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Abstract. A vertex irregular total k-labeling of a graphG with vertex setV and edge setE is
an assignment of positive integer labels{1,2, ..., k} to both vertices and edges so that the weights
calculated at vertices are distinct. The total vertex irregularity strength ofG, denoted bytvs(G)
is the minimum value of the largest labelk over all such irregular assignment. In this paper, we
study the total vertex irregularity strength of cycle quadrilateral snake, sunflower, double wheel,
fungus, triangular book and quadrilateral book.

1 Introduction

As a standard notation, assume thatG = (V, E) is a finite, simple and undirected graph
with p vertices andq edges. A labeling of a graph is any mapping that sends some set of
graph elements to a set of numbers (usually positive integers). If the domain is the vertex -
set (or) the edge- set, the labeling are called respectively vertex labeling(or) edge labeling. If
the domain isV ∪ E then we call the labeling a total labeling. Chartrand et al. [6] introduced
labelings of the edges of a graphG with positive integers such that the sum of the labels of edges
incident with a vertex is different for all the vertices. Such labelings were calledirregular
assignments and the irregularity strength s(G) of a graphG is known as the minimumk for
which G has an irregular assignment using labels at mostk. The irregularity strengths(G)
can be interpreted as the smallest integerk for which G can be turned into a multigraphG′ by
replacing each edge by a set of at mostk parallel edges, such that the degrees of the vertices in
G′ are all different. Karonski et al. [8] conjectured that the edges of every connected graph of
order at least 3 can be assigned labels from{1, 2,3} such that for all pairs of adjacent vertices
the sums of the labels of the incident edges are different. Motivated by irregular assignments
Bača et al. [5] defined a labelingf : V(G) ∪ E(G) → {1, 2, . . . , k} to be a vertex irregular
total k-labeling if for every two different verticesx andy the vertex-weightswt f (x) , wt f (y)
where the vertex-weightwt f (x) = f (x) +

∑

xy∈E
f (xy). A minimum k for which G has a vertex

irregular totalk-labeling is defined as the total vertex irregularity strength ofG and denoted by
tvs(G). It is easy to see that irregularity strengths(G) of a graphG is defined only for graphs
containing at most one isolated vertex and no connected component of order 2. On the other
hand, the total vertex irregularity strengthtvs(G) is defined for every graphG. If an edge labeling
f : E → {1,2, . . . , δ(G)} provides the irregularity strengths(G), then we extend this labeling total
labelingφ in such a way

φ(xy) = f (xy) for everyxy ∈ E(G),

φ(x) = 1 for everyx ∈ V(G).

Thus, the total labelingφ is a vertex irregular total labeling and for graphs with no component of
order≤ 2 hastvs(G) ≤ s(G). Nierhoff [9] proved that for all (p, q)-graphsG with no component
of order at most 2 andG , K3the irregularity strengths(G) ≤ p − 1. From this result it follows
that
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tvs(G) ≤ p − 1. (1.1)

Bača et al. [5] proved that if a treeT with n pendant vertices and no vertices of degree 2, then
⌈

n+1
2

⌉

≤ tvs(T ) ≤ n. Additionally, they gave a lower bound and an upper bound on total vertex
irregular strength for any graphG with v vertices ande edges,minimum degreeδ and maximum
degree∆,

⌈

|V |+δ
∆+1

⌉

≤ tvs(G) ≤ |V |+∆−2δ+1. In the same paper, they gave the total vertex irregular

strengths of cycles, stars, and complete graphs, that is,tvs(Cn) =
⌈

n+2
3

⌉

, tvs(K1,n) =
⌈

n+1
2

⌉

and
tvs(Kn) = 2. Ahmad et al. [1, 3] determined an exact value of the total vertex irregularity strength
for wheel related graphs and cubic graphs. Wijaya et al. [16] determined an exact value of the
total vertex irregularity strength for complete bipartite graphs. Wijaya and Slamin [15] found
the exact values oftvs for wheels, fans, suns and friendship graphs. Nurdin et al. [11] proved
the following lower bound oftvs for any graphG.

