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Abstract. The purpose of this paper is an attempt to present the singular integral operator
4 (a,B,v,8) associated with singular integral equation involving extended Mittag-Leffler func-

tion é”;/_’g (z) including its existence and composition with Riemann-Liouville fractional integral
operator. Further, some properties are also discussed.

1 Introduction

Fractional integral operators play an important role in the solution of several problems of sci-
ence and engineering. Many fractional integral operators like Riemann-Liouville, Weyl, kober,
Erdelyi-Kober and Saigo operators have been discussed by many researchers due to their appli-
cation in physical, engineering and technological sciences such as reaction, diffusion, viscoelas-
ticity etc. A detailed account of these operators can be found in the survey paper by Srivastava
and Saxena [12]. Various properties of family of Mittag-Leffler functions using fractional inte-
gral operators have been obtained by [1], [4], [5], [11], [13], [14] and so forth.

Recently, Desai et al. [[2],[3]] studied the integral operator and integral equation containing
generalized Mittag-Leffler function as the kernel. In this paper, the operator is extended to
singular integral operator. The Mittag-Leffler function is a direct generalization of exponential
function. The classical Mittag-Leffler function [7] is defined by

n

<

Ea<z):n;)m, (1.1)

where z is a complex variable and & > 0 that occurs as the solution of fractional order differential
equation or fractional order integral equations. For & = 1,E;(z) = ¢*. ForO < a < 1 and |z < I,

it interpolates between the exponential function ¢* and a geometric function (11? =Yy 7
k=0

Wiman [16] suggested the generalization of Eq(z) for a, 8 € C,Re(a),Re(f) > 0 as

e n

Z

Eqp (2) = Z ma

n=0

(1.2)

which is known as Wiman’s function or the generalized Mittag-Leffler function with two param-
eter.

Prabhakar [8] further extended the Mittag-Leffler function for t, B, 7€ C,Re (@) ,Re(B),Re(y) >
0 as

VVENE <N O/
E%ﬁ(z)_n;)r(am )n!’ (13
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where (7),, is a Pochhammer symbol, (y), =y(y+1)...(y+n—1)= F(F)E;)n) n>1,(Y)=1LYy#
0.

Shukla and Prajapati [10] introduced the function Eg’_% (2), defined for o, B, 7€ C,Re () ,Re (B),Re (y) >
0,and g € (0,1)UN, as

oo

qn 7"
~ X @

where (y)qn (11??") denotes the generalized Pochhammer symbol which in particular reduces

to g4" H (Hr 1) ifgeN.

r=1

A new generalization of Mittag-Leffler function was defined by Salim [9] as

70 (2) = i . (Va2 (1.5)

0
where o, 3,7,0 € C;Re(@),Re(B),Re(v),Re(5) > 0.

Should similar notations in (1.4) and (1.5) may arise confusion, we, henceforth, replace the
notation in (1.5) by éﬁ’ﬁ( 2).

Equation (1.5) is the generalization of exponential function. Equations (1.1)—(1.3) can re-

duce to gllﬁl(z) =exp(z )v‘g)olci( ) =8y(z )7‘9@015[13( ) =&y p(z )andgg’ﬁ( 7)= (f)@gﬁ( z). Further, on
setting v = 8, we get
5,0
&y p(2) =64 p(2) (1.6)

2 Preliminary Notes

Definition 1. We consider real (or complex) valued function on a real interval [a,d), where
0 <a < d < b <. Often they are locally integrable on (a,d), i.e., L-integrable on [a,[) for each
I <d.

Definition 2. L denotes the linear space of real (or complex) valued functions f(x) which are
L - integrable on a finite [a, b], i.e.

b
Lab)={ £: 1Al = [1f0]dr <o b exY

Definition 3. Riemann-Liouville fractional integrals of order u (Miller and Ross [6]): Let
f(x) € L(a,b), u € C;Re(u) > 0. Then I* : L — L is a linear operator defined by the fractional
integral

I*f(x) = I8 f(x) = I f(x) = r(lu) / . f (t)—u dr, 2.2)

for almost all x € (a,b).

It is well known that if /* is bounded and f is locally integrable. Then
Mf=0=f=0. (2.3)

Hence, inverse operator exists on subspace L, of L. If 0 < Re(ut) < Re(Vv), then it can be proved
that L, C L, C L and the inclusion is proper. For Re(p) < 0, I* is defined as the inverse of /7*.
If Re(u) # 0,Re(Vv) # 0, then I*1V f = I*TV f for locally integrable functions f. Similarly, for
X< b <oo,

a0

TS =l 10 =1, f0) = ey | (g

dt. (2.4)
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3 The operator ¢; and its properties

The operator ¢ having singularity in the kernel, is given by

X

%1(0,B.7.8) /() = [ “ i

a

(x 1)5 1

(5)
where o, 3,7,0,1 € C and Re(a),Re(8),Re(y),Re(5),Re(u) > 0.

