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Abstract. In this paper, we establish common fixed point theorems for weakly compatible
mappings satisfying a general contractive condition of integral form in rational setting. Some
examples to justify our results are given. The mapping involved here generalized various type of
contractive mapping of integral inequality.

1 Introduction

The first important result on fixed points for contractive-type mapping was the well known Ba-
nach’s contraction principle appeared in explicit form in Banach’s thesis in 1922, where it was
used to establish the existence of a solution for an integral equation [1]. This theorem provides
a technique for solving a variety of applied problems in mathematical science and engineering.
It widely considered as the source of metric fixed point theory and its significance lies in its vast
applicability in a number of branches of mathematics. There are many generalizations of Ba-
nach’s contraction mapping principle in the literature [3, 6, 8]. In the general setting of complete
metric space this theorem runs as follows:

Theorem 1.1. Let T be a mapping from a complete metric space (X, d) into itself satisfying

d(Tx, Ty) ≤ cd(x, y). (1.1)

where c ∈ [0, 1) and x, y ∈ X, Then T has a unique fixed point z ∈ X such that for each x ∈ X,
limn→∞ Tnx = z.

After this classical result, many theorems dealing with maps satisfying various types of con-
tractive inequalities have been established (see [4, 5, 7], [15, 16, 17, 18]). The intrested reader
who wants to read about this matter is recommended to go deep into the survey articles by
Rhoades [13, 12, 14].

In 2002, A. Branciari [2] analyzed the existence of fixed point for mapping defined on a
complete metric space satisfying a general contractive condition of integral type in the following
theorem:

Theorem 1.2. Let (X, d) be a complete metric space, c ∈ [0, 1) and let T : X → X be a mapping
such that

d(Tx,Ty)∫
0

ϕ(t)dt ≤ c
d(x,y)∫

0

ϕ(t)dt for all x, y ∈ X, (1.2)

where ϕ : R+ → R+ be a Lebesgue-integrable mapping which is summable, nonnegative and

such that for each ε > 0,
ε∫

0
ϕ(t)dt > 0. Then T has a unique fixed point a ∈ X, such that for

each x ∈ X, limn→∞T
nx = a.

After Theorem 1.2, a lot of research works have been carried out on generalizing contractive
conditions of integral type for different contractive mappings satisfying various known properties
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(see [10, 11]). Affine work has been done by Rhoades [14] extending the result of Theorem 1.2
by replacing the condition (1.2) by the following condition:

d(Tx,Ty)∫
0

ϕ(t)dt ≤ c

m(x,y)=max{d(x,y),d(x,Tx),d(y,Ty), d(x,Ty)+d(y,Tx)
2 }∫

0

ϕ(t)dt, (1.3)

for each c ∈ [0, 1) and x, y ∈ X.
In 1982, Sessa [16] introduced the notion of weak commutativity which generalized the no-

tion of commutativity as follows:

Definition 1.3. The self mappings f and g of a metric space X are said to be weakly commuting
if

d(fgx, gfy) ≤ d(gx, fy) for all x, y ∈ X,

Jungck [9] introduced more a generalized commuting mappings, called compatible mappings
as the following:

Definition 1.4. Two self mappings f and g of a metric space X are called compatible if

lim
n→∞

d(fgxn, gfxn) = 0,

whenever {xn} is a sequence such that limn→∞ fxn = limn→∞ gxn = t for some t ∈ X.

Definition 1.5. [9] Let f and g are two mappings from a metric space (X, d) into itself, f and g
are called weakly compatible if they commute at there coincidence point, i.e., fx = gx for some
x ∈ X ⇒ fgx = gfx.

Definition 1.6. [9] The mappings f and g of a metric space X are called commuting if

fgx = gfx ∀x ∈ X.

Definition 1.7. [6] Let f and g are two mappings on a set X, if fx = gx for some x ∈ X, then x
is called coincidence point of f and g.

Definition 1.8. A function is called increasing on any interval if the function value increases as
the independent value increases. That is if x1 > x2, then f(x1) > f(x2), on the other hand, a
function is called decreasing on an interval if the function value decreases as the independent
value increases. That is if x1 > x2, then f(x1) < f(x2). A function increasing or decreasing is
called monotonicity on its domain.

The aim of this paper is to generalize some mixed type of contraction conditions to the map-
ping and then two mappings and then four compatible mappings satisfying a general contractive
condition of integral type satisfying a rational inequality.

