TOTAL VERTEX IRREGULARITY STRENGTH OF SOME GRAPHS

P.Jeyanthi and A.sudha
Communicated by K. Zhao

MSC 2010 Classifications: 05C78.

Keywords and phrases: irregularity strength; total vertex irregularity strength;vertex irregular total labeling; cycle quadrilateral snake; triangular book;quadrilateral book.

Abstract

A vertex irregular total k-labeling of a graph G with vertex set V and edge set E is an assignment of positive integer labels $\{1,2, \ldots, k\}$ to both vertices and edges so that the weights calculated at vertices are distinct. The total vertex irregularity strength of G, denoted by $t v s(G)$ is the minimum value of the largest label k over all such irregular assignment. In this paper, we study the total vertex irregularity strength of cycle quadrilateral snake, sunflower, double wheel, fungus, triangular book and quadrilateral book.

1 Introduction

As a standard notation, assume that $G=(V, E)$ is a finite, simple and undirected graph with p vertices and q edges. A labeling of a graph is any mapping that sends some set of graph elements to a set of numbers (usually positive integers). If the domain is the vertex set (or) the edge- set, the labeling are called respectively vertex labeling (or) edge labeling. If the domain is $V \cup E$ then we call the labeling a total labeling. Chartrand et al. [6] introduced labelings of the edges of a graph G with positive integers such that the sum of the labels of edges incident with a vertex is different for all the vertices. Such labelings were called irregular assignments and the irregularity strength $s(G)$ of a graph G is known as the minimum k for which G has an irregular assignment using labels at most k. The irregularity strength $s(G)$ can be interpreted as the smallest integer k for which G can be turned into a multigraph G^{\prime} by replacing each edge by a set of at most k parallel edges, such that the degrees of the vertices in G^{\prime} are all different. Karonski et al. [8] conjectured that the edges of every connected graph of order at least 3 can be assigned labels from $\{1,2,3\}$ such that for all pairs of adjacent vertices the sums of the labels of the incident edges are different. Motivated by irregular assignments Bača et al. [5] defined a labeling $f: V(G) \cup E(G) \rightarrow\{1,2, \ldots, k\}$ to be a vertex irregular total k-labeling if for every two different vertices x and y the vertex-weights $w t_{f}(x) \neq w t_{f}(y)$ where the vertex-weight $w t_{f}(x)=f(x)+\sum_{x y \in E} f(x y)$. A minimum k for which G has a vertex irregular total k-labeling is defined as the total vertex irregularity strength of G and denoted by $t v s(G)$. It is easy to see that irregularity strength $s(G)$ of a graph G is defined only for graphs containing at most one isolated vertex and no connected component of order 2. On the other hand, the total vertex irregularity strength $t v s(G)$ is defined for every graph G. If an edge labeling $f: E \rightarrow\{1,2, \ldots, \delta(G)\}$ provides the irregularity strength $s(G)$, then we extend this labeling total labeling ϕ in such a way

$$
\begin{array}{lc}
\phi(x y)=f(x y) & \text { for every } x y \in E(G), \\
\phi(x)=1 & \text { for every } x \in V(G) .
\end{array}
$$

Thus, the total labeling ϕ is a vertex irregular total labeling and for graphs with no component of order ≤ 2 has $t v s(G) \leq s(G)$. Nierhoff [9] proved that for all (p, q)-graphs G with no component of order at most 2 and $G \neq K_{3}$ the irregularity strength $s(G) \leq p-1$. From this result it follows that