&15 (1=3) (0)dr = g, 3.0

Theorem 4. (Existence of the integral) If Re(k) > 0; ¢ <Re(h+k); ¢ < min(Re(c),Re(B)), 5 #
0,—1,—2...,a > 0 and xf(x) is integrable on a finite interval (a,/), then

v k-1
[ (x—1) 7.8 x
—& -)f(t)dt 32
RSO 62
exists almost everywhere in (a,/) and integrable on it. The same is true for the function obtained
by replacing the integrand by its modulus.

Proof: Let the integrand in (3.2) is a measurable function of 7 and also a measurable function
of (x,1).
Therefore,

tkl

78 (1 %‘) £(0)|dr (3.3)

is a measurable function of x on (aJ), by Fubini’s theorem. In order to prove that (3.3) is
integrable on (a,1), it is enough to prove the finiteness of

1 x

[1elas]

a a

l [
= [1ro)ar

For x =1t(1+s), we get the estimate

(xft)k*1 : X
75";’72(1—;)f(t) dt.

(k)

k-1 X
xh< F(tli) 55,2(1—;)

l
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/vmw*m!

a

! h
(1+5%) skl 7.6

0 a,ﬁ(fs) ds

(l + S)hsk_l 7,8

(1 —I—s)hs 7
@@7 ) a,ﬁ(_s)

W D!ﬂ ds.

§/I|f(t)|th+kdt/3 ds+/|f |th+kdt/
a 0

Since #9£(¢) is integrable, it is obvious that the first integral is finite and the second integral can
be proved finite. Hence, the above representation is finite.

4 Properties of the operator ¢,

Following lemma and its comprehensible proof, is invoked in proving Theorem 6 that follows.

Lemma 5. If Re(A),Re(0) > 0 and z is in the complex plane cut along z > 1, then

1 5 1 1
/ r )@@g g(zu)d L 57’5” (2). (4.1)
0
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In particular, for 0 < r < x,

Y S RV B | L SHA-1

R e T i v o VAR TR
and

VST B R I | NS HA-

/ (xr&)) (srfe)» ‘”ﬁgig“wsz@ré)mgiﬁ”(l . @3

Proof: Substituting value of é” 73 B from (1.5) into the left hand side of (4.1), we have
1 1
/(1u)’llu5 ! /
(A (6 F
| TGy Te) /
n

Z
_Z (xn+[3 T T8 1) S A +9);

where B(a,b) is a beta function. An accessible calculations leads to the proof of (4.1), and thus,
details are avoided.

oo (Zu)n
; an—i—ﬁ ) (8), d

u,

In particular, (4.2) can be obtained from (4.1) directly by changing the scale. In fact, by
substitution s —# = (x —t)u, we obtain

y A—1 5-1
— —t
/ Woo) SoO pr8 1 5p)as
t

I'(4) I'(3)
1
B oo (_ 6+n 1+ 5 n— 1(1 u)/l—l
—,E T(an+B)T 5+n0/ m du,

(—1)"(y) (x—1)> 112
 Tlan+ B)LATE +mer o0 T A)

where B(6 +n,A) is the beta function. Further simplification yields

I
\\Mz

X (x_s)lfl (S—l‘)671 7 s
/ T Ty Cas(l = ds

B ), —x)"
= (=07 12 om+/3 T(A+8+n)"
A
_(XF(§)+;L) @@Jgﬂ(l— ),

which proves (4.2).

(x )

Similarly, substituting for zand =7 for u in (4.1), we arrive at the desired relation (4.3).

Remark: It would be incorrect to say that (4.3) is derived from (4.2) by interchanging x and
t, because both formule assume that 0 <7 < x.

Theorem 6. (Composition with Riemann-Liouville fractional integral operator) If Re(A),Re(5) >
0,9 < Re(6),q < min(Reo,Ref}) and x9f(x) is locally integrable (cf. Vulikh [15], p.152) on
[a,d), then 4 (e, B,7,0) f(x) is also locally integrable and

I, (0, B,Y,8) f(x) = %1 (0t. B, Y, 5+ ) f (). (4.4)
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That is to say, for almost all x in [a,d),

x(x_s)l—l 5 (S—f)a_ 75 X 5+l 1 7640
/ (%) ds/ r(e) Capll s / r5+/1 T A) Ces TS (3
Proof: It follows from (2.2) and (3.1) that
IlgL (avﬁ>%6>f(x)
B x(x—s)l_l S(s_t)a 1 ’
7/ = / 5 TS (1-%) £(t)drds (4.6)

- x S()C—S)Ail (s—l)571 oo ('}’)n o
_a/ / T T0) X Man o), 0 /s

By substitution s — = (x —#)u, we obtain

% (o, B,7.8) f(x)

(x— )0 AT S tn=1 () )2 =11 duds.