Theorem 1.1.Let G be a connected graph having ni vertices of degree i (i = δ, δ+1, δ+2, . . . ,∆)
where δ and ∆ are the minimum and the maximum degree of G, respectively. Then

tvs(G) ≥ max































⌈

δ + nδ
δ + 1

⌉
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⌈

δ + nδ + nδ+1

δ + 2

⌉

, . . . ,





































δ +
∆
∑

i=δ
(ni)
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. (1.2)

Also Nurdin et al. [11] posed the following conjecture.

Conjecture:1.2 [11] Let G be a connected graph havingni vertices of a degreei (i = δ, δ +
1, δ + 2, . . . ,∆) whereδ and∆ are the minimum and the maximum degree ofG, respectively.
Then

tvs(G) = max
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⌉
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∆
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(ni)

∆ + 1



































































. (1.3)

Conjecture 1.2 has been verified by several authors for several families of graphs. Nurdin et al.
[11, 12] found the exact values of total vertex irregularity strength of trees, several types of trees
and disjoint union of t copies of path. Slamin et al. [14] determined the total vertex irregularity
strength of disjoint union of sun graphs. In [2] Ahmad, Bǎca and Numan determined the total
vertex irregularity strength of disjoint union of friendship graphs. Ashfaq Ahmad et al. [4]
found the exact value of the total vertex irregularity strength of ladder related graphs. We use the
following definitions in the subsequent section.

Definition 1.2. The cycle quadrilateral snakeCQn is obtained from the cycleCn by identifying
each edge ofCn with an edge ofC4.

Definition 1.3. The sun flower graphS Fn is obtained from the flower graph ofFn by addingn
pendant edges to the central vertex. Thus the vertex set ofS Fn is V(S Fn) = {v, ai, bi, ci : 1 ≤ i ≤
n} and the edge set ofS Fn is E(S Fn) = {vai, vbi, vci, aiai+1, aibi : 1 ≤ i ≤ n} with indices taken
modulon.

Definition 1.4. A double-wheel graphDWn of size 4n can be composed of 2Cn + K1, that is
it consists of two cycles of sizen, where all the vertices of the two cycles are connected to a
common hub.

Definition 1.5. A fungus graphFgn is obtained from a wheelWn, n ≥ 3 by attaching pendent
vertices to the central vertex ofWn.

Definition 1.6. The book graphBm is defined as the Cartesian productS m X P2 whereS m is a
star graph onm + 1 vertices andP2 is the path graph on two vertices.



TOTAL VERTEX IRREGULARITY STRENGTH 727

2 Main Results

In this section we determine exact values of the total vertex irregularity strength of cycle quadri-
lateral snake, sunflower, double wheel, fungus, triangular book andquadrilateral book.

Theorem 2.1. tvs(CQn) =
⌈

2n+2
3

⌉

, n ≥ 3.

Proof. Let V(CQn) = {ui, ai, bi : 1 ≤ i ≤ n} andE(CQn) = {aibi, uiai, uiui+1, biui+1 : 1 ≤ i ≤ n}
with indices taken modulon. Let k =

⌈

2n+2
3

⌉

, then from (1.2) it follows that,tvs(CQn) ≥

max
{⌈

2n+2
3

⌉

,
⌈

3n+2
5

⌉}

=

⌈

2n+2
3

⌉

. That istvs(CQn) ≥ k. To prove the reverse inequality, we define

a function f from V ∪ E to {1,2,3, ..., k} as follows:

f (u1) = 1;

f (ui) =















k + 1− i, i f 2 ≤ i ≤ k

1+ i − k, i f k + 1 ≤ i ≤ n;

f (ai) =















1, i f 1 ≤ i ≤ k

2i − 2k + 1, i f k + 1 ≤ i ≤ n;

f (bi) =















1, i f 1 ≤ i ≤ k − 1
2+ 2i − 2k, i f k ≤ i ≤ n;

f (aibi) =















i, i f 1 ≤ i ≤ k

k, i f k + 1 ≤ i ≤ n;

f (uiai) =















i, i f 1 ≤ i ≤ k

k, i f k + 1 ≤ i ≤ n;

f (biui+1) =















i + 1, i f 1 ≤ i ≤ k − 1
k, i f k ≤ i ≤ n;

f (uiui+1) = k, 1 ≤ i ≤ n.