2 Main Results

We begin with the following theorem:

Theorem 2.1. Let f be a self mapping of complete metric space X satisfying the following
condition:

d(fx,fy)∫
0

ϕ(t)dt ≤ α1

d(x,y)∫
0

ϕ(t)dt+ α2

d(x,fx)∫
0

ϕ(t)dt+ α3

d(y,fy)∫
0

ϕ(t)dt+ α4

d(x,fy)∫
0

ϕ(t)dt (2.1)

+α5

max{d(y,fx),d(x,fy)}∫
0

ϕ(t)dt+ α6

d3(x,fx)+d3(y,fy)

1+d2(x,fx)+d2(y,fy)∫
0

ϕ(t)dt+ α7

d2(x,fy)+d2(y,fx)
1+d(x,fy)+d(y,fx)∫

0

ϕ(t)dt,
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for each x, y ∈ X , x 6= y with αi : (0, 1) → [0, 1) is monotonically decreasing functions,
satisfying α1 +α2 +α3 +α4 +α5 +α6 +α7 < 1, where ϕ : R+ → R+ be a Lebesgue-integrable

mapping which is summable on each compact subset of R+ such that for each ε > 0,
ε∫

0
ϕ(t)dt >

0, then f has a unique fixed point z ∈ X, such that for each x ∈ X, limn→∞T
nx = z.

Proof. For any arbitrary x◦ ∈ X there is x1 in X such that x1 = fx◦. Proceeding the same way,
we construct a sequence {xn} such that xn+1 = fxn, for each integer n = 0, 1, 2, .. . From
(2.1), we have

d(xn+1,xn+2)∫
0

ϕ(t)dt =

d(fxn,fxn+1)∫
0

ϕ(t)dt ≤ α1

d(xn,xn+1)∫
0

ϕ(t)dt+ α2

d(xn,fxn)∫
0

ϕ(t)dt

+α3

d(xn+1,fxn+1)∫
0

ϕ(t)dt+ α4

d(xn,fxn+1)∫
0

ϕ(t)dt

+α5

max{d(xn+1,fxn),d(xn,fxn+1)}∫
0

ϕ(t)dt+ α6

d3(xn,fxn)+d3(xn+1,fxn+1)

1+d2(xn,fxn)+d2(xn+1,fxn+1)∫
0

ϕ(t)dt

+α7

d2(xn,fxn+1)+d2(xn+1,fxn)

1+d(xn,fxn+1)+d(xn+1,fxn)∫
0

ϕ(t)dt

≤ α1

d(xn,xn+1)∫
0

ϕ(t)dt+ α2

d(xn,xn+1)∫
0

ϕ(t)dt+ α3

d(xn+1,xn+2)∫
0

ϕ(t)dt

+α4

d(xn,xn+2)∫
0

ϕ(t)dt+ α5

max{d(xn+1,xn+1),d(xn,xn+2)}∫
0

ϕ(t)dt

+α6

d3(xn,xn+1)+d3(xn+1,xn+2)

1+d2(xn,xn+1)+d2(xn+1,xn+2)∫
0

ϕ(t) + α7

d2(xn,xn+2)+d2(xn+1,xn+1)
1+d(xn,xn+2)+d(xn+1,xn+1)∫

0

ϕ(t)dt

≤ (α1 + α2 + α4 + α5)

d(xn,xn+1)∫
0

ϕ(t)dt+ (α3 + α4 + α5)

d(xn+1,xn+2)∫
0

ϕ(t)dt

+α6

d(xn,xn+1)+d(xn+1,xn+2)∫
0

ϕ(t)dt+ α7

d(xn,xn+2)∫
0

ϕ(t)dt.

This leads to

d(xn+1,xn+2)∫
0

ϕ(t)dt ≤ (
α1 + α2 + α4 + α5 + α6 + α7

1− α3 − α4 − α5 − α6 − α7
)

d(xn,xn+1)∫
0

ϕ(t)dt ≤ q(t)
d(xn,xn+1)∫

0

ϕ(t)dt,

where q(t) is monotonically decreasing functions such 0 ≤ q(t) < 1.
Thus by continuing this way, we have

d(xn,xn+1)∫
0

ϕ(t)dt ≤ qn(t)
d(x◦,x1)∫

0

ϕ(t)dt,
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taking the limit as n→∞, we get limn→∞

d(xn,xn+1)∫
0

ϕ(t)dt = 0, hence

lim
n→∞

d(xn, xn+1) = 0. (2.2)

Now we show that {xn} is a Cauchy sequence. Suppose the contrary. Then there exists ε > 0
and subsequences {m(p)} and {n(p)} such that, m(p) < n(p) ≤ m(p+ 1), for each p ∈ N,

d(xm(p), xn(p)) > ε, d(xm(p), xn(p)−1) ≤ ε. (2.3)