$$
\begin{equation*}
t v s(G) \leq p-1 \tag{1.1}
\end{equation*}
$$

Bača et al. [5] proved that if a tree T with n pendant vertices and no vertices of degree 2 , then $\left\lceil\frac{n+1}{2}\right\rceil \leq t v s(T) \leq n$. Additionally, they gave a lower bound and an upper bound on total vertex irregular strength for any graph G with v vertices and e edges,minimum degree δ and maximum degree $\Delta,\left\lceil\frac{|V|+\delta}{\Delta+1}\right\rceil \leq t v s(G) \leq|V|+\Delta-2 \delta+1$. In the same paper, they gave the total vertex irregular strengths of cycles, stars, and complete graphs, that is, $\operatorname{tvs}\left(C_{n}\right)=\left\lceil\frac{n+2}{3}\right\rceil, \operatorname{tvs}\left(K_{1, n}\right)=\left\lceil\frac{n+1}{2}\right\rceil$ and $\operatorname{tvs}\left(K_{n}\right)=2$. Ahmad et al. $[1,3]$ determined an exact value of the total vertex irregularity strength for wheel related graphs and cubic graphs. Wijaya et al. [16] determined an exact value of the total vertex irregularity strength for complete bipartite graphs. Wijaya and Slamin [15] found the exact values of $t v s$ for wheels, fans, suns and friendship graphs. Nurdin et al. [11] proved the following lower bound of $t v s$ for any graph G.
Theorem 1.1. Let G be a connected graph having n_{i} vertices of degree $i(i=\delta, \delta+1, \delta+2, \ldots, \Delta)$ where δ and Δ are the minimum and the maximum degree of G, respectively. Then

$$
\begin{equation*}
\operatorname{tvs}(G) \geq \max \left\{\left[\frac{\delta+n_{\delta}}{\delta+1}\right\rceil,\left\lceil\frac{\delta+n_{\delta}+n_{\delta+1}}{\delta+2}\right\rceil, \ldots,\left\lceil\frac{\delta+\sum_{i=\delta}^{\Delta}\left(n_{i}\right)}{\Delta+1}\right\rceil\right\} \tag{1.2}
\end{equation*}
$$

Also Nurdin et al. [11] posed the following conjecture.
Conjecture:1.2 [11] Let G be a connected graph having n_{i} vertices of a degree $i(i=\delta, \delta+$ $1, \delta+2, \ldots, \Delta$) where δ and Δ are the minimum and the maximum degree of G, respectively. Then

$$
\begin{equation*}
\operatorname{tvs}(G)=\max \left\{\left[\frac{\delta+n_{\delta}}{\delta+1}\right\rceil,\left\lceil\frac{\delta+n_{\delta}+n_{\delta+1}}{\delta+2}\right\rceil, \ldots,\left\lceil\frac{\delta+\sum_{i=\delta}^{\Delta}\left(n_{i}\right)}{\Delta+1}\right\rceil\right\} \tag{1.3}
\end{equation*}
$$

Conjecture 1.2 has been verified by several authors for several families of graphs. Nurdin et al. $[11,12]$ found the exact values of total vertex irregularity strength of trees, several types of trees and disjoint union of t copies of path. Slamin et al. [14] determined the total vertex irregularity strength of disjoint union of sun graphs. In [2] Ahmad, Bača and Numan determined the total vertex irregularity strength of disjoint union of friendship graphs. Ashfaq Ahmad et al. [4] found the exact value of the total vertex irregularity strength of ladder related graphs. We use the following definitions in the subsequent section.

Definition 1.2. The cycle quadrilateral snake $C Q_{n}$ is obtained from the cycle C_{n} by identifying each edge of C_{n} with an edge of C_{4}.

Definition 1.3. The sun flower graph $S F_{n}$ is obtained from the flower graph of F_{n} by adding n pendant edges to the central vertex. Thus the vertex set of $S F_{n}$ is $V\left(S F_{n}\right)=\left\{v, a_{i}, b_{i}, c_{i}: 1 \leq i \leq\right.$ $n\}$ and the edge set of $S F_{n}$ is $E\left(S F_{n}\right)=\left\{v a_{i}, v b_{i}, v c_{i}, a_{i} a_{i+1}, a_{i} b_{i}: 1 \leq i \leq n\right\}$ with indices taken modulo n.