We observe that,

wt(ai) = 2i + 1, 1 ≤ i ≤ n;

wt(bi) = 2i + 2, 1 ≤ i ≤ n;

wt(ui) =























3k + 2, i f i = 1
3k + 1+ i, i f 2 ≤ i ≤ k

3k + 1+ i, i f k + 1 ≤ i ≤ n.

It is easy to check that the weights of the vertices are distinct. This labeling construction shows

that tvs(CQn) ≤ k. Combining this with the lower bound, we conclude thattvs(CQn) = k.
Figure 1 shows the vertex irregular total labeling ofCQ6.
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Figure 1.tvs(CQ6) = 5.
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Theorem 2.2. tvs(S Fn) =
⌈

2n+1
3

⌉

, n ≥ 3.

Proof. Let V(S Fn) = {v, ai, bi, ci : 1 ≤ i ≤ n} and E(S Fn) = {vai, vbi, vci, aiai+1, aibi :
1 ≤ i ≤ n} with indices taken modulon. Let k =

⌈

2n+1
3

⌉

, then from (1.2) it follows that,

tvs(S Fn) ≥ max
{⌈

n+1
2

⌉

,
⌈

2n+1
3

⌉

,
⌈

2n+1
4

⌉

,
⌈

3n+1
5

⌉}

=

⌈

2n+1
3

⌉

. That is tvs(S Fn) ≥
⌈

2n+1
3

⌉

= k. To
prove the reverse inequality, we define a functionf from V ∪ E to {1,2,3, ..., k} by considering
the following two cases.

Case(i): n = 3.

f (v) = 3, f (a1) = f (a2) = f (a3) = 1, f (a1a2) = f (a2a3) = f (a3a1) = 3, f (va1) = 1, f (va2) =
2, f (va3) = 3, f (b1) = f (b2) = f (b3) = 3, f (c1) = f (c2) = f (c3) = 1, f (a1b1) = 1, f (a2b2) =
2, f (a3b3) = 3, f (vb1) = f (vb2) = f (vb3) = 1, f (vc1) = 1, f (vc2) = 2, f (vc3) = 3.

Case(ii): n > 3.

f (ai) = f (ci) =















1, i f 1 ≤ i ≤ k

1+ i − k, i f k + 1 ≤ i ≤ n;

f (bi) = k,1 ≤ i ≤ n;

f (v) = k;

f (vai) = 2(n − k), 1 ≤ i ≤ n;

f (vbi) =















n + 1− k, i f 1 ≤ i ≤ k

n + 1− 2k + i, i f k + 1 ≤ i ≤ n;

f (vci) =















i, i f 1 ≤ i ≤ k

k, i f k + 1 ≤ i ≤ n;

f (aibi) =















i, i f 1 ≤ i ≤ k

k, i f k + 1 ≤ i ≤ n;

f (aiai+1) = k, 1 ≤ i ≤ n.

We observe that,
wt(ci) = 1+ i, 1 ≤ i ≤ n;

wt(bi) = n + 1+ i,1 ≤ i ≤ n;
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wt(ai) = 2n + 1+ i,1 ≤ i ≤ n;

wt(v) = 2(n2 − k2
+ k) +

k
∑

i=1

(i) +
n
∑

i=k+1

(n + 1− 2k + i).