Now,

d(xm(p)−1, xn(p)−1) ≤ d(xm(p)−1, xm(p)) + d(xm(p), xn(p)−1) < d(xm(p)−1, xm(p)) + ε. (2.4)

Hence from (2.2) and (2.4), we can write

lim
n→∞

d(xm(p)−1,xn(p)−1)∫
0

ϕ(t)dt ≤
ε∫

0

ϕ(t)dt, (2.5)

using (2.1), (2.3), (2.4) and (2.5), we get

ε∫
0

ϕ(t)dt ≤

d(xm(p),xn(p))∫
0

ϕ(t)dt ≤ q(t)

d(xm(p)−1,xn(p)−1)∫
0

ϕ(t)dt ≤ q(t)
ε∫

0

ϕ(t)dt,

which is a contradiction since q(t) < 1. Therefore {xn} is a Cauchy sequence, hence it conver-
gent to the point z or limn→∞ xn = z.
Again from (2.1), we have

d(fz,fxn+1)∫
0

ϕ(t)dt ≤ α1

d(z,xn+1)∫
0

ϕ(t)dt+ α2

d(z,fz)∫
0

ϕ(t)dt+ α3

d(xn+1,fxn+1)∫
0

ϕ(t)dt+ α4

d(z,fxn+1)∫
0

ϕ(t)dt

+α5

max{d(xn+1,fz),d(z,fxn+1)}∫
0

ϕ(t)dt+ α6

d3(z,fz)+d3(xn+1,fxn+1)

1+d2(z,fz)+d2(xn+1,fxn+1)∫
0

ϕ(t)dt

+α7

d2(z,fxn+1)+d2(xn+1,fz)

1+d(z,fxn+1)+d(xn+1,fz)∫
0

ϕ(t)dt,

taking the limit in the both sides as n→∞, we get

d(fz,z)∫
0

ϕ(t)dt ≤ (α2 + α5 + α6 + α7)

d(z,fz)∫
0

ϕ(t)dt = q(t)

d(z,fz)∫
0

ϕ(t)dt,

since q(t) is monotonically decreasing functions satisfies q(t) ∈ [0, 1), then limn→∞

d(fz,z)∫
0

ϕ(t)dt =

0 this implies that limn→∞ d(fz, z) = 0 or z = fz, hence z is a fixed point of f.
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Next suppose that (w 6= z) be another fixed point of f , then from (2.1), we get

d(z,w)∫
0

ϕ(t)dt =

d(fz,fw)∫
0

ϕ(t)dt ≤ α1

d(z,w)∫
0

ϕ(t)dt+ α2

d(z,fz)∫
0

ϕ(t)dt

+α3

d(w,fw)∫
0

ϕ(t)dt+ α4

d(z,fw)∫
0

ϕ(t)dt+ α5

max{d(w,fz),d(z,fw)}∫
0

ϕ(t)dt

+α6

d3(z,fz)+d3(w,fw)

1+d2(z,fz)+d2(w,fw)∫
0

ϕ(t)dt+ α7

d2(z,fw)+d2(w,fz)
1+d(z,fw)+d(w,fz)∫

0

ϕ(t)dt,

≤ (α1 + α4 + α5 + α7)

d(z,w)∫
0

ϕ(t)dt ≤ q(t)
d(z,w)∫

0

ϕ(t)dt <

d(z,w)∫
0

ϕ(t)dt

which is a contradiction, so
d(z,w)∫

0
ϕ(t)dt = 0, which leads to d(z, w) = 0 or z = w. Therefore a

fixed point is unique 2

Remark 2.2. (i) Letting ϕ(t) = 1 over R+, the contractive condition of integral type transforms
into a general contractive condition not involving the integral.

(ii) If we take α1 = a ∈ [0, 1) and α2 = α3 = α4 = α5 = α6 = α7 = 0, gives Branciari
mapping of integral type [2].