Definition 1.4. A double-wheel graph $D W_{n}$ of size $4 n$ can be composed of $2 C_{n}+K_{1}$, that is it consists of two cycles of size n, where all the vertices of the two cycles are connected to a common hub.

Definition 1.5. A fungus graph $F g_{n}$ is obtained from a wheel $W_{n}, n \geq 3$ by attaching pendent vertices to the central vertex of W_{n}.

Definition 1.6. The book graph B_{m} is defined as the Cartesian product $S_{m} \times P_{2}$ where S_{m} is a star graph on $m+1$ vertices and P_{2} is the path graph on two vertices.

2 Main Results

In this section we determine exact values of the total vertex irregularity strength of cycle quadrilateral snake, sunflower, double wheel, fungus, triangular book and quadrilateral book.

Theorem 2.1. $\quad t v s\left(C Q_{n}\right)=\left\lceil\frac{2 n+2}{3}\right\rceil, n \geq 3$.
Proof. Let $V\left(C Q_{n}\right)=\left\{u_{i}, a_{i}, b_{i}: 1 \leq i \leq n\right\}$ and $E\left(C Q_{n}\right)=\left\{a_{i} b_{i}, u_{i} a_{i}, u_{i} u_{i+1}, b_{i} u_{i+1}: 1 \leq i \leq n\right\}$ with indices taken modulo n. Let $k=\left\lceil\frac{2 n+2}{3}\right\rceil$, then from (1.2) it follows that, $\operatorname{tvs}\left(C Q_{n}\right) \geq$ $\max \left\{\left\lceil\frac{2 n+2}{3}\right\rceil,\left\lceil\frac{3 n+2}{5}\right\rceil\right\}=\left\lceil\frac{2 n+2}{3}\right\rceil$. That is $t v s\left(C Q_{n}\right) \geq k$. To prove the reverse inequality, we define a function f from $V \cup E$ to $\{1,2,3, \ldots, k\}$ as follows:

$$
\begin{gathered}
f\left(u_{1}\right)=1 ; \\
f\left(u_{i}\right)= \begin{cases}k+1-i, & \text { if } 2 \leq i \leq k \\
1+i-k, & \text { if } k+1 \leq i \leq n ;\end{cases} \\
f\left(a_{i}\right)= \begin{cases}1, & \text { if } 1 \leq i \leq k \\
2 i-2 k+1, & \text { if } k+1 \leq i \leq n ;\end{cases} \\
f\left(b_{i}\right)= \begin{cases}1, & \text { if } 1 \leq i \leq k-1 \\
2+2 i-2 k, & \text { if } k \leq i \leq n ;\end{cases} \\
f\left(a_{i} b_{i}\right)= \begin{cases}i, & \text { if } 1 \leq i \leq k \\
k, & \text { if } k+1 \leq i \leq n ;\end{cases} \\
f\left(u_{i} a_{i}\right)= \begin{cases}i, & \text { if } 1 \leq i \leq k \\
k, & \text { if } k+1 \leq i \leq n ;\end{cases} \\
f\left(b_{i} u_{i+1}\right)= \begin{cases}i+1, & \text { if } 1 \leq i \leq k-1 \\
k, & \text { if } k \leq i \leq n ;\end{cases} \\
f\left(u_{i} u_{i+1}\right)=k, 1 \leq i \leq n .
\end{gathered}
$$

We observe that,

$$
\begin{gathered}
w t\left(a_{i}\right)=2 i+1,1 \leq i \leq n \\
w t\left(b_{i}\right)=2 i+2,1 \leq i \leq n ; \\
w t\left(u_{i}\right)= \begin{cases}3 k+2, & \text { if } i=1 \\
3 k+1+i, & \text { if } 2 \leq i \leq k \\
3 k+1+i, & \text { if } k+1 \leq i \leq n .\end{cases}
\end{gathered}
$$

It is easy to check that the weights of the vertices are distinct. This labeling construction shows
that $\operatorname{tvs}\left(C Q_{n}\right) \leq k$. Combining this with the lower bound, we conclude that $t v s\left(C Q_{n}\right)=k$. Figure 1 shows the vertex irregular total labeling of $C Q_{6}$.