It is easy to check that the weights of the vertices are distinct. This labeling construction shows

thattvs(S Fn) ≤ k. Combining this with the lower bound, we conclude thattvs(S Fn) = k. Figure

2 shows the vertex irregular total labeling ofS F8.
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Figure 2.tvs(S F8) = 6.
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Theorem 2.3. tvs(DWn) =
⌈

2n+3
4

⌉

, n ≥ 3.

Proof. Let V(DWn) = {ai, bi, c : 1 ≤ i ≤ n} andE(DWn) = {aiai+1, bibi+1, cai, cbi : 1 ≤ i ≤ n}
with indices taken modulon. Let k =

⌈

2n+3
4

⌉

, then from (1.2) it follows that,tvs(DWn) ≥

max
{⌈

2n+3
4

⌉

,
⌈

2n+4
2n+1

⌉}

=

⌈

2n+3
4

⌉

. That istvs(DWn) ≥
⌈

2n+3
4

⌉

= k. To prove the reverse inequality,
we define a functionf from V ∪ E to {1,2, 3, ..., k} as follows:

f (c) = k;

f (ai) = f (cbi) =















i, i f 1 ≤ i ≤ k

k, i f k + 1 ≤ i ≤ n;

f (bi) = f (cai) =















1, i f 1 ≤ i ≤ k

1+ i − k, i f k + 1 ≤ i ≤ n;

f (bibi+1) = 1,1 ≤ i ≤ n;

f (aiai+1) = k, 1 ≤ i ≤ n;

We observe that,
wt(bi) = 3+ i, 1 ≤ i ≤ n;

wt(ai) = 2k + 1+ i, 1 ≤ i ≤ n;

wt(c) = k(2+ n − k) +
k
∑

i=1

(i) +
n
∑

i=k+1

(1+ i − k).

It is easy to check that the weights of the vertices are distinct. This labeling construction shows
that tvs(DWn) ≤ k. Combining this with the lower bound, we conclude thattvs(DWn) = k.
Figure 3 shows the vertex irregular total labeling ofDW6.
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Figure 3.tvs(DW6) = 4.
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Theorem 2.4.tvs(Fgn) =
⌈

n+1
2

⌉

, n ≥ 3.

Proof. Let V(Fgn) = {ai, bi, c : 1 ≤ i ≤ n} and E(Fgn) = {aiai+1, cai, cbi : 1 ≤ i ≤
n} with indices taken modulon. Let k =

⌈

n+1
2

⌉

, then from (1.2) it follows that,tvs(Fgn) ≥

max
{⌈

n+1
2

⌉

,
⌈

2n+1
4

⌉

,
⌈

2n+2
2n+1

⌉}

=

⌈

n+1
2

⌉

. That is tvs(Fgn) ≥
⌈

n+1
2

⌉

= k. To prove the reverse in-
equality, we define a functionf from V ∪ E to {1,2, 3, ..., k} as follows:

f (c) = 1;

f (ai) = f (cbi) =















i, i f 1 ≤ i ≤ k

k, i f k + 1 ≤ i ≤ n;

f (bi) = f (cai) =















1, i f 1 ≤ i ≤ k

1+ i − k, i f k + 1 ≤ i ≤ n;

f (aiai+1) = k, 1 ≤ i ≤ n;

We observe that,
wt(bi) = 1+ i, 1 ≤ i ≤ n;

wt(ai) = 2k + 1+ i, 1 ≤ i ≤ n;

wt(c) = 1+ k(1+ n − k) +
k
∑

i=1

(i) +
n
∑

i=k+1

(1+ i − k).

It is easy to check that the weights of the vertices are distinct. This labeling construction shows
thattvs(Fgn) ≤ k. Combining this with the lower bound, we conclude thattvs(Fgn) = k. Figure
4 shows the vertex irregular total labeling ofFg8.
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Figure 4.tvs(Fg8) = 5.
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Theorem 2.5. The triangular book, that is Books with 3 sides (n copies of C3 with an edge in
common) admits a total vertex irregular labeling and tvs(Bn) =

⌈

n+2
3

⌉

, n ≥ 2.