To generalize Theorem 2.1 in two mappings, we give the following theorem:

Theorem 2.3. Let f and g be self-mappings on complete metric space X satisfy the following
condition:

d(fx,gy)∫
0

ϕ(t)dt ≤ α1

d(x,y)∫
0

ϕ(t)dt+ α2

d(x,fx)∫
0

ϕ(t)dt+ α3

d(y,gy)∫
0

ϕ(t)dt+ α4

d(x,gy)∫
0

ϕ(t)dt (2.6)

+α5

max{d(y,fx),d(x,gy)}∫
0

ϕ(t)dt+ α6

d3(x,fx)+d3(y,gy)

1+d2(x,fx)+d2(y,gy)∫
0

ϕ(t)dt+ α7

d2(x,gy)+d2(y,fx)
1+d(x,gy)+d(y,fx)∫

0

ϕ(t)dt,

for each x, y ∈ X, x 6= y with αi : (0, 1) → [0, 1) is monotonically decreasing functions,
satisfying α1 + α2 + α3 + 2α4 + 2α5 + 2α6 + 2α7 < 1, where ϕ : R+ → R+ be a Lebesgue-
integrable mapping which is summable on each compact subset of R+ such that for each ε > 0,
ε∫

0
ϕ(t)dt > 0, then f and g have a unique common fixed point z ∈ X.

Proof. Let x◦ be an arbitrary point of X . Define x2n+1 = fxn and x2n+2 = gxn+1 then from
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(2.6), we have

d(x2n+1,x2n+2)∫
0

ϕ(t)dt =

d(fx2n,gx2n+1)∫
0

ϕ(t)dt ≤ α1

d(x2n,x2n+1)∫
0

ϕ(t)dt+ α2

d(x2n,x2n+1)∫
0

ϕ(t)dt

+α3

d(x2n+1,x2n+2)∫
0

ϕ(t)dt+ α4

d(x2n,x2n+2)∫
0

ϕ(t)dt

+α5

max{d(x2n+1,x2n+1),d(x2n,x2n+2)}∫
0

ϕ(t)dt

+α6

d3(x2n,x2n+1)+d3(x2n+1,x2n+2)

1+d2(x2n,x2n+1)+d2(x2n+1,x2n+2)∫
0

ϕ(t)dt+ α7

d2(x2n,x2n+2)+d2(x2n+1,x2n+1)
1+d(x2n,x2n+2)+d(x2n+1,x2n+1)∫

0

ϕ(t)dt

≤ (α1 + α2 + α4 + α5)

d(x2n,x2n+1)∫
0

ϕ(t)dt+ (α3 + α4 + α5)

d(x2n+1,x2n+2)∫
0

ϕ(t)dt

+α6

d(x2n,x2n+1)+d(x2n+2,x2n+2)∫
0

ϕ(t)dt+ α7

d(x2n,x2n+2)+d(x2n+1,x2n+1)∫
0

ϕ(t)dt.

This yields,

d(x2n+1,x2n+2)∫
0

ϕ(t)dt ≤ (
α1 + α2 + α4 + α5 + α6 + α7

1− α3 − α4 − α5 − α6 − α7
)

d(x2n,x2n+1)∫
0

ϕ(t)dt ≤ q(t)
d(x2n,x2n+1)∫

0

ϕ(t)dt,

thus in general, for all n = 0, 1, 2, ..

d(xn,xn+1)∫
0

ϕ(t)dt ≤ qn(t)
d(x◦,x1)∫

0

ϕ(t)dt,

taking the limit as n→∞ and definition q(t), we have limn→∞

d(xn,xn+1)∫
0

ϕ(t)dt = 0, hence

lim
n→∞

d(xn, xn+1) = 0.

By the same manner proof of Theorem 2.1, we can show that {xn} is a Cauchy sequence, hence
it convergent to the point z i.e., limn→∞ xn = z.
Again from (2.6), we get

d(fz,fx2n+1)∫
0

ϕ(t)dt ≤ α1

d(z,x2n+1)∫
0

ϕ(t)dt+ α2

d(z,fz)∫
0

ϕ(t)dt+ α3

d(x2n+1,x2n+2)∫
0

ϕ(t)dt+ α4

d(z,x2n+2)∫
0

ϕ(t)dt

+α5

max{d(x2n+1,fz),d(z,x2n+2)}∫
0

ϕ(t)dt+ α6

d3(z,fz)+d3(x2n+1,x2n+2)

1+d2(z,fz)+d2(x2n+1,x2n+2)∫
0

ϕ(t)dt

+α7

d2(z,x2n+2)+d2(x2n+1,fz)

1+d(z,x2n+2)+d(xn+1,fz)∫
0

ϕ(t)dt,
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taking the limit in the above inequality, one can write

d(fz,z)∫
0

ϕ(t)dt ≤ (α2 + α5 + α6 + α7)

d(z,fz)∫
0

ϕ(t)dt,

since
5∑
i=1

αi < 1, then we have limn→∞

d(fz,z)∫
0

ϕ(t)dt = 0, implies that limn→∞ d(fz, z) = 0 or

z = fz. Similarly it can be show that gz = z, so f and g have a common fixed point and the
uniqueness is easy. 2