Figure 1.tvs $\left(C Q_{6}\right)=5$.

Theorem 2.2. $\operatorname{tvs}\left(S F_{n}\right)=\left\lceil\frac{2 n+1}{3}\right\rceil, n \geq 3$.
Proof. Let $V\left(S F_{n}\right)=\left\{v, a_{i}, b_{i}, c_{i}: 1 \leq i \leq n\right\}$ and $E\left(S F_{n}\right)=\left\{v a_{i}, v b_{i}, v c_{i}, a_{i} a_{i+1}, a_{i} b_{i}\right.$: $1 \leq i \leq n\}$ with indices taken modulo n. Let $k=\left\lceil\frac{2 n+1}{3}\right\rceil$, then from (1.2) it follows that, $\operatorname{tvs}\left(S F_{n}\right) \geq \max \left\{\left\lceil\frac{n+1}{2}\right\rceil,\left\lceil\frac{2 n+1}{3}\right\rceil,\left\lceil\frac{2 n+1}{4}\right\rceil,\left\lceil\frac{3 n+1}{5}\right\rceil\right\}=\left\lceil\frac{2 n+1}{3}\right\rceil$. That is $\operatorname{tvs}\left(S F_{n}\right) \geq\left\lceil\frac{2 n+1}{3}\right\rceil=k$. To prove the reverse inequality, we define a function f from $V \cup E$ to $\{1,2,3, \ldots, k\}$ by considering the following two cases.

Case(i): $n=3$.
$f(v)=3, f\left(a_{1}\right)=f\left(a_{2}\right)=f\left(a_{3}\right)=1, f\left(a_{1} a_{2}\right)=f\left(a_{2} a_{3}\right)=f\left(a_{3} a_{1}\right)=3, f\left(v a_{1}\right)=1, f\left(v a_{2}\right)=$ $2, f\left(v a_{3}\right)=3, f\left(b_{1}\right)=f\left(b_{2}\right)=f\left(b_{3}\right)=3, f\left(c_{1}\right)=f\left(c_{2}\right)=f\left(c_{3}\right)=1, f\left(a_{1} b_{1}\right)=1, f\left(a_{2} b_{2}\right)=$ $2, f\left(a_{3} b_{3}\right)=3, f\left(v b_{1}\right)=f\left(v b_{2}\right)=f\left(v b_{3}\right)=1, f\left(v c_{1}\right)=1, f\left(v c_{2}\right)=2, f\left(v c_{3}\right)=3$.

Case(ii): $n>3$.

$$
\left.\begin{array}{c}
f\left(a_{i}\right)=f\left(c_{i}\right)= \begin{cases}1, & \text { if } 1 \leq i \leq k \\
1+i-k, & \text { if } k+1 \leq i \leq n\end{cases} \\
f\left(b_{i}\right)=k, 1 \leq i \leq n ; \\
f(v)=k ;
\end{array}\right\} \begin{gathered}
f\left(v a_{i}\right)=2(n-k), 1 \leq i \leq n ; \\
f\left(v b_{i}\right)= \begin{cases}n+1-k, & \text { if } 1 \leq i \leq k \\
n+1-2 k+i, & \text { if } k+1 \leq i \leq n\end{cases} \\
f\left(v c_{i}\right)= \begin{cases}i, & \text { if } 1 \leq i \leq k \\
k, & \text { if } k+1 \leq i \leq n\end{cases} \\
f\left(a_{i} b_{i}\right)= \begin{cases}i, & \text { if } 1 \leq i \leq k \\
k, & \text { if } k+1 \leq i \leq n\end{cases} \\
f\left(a_{i} a_{i+1}\right)=k, 1 \leq i \leq n .
\end{gathered}
$$