Proof. Let V(Bn) = {v1, v2, ai : 1 ≤ i ≤ n} and E(Bn) = {v1ai, v2ai, v1v2 : 1 ≤ i ≤ n}.
Let k =

⌈

n+2
3

⌉

, then from (1.2) it follows that,tvs(Bn) ≥ max
{⌈

n+2
3

⌉

,
⌈

n+4
n+2

⌉}

=

⌈

n+2
3

⌉

. That is

tvs(Bn) ≥
⌈

n+2
3

⌉

= k. To prove the reverse inequality, we define a functionf from V ∪ E to
{1,2,3, ..., k} as follows:

f (v1) = f (v2) = f (v1v2) = k;

f (ai) =















1, i f 1 ≤ i ≤ 2k − 1
2+ i − 2k, i f 2k ≤ i ≤ n;

f (v1ai) =























1, i f 1 ≤ i ≤ k

1+ i − k, i f k + 1 ≤ i ≤ 2k − 1
k, i f 2k ≤ i ≤ n;

f (v2ai) =















i, i f 1 ≤ i ≤ k

k, i f k + 1 ≤ i ≤ n;

We observe that,
wt(ai) = 2+ i, 1 ≤ i ≤ n;

wt(v1) = k(n + 4)− 2k2
+

2k−1
∑

i=k+1

(1+ i − k);

wt(v2) = k(n + 2)− k2
+

k
∑

i=1

i.

It is easy to check that the weights of the vertices are distinct. This labeling construction
shows thattvs(Bn) ≤ k. Combining this with the lower bound, we conclude thattvs(Bn) = k.
Figure 5 shows the vertex irregular total labeling ofB4.
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Figure 5.tvs(B4) = 2.
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Theorem 2.6. The quadrilateral book ,that is Books with 4 sides (n copies of C4 with an edge
in common) admits a total vertex irregular labeling and tvs(Bn) =

⌈

2n+2
3

⌉

, n ≥ 2.

Proof. Let V(Bn) = {v1, v2, ai, bi : 1 ≤ i ≤ n} andE(Bn) = {v1ai, v2bi, v1v2, aibi : 1 ≤ i ≤ n}.
Let k =

⌈

2n+2
3

⌉

, then from (1.2) it follows that,tvs(Bn) ≥ max
{⌈

2n+2
3

⌉

,
⌈

2n+2
n+2

⌉}

=

⌈

2n+2
3

⌉

. That

is tvs(Bn) ≥
⌈

2n+2
3

⌉

= k. To prove the reverse inequality, we define a functionf from V ∪ E to
{1,2,3, ..., k} in the following way.

f (v1) = f (v2) = f (v1v2) = k;

f (a1) = f (v2b1) = 2;

f (ai) =















i − 1, i f 2 ≤ i ≤ k

k, i f k + 1 ≤ i ≤ n;
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f (bi) = f (aibi) =















i, i f 1 ≤ i ≤ k

k, i f k + 1 ≤ i ≤ n;

f (v1a1) = 1;

f (v1ai) =















2, i f 2 ≤ i ≤ k

2i − 2k + 1, i f k + 1 ≤ i ≤ n;

f (v2bi) =















2, i f 2 ≤ i ≤ k

2i − 2k + 2, i f k + 1 ≤ i ≤ n.

We observe that,
wt(ai) = 2i + 1,1 ≤ i ≤ n;

wt(bi) = 2i + 2,1 ≤ i ≤ n;

wt(v1) = 4k − 1+
n
∑

i=k+1

(2i − 2k + 1);

wt(v2) = 4k +
n
∑

i=k+1

(2i − 2k + 2).

It is easy to check that the weights of the vertices are distinct. This labeling construction shows
that tvs(Bn) ≤ k. Combining this with the lower bound, we conclude thattvs(Bn) = k. Figure
6 shows the vertex irregular total labeling ofB4.
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