In the following theorem we obtain common fixed point result for four mappings by using
weakly compatible concept:

Theorem 2.4. Let (X, d) be a complete metric space and αi : (0,∞) → [0, 1) is monotonically
decreasing functions satisfying α1 + α2 + α3 + 2α4 + 2α5 + 2α6 + 2α7 < 1 and f, g,Q and P
are four self mappings in X satisfies the following conditions:
(i) f(X) ⊆ P (X) and g(X) ⊆ Q(X),
(ii) the pairs (g, P ) and (f,Q) are weakly compatible,
(iii)

d(fx,gy)∫
0

ϕ(t)dt ≤ α1

d(Px,Qy)∫
0

ϕ(t)dt+ α2

d(Px,fx)∫
0

ϕ(t)dt+ α3

d(Qy,gy)∫
0

ϕ(t)dt+ α4

d(fx,Qy)∫
0

ϕ(t)dt

+α5

max{d(Qy,fx),d(Px,gy)}∫
0

ϕ(t)dt+ α6

d3(Px,fx)+d3(Qy,gy)

1+d2(Px,fx)+d2(Qy,gy)∫
0

ϕ(t)dt

+α7

d2(Px,gy)+d2(Qy,fx)
1+d(Px,gy)+d(Qy,fx)∫

0

ϕ(t)dt, (2.7)

for each x, y ∈ X, x 6= y with αi : (0, 1) → [0, 1) is monotonically decreasing functions,
satisfying α1 + α2 + α3 + 2α4 + 2α5 + 2α6 + 2α7 < 1, where ϕ : R+ → R+ be a Lebesgue-
integrable mapping which is summable on each compact subset of R+ such that for each ε > 0,
ε∫

0
ϕ(t)dt > 0, then f, g,Q and P have a unique common fixed point z ∈ X.

Proof. Let x◦ be an arbitrary point of X and define the sequence {yn} in X such that

yn = gxn = Qxn+1 and yn+1 = fxn+1 = Pxn+2. (2.8)
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Applying (2.7) and (2.8), we get

d(yn+1,yn)∫
0

ϕ(t)dt =

d(fxn+1,gxn)∫
0

ϕ(t)dt ≤ α1

d(Pxn+1,Qxn)∫
0

ϕ(t)dt+ α2

d(Pxn+1,fxn+1)∫
0

ϕ(t)dt

+α3

d(Qxn,gxn)∫
0

ϕ(t)dt+ α4

d(Qxn,fxn+1)∫
0

ϕ(t)dt

+α5

max{d(Pxn+1,gxn),d(Qxn,fxn+1)}∫
0

ϕ(t)dt

+α6

d3(Pxn+1,fxn+1)+d3(Qxn,gxn)

1+d2(Pxn+1,fxn+1)+d2(Qxn,gxn)∫
0

ϕ(t)dt+ α7

d2(Pxn+1,gxn)+d2(Qxn,fxn+1)
1+d(Pxn+1,gxn)+d(Qxn,fxn+1)∫

0

ϕ(t)dt

≤ α1

d(yn,yn−1)∫
0

ϕ(t)dt+ α2

d(yn,yn+1)∫
0

ϕ(t)dt+ α3

d(yn,yn−1)∫
0

ϕ(t)dt

+α4

d(yn−1,yn+1)∫
0

ϕ(t)dt+ α5

max{d(yn,yn),d(yn−1,yn+1)}∫
0

ϕ(t)dt

+α6

[d(yn,yn+1)+d(yn−1,yn)].[d2(yn,yn+1)+d2(yn−1,yn)]

1+d2(yn,yn+1)+d2(yn−1,yn)∫
0

ϕ(t) + α7

d2(yn,yn)+d2(yn−1,yn+1)
1+d(yn,yn)+d(yn−1,yn+1)∫

0

ϕ(t)dt.

By the same calculations above, we get

d(yn+1,yn)∫
0

ϕ(t)dt ≤ (
α1 + α3 + α4 + α5 + α6 + α7

1− α2 − α4 − α5 − α6 − α7
)

d(yn,yn−1)∫
0

ϕ(t)dt

≤ q(t)

d(yn,yn−1)∫
0

ϕ(t)dt ≤ qn(t)
d(y1,y◦)∫

0

ϕ(t)dt→ 0 as n→∞.