We observe that,

$$
\begin{gathered}
w t\left(c_{i}\right)=1+i, 1 \leq i \leq n \\
w t\left(b_{i}\right)=n+1+i, 1 \leq i \leq n
\end{gathered}
$$

$$
\begin{gathered}
w t\left(a_{i}\right)=2 n+1+i, 1 \leq i \leq n \\
w t(v)=2\left(n^{2}-k^{2}+k\right)+\sum_{i=1}^{k}(i)+\sum_{i=k+1}^{n}(n+1-2 k+i) .
\end{gathered}
$$

It is easy to check that the weights of the vertices are distinct. This labeling construction shows that $\operatorname{tvs}\left(S F_{n}\right) \leq k$. Combining this with the lower bound, we conclude that $\operatorname{tvs}\left(S F_{n}\right)=k$. Figure 2 shows the vertex irregular total labeling of $S F_{8}$.

Figure $2 . t v s\left(S F_{8}\right)=6$.
Theorem 2.3. $\operatorname{tvs}\left(D W_{n}\right)=\left\lceil\frac{2 n+3}{4}\right\rceil, n \geq 3$.
Proof. Let $V\left(D W_{n}\right)=\left\{a_{i}, b_{i}, c: 1 \leq i \leq n\right\}$ and $E\left(D W_{n}\right)=\left\{a_{i} a_{i+1}, b_{i} b_{i+1}, c a_{i}, c b_{i}: 1 \leq i \leq n\right\}$ with indices taken modulo n. Let $k=\left\lceil\frac{2 n+3}{4}\right\rceil$, then from (1.2) it follows that, $\operatorname{tvs}\left(D W_{n}\right) \geq$ $\max \left\{\left\lceil\frac{2 n+3}{4}\right\rceil,\left\lceil\frac{2 n+4}{2 n+1}\right\rceil\right\}=\left\lceil\frac{2 n+3}{4}\right\rceil$. That is $t v s\left(D W_{n}\right) \geq\left\lceil\frac{2 n+3}{4}\right\rceil=k$. To prove the reverse inequality, we define a function f from $V \cup E$ to $\{1,2,3, \ldots, k\}$ as follows:

$$
\begin{gathered}
f(c)=k \\
f\left(a_{i}\right)=f\left(c b_{i}\right)= \begin{cases}i, & \text { if } 1 \leq i \leq k \\
k, & \text { if } k+1 \leq i \leq n\end{cases} \\
f\left(b_{i}\right)=f\left(c a_{i}\right)= \begin{cases}1, & \text { if } 1 \leq i \leq k \\
1+i-k, & \text { if } k+1 \leq i \leq n\end{cases} \\
f\left(b_{i} b_{i+1}\right)=1,1 \leq i \leq n \\
f\left(a_{i} a_{i+1}\right)=k, 1 \leq i \leq n
\end{gathered}
$$

We observe that,

$$
\begin{gathered}
w t\left(b_{i}\right)=3+i, 1 \leq i \leq n \\
w t\left(a_{i}\right)=2 k+1+i, 1 \leq i \leq n \\
w t(c)=k(2+n-k)+\sum_{i=1}^{k}(i)+\sum_{i=k+1}^{n}(1+i-k)
\end{gathered}
$$

It is easy to check that the weights of the vertices are distinct. This labeling construction shows that $t v s\left(D W_{n}\right) \leq k$. Combining this with the lower bound, we conclude that $\operatorname{tvs}\left(D W_{n}\right)=k$. Figure 3 shows the vertex irregular total labeling of $D W_{6}$.

