$ are the eigenvalues of $A_{c}(G)$. We assume that $b_{i}=\left|\lambda_{i}\right|, a_{i}=1$ $r=\left|\lambda_{n}\right|$ and $R=\left|\lambda_{1}\right|$, which by Theorem 7 implies

$$
\begin{equation*}
\sum_{i=n}^{n}\left|\lambda_{i}\right|^{2}+\left|\lambda_{1}\right|\left|\lambda_{n}\right| \sum_{i=1}^{n} 1 \leq\left(\left|\lambda_{1}\right|+\left|\lambda_{n}\right|\right) \sum_{i=1}^{n}\left|\lambda_{i}\right| . \tag{3.11}
\end{equation*}
$$

Since, $E_{D}(G)=\sum_{i=1}^{n}\left|\lambda_{i}\right|, \sum_{i=1}^{n}\left|\lambda_{i}\right|^{2}=2 m+k$, from the above, inequality (10) directly follows from Theorem 7.

References

[1] M. Biernacki, H. Pidek, C. Ryll-Nardzewsk, Sur une inégalité entre des intégrales définies, Univ. Marie CurieÚSktoodowska A4, 1-4 (1950).
[2] V. Consonni, R. Todeschini, New spectral index for molecule description, MATCH Commun. Math. Comput. Chem. 60, 3-14(2008).
[3] D. M. Cvetković, P. Rowlinson, S. Simićc, Eigen spaces of graphs, Cambridge University Press (1997).
[4] J. B. Diaz, F. T. Metcalf, Stronger forms of a class of inequalities of G. PólyaÚG.Szegö and L. V. Kantorovich, Bull. Amer. Math. Soc. 69, 415-418(1963).
[5] F. Harary, Graph Theory, Addison-Wesely, Reading, (1969).
[6] I. Gutman, The energy of a graph, Ber. Math-Statist. Sekt. Forschungszentrum Graz 103, 1-22(1978).
[7] I. Gutman, O. E. Polansky, Mathematical Concepts in Organic Chemistry. Springer-Verlag, Berlin, (1986).
[8] I. Gutman, X. Li, J. Zhang, Graph Enrgy (Ed-s: M. Dehmer, F. Emmert), Streib., Analysis of Complex Networks, From Biology to Linguistics, Wiley -VCH, Weinheim 145-174(2009).
[9] I. Gutman, B. Zhou, Laplacian energy of a graph, Lin. Algebra Appl. 414, 29-37(2006).
[10] J.H. Koolen, V. Moulton, Maximal energy graphs, Adv. Appl. Math. 26, 47-52(2001).
[11] B. J. McClelland, Properties of the latent roots of a matrix: The estimation of π-electron energies, J. Chem. Phys. 54, 640-643(1971).
[12] I. Ž. Milovanovć, E. I. Milovanovć, A. Zakić, A short note on graph energy, MATCH Commun. Math. Comput. Chem. 72, 179-182(2014).
[13] N. Ozeki, On the estimation of inequalities by maximum and minimum values, J. College Arts Sci. Chiba Univ. 5, 199-203(1968), in Japanese.
[14] G. Polya, G. Szego, Problems and Theorems in analysis, Series, Integral Calculus, Theory of Functions, Springer, Berlin, (1972).
[15] M.R. Rajesh Kanna, B.N. Dharmendra, G. Sridhara, The minimum dominating energy of a graph, International Journal of Pure and Applied Mathematics, 85(4), 707-718(2013).
[16] N. Trinajstić, Chemical graph theory, CRC Press (1992).

Author information

Hosamani S. M, Department of Mathematics, Rani Channamma University, Belagavi 591156, India. E-mail: sunilkumar.rcu@gmail.com

Patil P. V, Department of Mathematics, Jain College of Engineering, Belagavi 591156, India. E-mail: prashant66.sdm@gmail.com

Malghan S. H, Department of Mathematics, SECAB's ARS Inamadar Arts, Science and Commerece College for Women, Vijayapura-586709, INDIA.
E-mail: malghan984@gmial.com
Received: October 20, 2016.
Accepted: April 9, 2017.