Therefore
lim
n→∞

d(yn+1, yn) = 0. (2.9)

Now we show that {yn} is a Cauchy sequence in X. Let m > n where m,n ∈ N , from (2.7) and
(2.8), we have

d(yn,ym)∫
0

ϕ(t)dt =

d(fxn,gxm)∫
0

ϕ(t)dt ≤ α1

d(yn−1,ym−1)∫
0

ϕ(t)dt+ α2

d(yn−1,yn)∫
0

ϕ(t)dt+ α3

d(ym−1,ym)∫
0

ϕ(t)dt

+α4

d(ym−1,yn)∫
0

ϕ(t)dt+ α5

max{d(yn−1,ym),d(ym−1,yn)}∫
0

ϕ(t)dt

+α6

d3(yn−1,yn)+d3(ym−1,ym)]

1+d2(yn−1,yn)+d2(ym−1,ym)∫
0

ϕ(t) + α7

d2(yn−1,ym)+d2(ym−1,yn)

1+d(yn−1,ym)+d(ym−1,yn)∫
0

ϕ(t)dt.
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By the same way, for m > n there are two cases:
Case (i). When d(yn−1, ym) > d(ym−1, yn), we can write

d(yn,ym)∫
0

ϕ(t)dt ≤ (
α1 + α2 + α5 + α6 + α7

1− α1 − α4 − α5 − 2α7
)

d(yn−1,yn)∫
0

ϕ(t)dt

+(
α1 + α3 + α4 + α6 + α7

1− α1 − α4 − α5 − 2α7
)

d(ym−1,ym)∫
0

ϕ(t)dt.

Case (ii). When d(yn−1, ym) < d(ym−1, yn), one can write

d(yn,ym)∫
0

ϕ(t)dt ≤ (
α1 + α2 + α6 + α7

1− α1 − α4 − α5 − 2α7
)

d(yn−1,yn)∫
0

ϕ(t)dt

+(
α1 + α3 + α4 + α5 + α6 + α7

1− α1 − α4 − α5 − 2α7
)

d(ym−1,ym)∫
0

ϕ(t)dt.

From two cases and taking the limit as n,m→∞, we obtain

d(yn,ym)∫
0

ϕ(t)dt ≤ (qn−1(t) + qm−1(t))

d(y◦,y1)∫
0

ϕ(t)dt→ 0.

Hence {yn} is a Cauchy sequence in complete metric space X , so it is convergent to the point z
i.e., limn→∞ yn = z,

z = lim
n→∞

gxn = lim
n→∞

Qxn+1 = lim
n→∞

fxn+1 = lim
n→∞

Pxn+2. (2.10)

Since f(X) ⊆ P (X), there exists a point u ∈ X such that z = Pu. If z 6= gu, then from (2.7),
we get

d(yn+1,gu)∫
0

ϕ(t)dt =

d(fxn+1,gu)∫
0

ϕ(t)dt ≤ α1

d(Pxn+1,Qu)∫
0

ϕ(t)dt+ α2

d(Pxn+1,fxn+1)∫
0

ϕ(t)dt

+α3

d(Qu,gu)∫
0

ϕ(t)dt+ α4

d(Qu,fxn+1)∫
0

ϕ(t)dt+ α5

max{d(Pxn+1,gu),d(Qu,fxn+1)}∫
0

ϕ(t)dt

+α6

d3(Pxn+1,fxn+1)+d3(Qu,gu)

1+d2(Pxn+1,fxn+1)+d2(Qu,gu)∫
0

ϕ(t)dt+ α7

d2(Pxn+1,gu)+d2(Qu,fxn+1)
1+d(Pxn+1,gu)+d(Qu,fxn+1)∫

0

ϕ(t)dt.

Taking the limit in the above inequality and using (2.10), we have

d(z,gu)∫
0

ϕ(t)dt ≤ α1

d(z,Qu)∫
0

ϕ(t)dt+ α2

d(z,z)∫
0

ϕ(t)dt+ α3

d(Qu,gu)∫
0

ϕ(t)dt+ α4

d(Qu,z)∫
0

ϕ(t)dt

+α5

max{d(z,gu),d(Qu,z)}∫
0

ϕ(t)dt+ α6

d3(z,z)+d3(Qu,gu)

1+d2(z,z)+d2(Qu,gu)∫
0

ϕ(t)dt+ α7

d2(z,gu)+d2(Qu,z)
1+d(z,gu)+d(Qu,z)∫

0

ϕ(t)dt.