Figure 3.tvs $\left(D W_{6}\right)=4$.
Theorem 2.4. $t v s\left(F g_{n}\right)=\left\lceil\frac{n+1}{2}\right\rceil, n \geq 3$.
Proof. Let $V\left(F g_{n}\right)=\left\{a_{i}, b_{i}, c: 1 \leq i \leq n\right\}$ and $E\left(F g_{n}\right)=\left\{a_{i} a_{i+1}, c a_{i}, c b_{i}: 1 \leq i \leq\right.$ $n\}$ with indices taken modulo n. Let $k=\left\lceil\frac{n+1}{2}\right\rceil$, then from (1.2) it follows that, $\operatorname{tvs}\left(F g_{n}\right) \geq$ $\max \left\{\left\lceil\frac{n+1}{2}\right\rceil,\left\lceil\frac{2 n+1}{4}\right\rceil,\left\lceil\frac{2 n+2}{2 n+1}\right\rceil\right\}=\left\lceil\frac{n+1}{2}\right\rceil$. That is $\operatorname{tvs}\left(F g_{n}\right) \geq\left\lceil\frac{n+1}{2}\right\rceil=k$. To prove the reverse inequality, we define a function f from $V \cup E$ to $\{1,2,3, \ldots, k\}$ as follows:

$$
\begin{gathered}
f(c)=1 \\
f\left(a_{i}\right)=f\left(c b_{i}\right)= \begin{cases}i, & \text { if } 1 \leq i \leq k \\
k, & \text { if } k+1 \leq i \leq n\end{cases} \\
f\left(b_{i}\right)=f\left(c a_{i}\right)= \begin{cases}1, & \text { if } 1 \leq i \leq k \\
1+i-k, & \text { if } k+1 \leq i \leq n\end{cases} \\
f\left(a_{i} a_{i+1}\right)=k, 1 \leq i \leq n
\end{gathered}
$$

We observe that,

$$
\begin{gathered}
w t\left(b_{i}\right)=1+i, 1 \leq i \leq n \\
w t\left(a_{i}\right)=2 k+1+i, 1 \leq i \leq n \\
w t(c)=1+k(1+n-k)+\sum_{i=1}^{k}(i)+\sum_{i=k+1}^{n}(1+i-k)
\end{gathered}
$$

It is easy to check that the weights of the vertices are distinct. This labeling construction shows that $t v s\left(F g_{n}\right) \leq k$. Combining this with the lower bound, we conclude that $t v s\left(F g_{n}\right)=k$. Figure 4 shows the vertex irregular total labeling of $F g_{8}$.

Figure 4. $t v s\left(F g_{8}\right)=5$.

Theorem 2.5. The triangular book, that is Books with 3 sides (n copies of C_{3} with an edge in common) admits a total vertex irregular labeling and $\operatorname{tvs}\left(B_{n}\right)=\left\lceil\frac{n+2}{3}\right\rceil, n \geq 2$.

Proof. Let $V\left(B_{n}\right)=\left\{v_{1}, v_{2}, a_{i}: 1 \leq i \leq n\right\}$ and $E\left(B_{n}\right)=\left\{v_{1} a_{i}, v_{2} a_{i}, v_{1} v_{2}: 1 \leq i \leq n\right\}$. Let $k=\left\lceil\frac{n+2}{3}\right\rceil$, then from (1.2) it follows that, $\operatorname{tvs}\left(B_{n}\right) \geq \max \left\{\left\lceil\frac{n+2}{3}\right\rceil,\left\lceil\frac{n+4}{n+2}\right\rceil\right\}=\left\lceil\frac{n+2}{3}\right\rceil$. That is $t v s\left(B_{n}\right) \geq\left\lceil\frac{n+2}{3}\right\rceil=k$. To prove the reverse inequality, we define a function f from $V \cup E$ to $\{1,2,3, \ldots, k\}$ as follows:

$$
\begin{gathered}
f\left(v_{1}\right)=f\left(v_{2}\right)=f\left(v_{1} v_{2}\right)=k ; \\
f\left(a_{i}\right)= \begin{cases}1, & \text { if } 1 \leq i \leq 2 k-1 \\
2+i-2 k, & \text { if } 2 k \leq i \leq n ;\end{cases} \\
f\left(v_{1} a_{i}\right)= \begin{cases}1, & \text { if } 1 \leq i \leq k \\
1+i-k, & \text { if } k+1 \leq i \leq 2 k-1 \\
k, & \text { if } 2 k \leq i \leq n ;\end{cases} \\
f\left(v_{2} a_{i}\right)= \begin{cases}i, & \text { if } 1 \leq i \leq k \\
k, & \text { if } k+1 \leq i \leq n ;\end{cases}
\end{gathered}
$$

We observe that,

$$
\begin{gathered}
w t\left(a_{i}\right)=2+i, 1 \leq i \leq n \\
w t\left(v_{1}\right)=k(n+4)-2 k^{2}+\sum_{i=k+1}^{2 k-1}(1+i-k) \\
w t\left(v_{2}\right)=k(n+2)-k^{2}+\sum_{i=1}^{k} i .
\end{gathered}
$$

It is easy to check that the weights of the vertices are distinct. This labeling construction shows that $t v s\left(B_{n}\right) \leq k$. Combining this with the lower bound, we conclude that $t v s\left(B_{n}\right)=k$. Figure 5 shows the vertex irregular total labeling of B_{4}.

Theorem 2.6. The quadrilateral book, that is Books with 4 sides (n copies of C_{4} with an edge in common) admits a total vertex irregular labeling and $t v s\left(B_{n}\right)=\left\lceil\frac{2 n+2}{3}\right\rceil, n \geq 2$.
Proof. Let $V\left(B_{n}\right)=\left\{v_{1}, v_{2}, a_{i}, b_{i}: 1 \leq i \leq n\right\}$ and $E\left(B_{n}\right)=\left\{v_{1} a_{i}, v_{2} b_{i}, v_{1} v_{2}, a_{i} b_{i}: 1 \leq i \leq n\right\}$. Let $k=\left\lceil\frac{2 n+2}{3}\right\rceil$, then from (1.2) it follows that, $\operatorname{tvs}\left(B_{n}\right) \geq \max \left\{\left\lceil\frac{2 n+2}{3}\right\rceil,\left\lceil\frac{2 n+2}{n+2}\right\rceil\right\}=\left\lceil\frac{2 n+2}{3}\right\rceil$. That is $\operatorname{tvs}\left(B_{n}\right) \geq\left\lceil\frac{2 n+2}{3}\right\rceil=k$. To prove the reverse inequality, we define a function f from $V \cup E$ to $\{1,2,3, \ldots, k\}$ in the following way.

$$
\begin{gathered}
f\left(v_{1}\right)=f\left(v_{2}\right)=f\left(v_{1} v_{2}\right)=k ; \\
f\left(a_{1}\right)=f\left(v_{2} b_{1}\right)=2 ; \\
f\left(a_{i}\right)= \begin{cases}i-1, & \text { if } 2 \leq i \leq k \\
k, & \text { if } k+1 \leq i \leq n ;\end{cases}
\end{gathered}
$$

$$
\begin{aligned}
& f\left(b_{i}\right)=f\left(a_{i} b_{i}\right)= \begin{cases}i, & \text { if } 1 \leq i \leq k \\
k, & \text { if } k+1 \leq i \leq n ;\end{cases} \\
& f\left(v_{1} a_{i}\right)= \begin{cases}2, & \text { if } 2 \leq i \leq k \\
2 i-2 k+1, & \text { if } k+1 \leq i \leq n ;\end{cases} \\
& f\left(v_{2} b_{i}\right)= \begin{cases}2, & \text { if } 2 \leq i \leq k \\
2 i-2 k+2, & \text { if } k+1 \leq i \leq n .\end{cases}
\end{aligned}
$$

We observe that,

$$
\begin{gathered}
w t\left(a_{i}\right)=2 i+1,1 \leq i \leq n \\
w t\left(b_{i}\right)=2 i+2,1 \leq i \leq n \\
w t\left(v_{1}\right)=4 k-1+\sum_{i=k+1}^{n}(2 i-2 k+1) \\
w t\left(v_{2}\right)=4 k+\sum_{i=k+1}^{n}(2 i-2 k+2)
\end{gathered}
$$

It is easy to check that the weights of the vertices are distinct. This labeling construction shows that $\operatorname{tvs}\left(B_{n}\right) \leq k$. Combining this with the lower bound, we conclude that $t v s\left(B_{n}\right)=k$. Figure 6 shows the vertex irregular total labeling of B_{4}.