≤ (
α1 + α3 + α4 + α5 + α6 + α7

1− α3 − α6 − α7
)

d(z,Qu)∫
0

ϕ(t)dt = q(t)

d(z,Qu)∫
0

ϕ(t)dt.
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We have a contradiction again, therefore z = gu. Soz = Pu = gu.
Hence u is a coincidence point of P and g. Since (g, P ) is weakly compatible, then

Pgu = gPu⇒ Pz = gz. (2.11)

Similarly, g(X) ⊆ Q(X), there exists a point v ∈ X , such that z = Qv. Then from (2.7) and
applied the same above steps, we can find that fv = z, so z = fv = Qv.
Hence v is a coincidence point of f and Q. Also the pair (f,Q) are weakly compatible, then

fQu = Qfu⇒ fz = Qz. (2.12)

Now we show that z is a fixed point of g, by using (2.7), we get

d(z,gz)∫
0

ϕ(t)dt =

d(fxn+1,gz)∫
0

ϕ(t)dt ≤ α1

d(z,Qz)∫
0

ϕ(t)dt+ α2

d(z,z)∫
0

ϕ(t)dt+ α3

d(Qz,gz)∫
0

ϕ(t)dt

+α4

d(Qz,z)∫
0

ϕ(t)dt+ α5

max{d(z,gz),d(Qz,z)}∫
0

ϕ(t)dt

+α6

d3(z,z)+d3(Qz,gz)

1+d2(z,z)+d2(z,z)∫
0

ϕ(t)dt+ α7

d2(z,gz)+d2(Qz,z)
1+d(z,gz)+d(Qz,z)∫

0

ϕ(t)dt.

≤ (
α1 + α3 + α4 + α5 + α6 + α7

1− α3 − α6 − α7
)

d(z,Qz)∫
0

ϕ(t)dt = q(t)

d(z,Qz)∫
0

ϕ(t)dt,

also by the notion on q(t), we get a contradiction a gain. So
d(z,gz)∫

0
ϕ(t)dt = 0 and d(z, gz) = 0

or z = gz, also from (2.11), we get
Pz = gz = z. (2.13)

By the same way we can show that z is a fixed point of f , so from (2.12), we have

Qz = fz = z. (2.14)

From (2.13) and (2.14), we obtain that Pz = gz = fz = Qz = z. Therefore z is a common
fixed point of f, g,Q and P . For uniqueness, it is simple. 2

If we put f = g in Theorem 2.4, we have the following result:

Corollary 2.5. Let (X, d) be a complete metric space and αi : (0,∞)→ [0, 1) is monotonically
decreasing functions satisfying α1 +α2 +α3 + 2α4 + 2α5 + 2α6 + 2α7 < 1 and f,Q, P are self
mappings in X satisfies the following conditions:
(i) f(X) ⊆ P (X) and f(X) ⊆ Q(X),
(ii) the pairs (f, P ) and (f,Q) are weakly compatible,
(iii)

d(fx,fy)∫
0

ϕ(t)dt ≤ α1

d(Px,Qy)∫
0

ϕ(t)dt+ α2

d(Px,fx)∫
0

ϕ(t)dt+ α3

d(Qy,fy)∫
0

ϕ(t)dt+ α4

d(Px,fy)∫
0

ϕ(t)dt

+α5

max{d(Qy,fx),d(Px,fy)}∫
0

ϕ(t)dt+ α6

d3(Px,fx)+d3(Qy,fy)

1+d2(Px,fx)+d2(Qy,fy)∫
0

ϕ(t)dt

+α7

d2(Px,fy)+d2(Qy,fx)
1+d(Px,fy)+d(Qy,fx)∫

0

ϕ(t)dt,
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for each x, y ∈ X, x 6= y with αi : (0, 1) → [0, 1) is monotonically decreasing functions,
satisfying α1 + α2 + α3 + 2α4 + 2α5 + 2α6 + 2α7 < 1, where ϕ : R+ → R+ be a Lebesgue-
integrable mapping which is summable on each compact subset of R+ such that for each ε > 0,
ε∫

0
ϕ(t)dt > 0, then f,Q and P have a unique common fixed point z ∈ X.

The following examples justify all requirements of our theorems.

Example 2.6. Let X = [0, 1] and d is usual metric on X . Define a self mapping f such that
fx = 1

2x, x ∈ X . Let us define ϕ(t) = 2t ∀t ∈ R+, x = 1
2 and y = 0 then for every ε > 0,

ε∫
0

ϕ(t)dt =

ε∫
0

2tdt = ε2 > 0.

Since d is usual metric, for all x = 1
2 and y = 0 in X

L.H.S =

d(fx,fy)∫
0

ϕ(t)dt =

d( x2 ,
y
2 )∫

0

2tdt =

| x−y
2 |∫

0

2tdt =
(∣∣∣∣x− y2

∣∣∣∣)2

=
1
16
.

also by the same calculations, we have

α1

d(x,y)∫
0

ϕ(t)dt = α1
4 α2

d(x,fx)∫
0

ϕ(t)dt = α2
16 α3

d(y,fy)∫
0

ϕ(t)dt = 0

α4

d(x,fy)∫
0

ϕ(t)dt = α4
4 α5

max{d(y,fx),d(x,fy)}∫
0

ϕ(t)dt = α5
4 α6

d3(x,fx)+d3(y,fy)

1+d2(x,fx)+d2(y,fy)∫
0

ϕ(t)dt = α6
(68)2

α7

d2(x,fy)+d2(y,fx)
1+d(x,fy)+d(y,fx)∫

0
ϕ(t)dt =

( 5
28

)2
α7.

So,

R.H.S =
α1

4
+
α2

16
+
α4

4
+
α5

4
+

α6

(68)2 +

(
5

28

)2

α7 ≥
1
16

= L.H.S. (2.15)

The inequality (2.15) is satisfies if we take any monotonically decreasing function αi : (0, 1)→
[0, 1), therefore the inequality of Theorem 2.1 is verified and 0 is a unique fixed point of f .

Example 2.7. By regarding all requirements of Example 2.6, define a self mapping g such that
gx = x, x ∈ X and by same calculations, we get

R.H.S =
α1

4
+
α2

16
+
α4

4
+
α5

4
+

α6

(68)2 +

(
5

28

)2

α7 ≥
1
16

= L.H.S. (2.16)

The inequality (2.16) is satisfied if we take any monotonically decreasing function αi : (0, 1)→
[0, 1), therefore the inequality of Theorem 2.3 is verified and 0 is a unique common fixed point
of f and g.

Example 2.8. Let X = [0, 1) with the usual metric on X , we define self mappings f, g, P and Q
on X by

fx =

{
0, if x ∈ [0, 1

2)
1
8 , if x ∈ [ 1

2 , 1)
, Px =

{
1
2 , if x ∈ [0, 1

2)
3
4 , if x ∈ [ 1

2 , 1)
,

gx =

{
0, if x ∈ [0, 1

2)
3
4 , if x ∈ [ 1

2 , 1)
, Qx =

{
0, if x ∈ [0, 1

2)
1
3 , if x ∈ [ 1

2 , 1)
.
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Let ϕ(t) = 2t ∀t ∈ R+, x = 1
2 and y = 0 then for every ε > 0,

ε∫
0

ϕ(t)dt =

ε∫
0

2tdt = ε2 > 0.

It’s clearly that f(X) ⊆ P (X) and g(X) ⊆ Q(X), so at the points x = 1
2 and y = 0 the pairs

(g, P ) and (f,Q) are weakly compatible.

L.H.S =

d(fx,gy)∫
0

ϕ(t)dt =

d(f( 1
2 ),g(0))∫
0

2tdt =

d( 1
8 ,0)∫

0

2tdt =
(∣∣∣∣18

∣∣∣∣)2

=
1

64
.

Also,

α1

d(Px,Qy)∫
0

ϕ(t)dt = 9α1
16 α2

d(Px,fx)∫
0

ϕ(t)dt = 25α2
64 α3

d(Qy,fy)∫
0

ϕ(t)dt = 0

α4

d(fx,Qy)∫
0

ϕ(t)dt = α4
64 α5

max{d(Qy,fx),d(Px,fy)}∫
0

ϕ(t)dt = 9α5
16

α6

d3(Px,fx)+d3(Qy,fy)

1+d2(Px,fx)+d2(Qy,fy)∫
0

ϕ(t)dt = α6
(68)2 α7

d2(Px,gy)+d2(Qy,fx)
1+d(Px,gy)+d(Qy,fx)∫

0
ϕ(t)dt =

( 37
120

)2
α7

So,

R.H.S =
9α1

16
+

25α2

64
+
α4

64
+

9α5

16
+

α6

(68)2 +

(
37
120

)2

α7 ≥
1

64
= L.H.S. (2.17)

The inequality (2.17) is satisfied if we take any monotonically decreasing function αi : (0, 1)→
[0, 1), therefore the inequality (2.7) is verified and all axioms of Theorem 2.4 are hold and 0 is a
unique common fixed point of f, g, P and Q.
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