Figure $6 . \operatorname{tvs}\left(B_{4}\right)=4$.

References

[1] A. Ahmad, K. M. Awan, I.Javaid and Slamin, Total vertex irregularity strength of wheel related graphs, Australas. J. Combin., 51 (2011), 147-156.
[2] A. Ahmad, M.Bača and M. Numan, On irregularity strength of disjoint union of friendship graphs, Elect. J. Graph Th. App., 1(2) (2013), 100-108.
[3] A. Ahmad, S.A. Bokhary, M.Imran, A.Q. Baig, Total vertex irregularity strength of cubic graphs, Utilitas Math., 91: (2013), 287-299.
[4] Ashfaq Ahmad, Syed Ahtsham ul Haq Bokhary, Roslan Hasni and Slamin, Total vertex irregularity strength of ladder related graphs, Sci. Int. 26 (1) (2014), 1-5.
[5] M. Bača, S. Jendrol', M. Miller and J. Ryan, On irregular total labellings, Discrete Math., 307 (2007), 1378-1388.
[6] G.Chartrand, M.S.Jacobson, J.Lehel, O.R.Oellermann, S.Ruiz and F.Saba, Irregular networks, Congr. Numer. 64 (1988),187-192.
[7] F. Harary, Graph theory, Addison Wesley, Massachusetts, 1972.
[8] M. Karonski, T. Luczak and A. Thomason, Edge weights and vertex colours, J.Combin. Theory B, 91 (2004), 151-157.
[9] T. Nierhoff, A tight bound on the irregularity strength of graphs, SIAM J. Discrete Math., 13 (2000), 313-323.
[10] Nurdin, E.T. Baskoro, A.N.M. Salman and N.N. Goas, On the total vertex irregularity Strength of trees, Discrete Math., 310 (2010), 3043-3048.
[11] Nurdin, E.T. Baskoro, A.N.M. Salman, N.N. Gaos, On total vertex- irregular labellings for sev-eral types of trees, Utilitas Math., 83 (2010), 277-290.
[12] Nurdin, A. N. M. Salman, N. N. Gaos, E. T. Baskoro, On the total vertex-irregular strength of a disjoint union of t copies of a path, JCMCC, 71 (2009), 227-233.
[13] J. Przybylo, Linear bound on the irregularity strength and the total vertex irregularity strength of graphs, SIAM J. Discrete Math., 23 (2009), 511-516.
[14] Slamin, Dafik, W. Winnona, Total vertex irregularity strength of the disjoint union of sun graphs, Int. J. Comb., 2012 Art. ID 284383, 9 pp.
[15] K. Wijaya, Slamin, Total vertex irregular labeling of wheels, fans, suns and friendship graphs, JCMCC, 65 (2008), 103-112.
[16] K. Wijaya, Slamin, Surahmat, S. Jendrol, Total vertex irregular labeling of complete bipartite graphs, JCMCC, 55 (2005), 129-136.

Author information

P.Jeyanthi, Research Centre, Department of Mathematics, Govindammal Aditanar College for Women, Tiruchendur - 628 215,Tamil Nadu, India.
E-mail: jeyajeyanthi@rediffmail.com
A.sudha, Department of Mathematics, Wavoo Wajeeha Women's college of Arts and Science, Kayalpatnam628204, Tamil Nadu, India.
E-mail: sudhathanalakshmi@gmail.com
Received: January 1, 2017.
Accepted: April 13, 2017.