_Z/r om+ﬁ) R

Further simplification leads to

o _

t)5+n71+l

), (x
Z/f om+13 \T(AIT( - )i

B(6+n,A)dt
which can be written as

i o )" (V) (x—1)"
_a/(x_ 1+)LZ 5+n+)L) ((xn—i—B)t"f(t)dt.

Here, changing the order of integration and summation is justified by the dominated convergence
theorem, conditions for which are prescribed in the theorem.
Therefore,

y (x_t)6—1+/1 5.
I (0.8.,7,8) ) = [ b s - ra

= gL(avﬁa’Y75+2’)f(x)'
This completely proves (4.4). This property can also be refered to as a shifting property.

Now, fixing / such that a < I < d, we have to prove (4.5) for almost all x in (a,!) and inte-
grability of ¢, (a,B,7,0) f on (a,l). The integrability follows from Theorem 4 with # = 0 and
k = 0 and incidentally the double integral in (4.5) is absolutely convergent for almost all x in

S

(a,1), because
[

A-1
is a convolution of integrable functions ’ ()li)( P ’ and the function in (3.3) with # =0 and k = 9,

(s—1)°"!

(x—s)*"! 5
N0 é"gﬁ (1=5%) f(1)

I(4)

dtds,

which is also integrable in the light of Theorem 4. The convolution is finite almost everywhere,
and as a result, double integral in (4.5) is absolutely convergent almost everywhere.
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Inverting the order of integration, the left side of (4.4) becomes

X S _S1—1 g 5-1
./f(t)dt./( F(ﬁ)t) ( F(t;) 18 (1-%) ds

for almost all x, which on invoking Lemma 5, establishes (4.4).

Theorem 7. If Re(A),Re(d) > 0,9 <Re(d+1);g < min(Re(ax),Re(f));0 <a < d < b and

x?f(x) is locally integrable on [a,d), then

_ 1
G (o, B,y,8)x TR0 r(x) = ggL(a,ﬁ,y,s +A) f(x)
Proof: The left hand side
G (o, B,y,8)x T A0 £ (x)
S )l—l

x5 oo
_ / @fr(;)gg;gu e AL / (F&)ﬁf(t)dtd&

a

i.e. on changing the order of integration, this gives

G(a,B,y.8)x I f ()

[ (X—S)(Ll (V) (s—x)" (s—t)A*1
:/t/nz:o [(8) T(an+pB)(s), s"+5+4  T(A) 12 f(¢)dtds.

s 5+n71( 71‘)171

D' T +n X . E
_/Z an+ﬁ )( )(y(6-|—)n)1"()t) /( )sn+5+/l ds taf(t)dt

Let us consider

_ 5+n 1 _t)lfld
§h+o+A 5

t

Substituting s =7 + (x —f)u, we get

(x—1) A (8 +1n)

= e Tito+n)

Therefore,
<(gL ((X, ﬁ; % 6>x_(5+k)llx6f(x)

_ /Z (—1)'T(y+n) (x— )2 A D()D(S +n)
=) A Tant BTOTGE+nTQR) | v T(A+5+m)

2 f(t)dt,

n

1 _ \O—1+A
-7/ (r(é)m)éﬁ 5 (=) Fydr,

Hence, we arrive at

— i%(a,ﬁ,y,ﬁ#-l)f(x)

) o p (1—=%) f(t)dt

for 0 < a < x < d < oo, if exists.

4.7)

4.8)
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Theorem 8. If Re(),Re(f),Re(Y),Re(0) >0,q < min(Re(d),Re(ax+f)), g < min(Re(ct),Re(f)),
x7f(x) is locally integrable on [a,d) and
I (x—l‘)g*1 7.8 X B
/Wg“ﬁ (1 — ;) F(t)dr =0, (4.9)

then f(x) =0.

Proof: From Theorem 6, we have

4 (a,B,7,8) f(x) =% (a, B, 7,8+ A) f(x),

:ISgL(Ot,ﬁ,’}/,)L)f(X).
On setting A = 7, it yields

"9 (a0, B,7,0) f(x) =% (a, B,7,6 +7) f(x),

= 15gL (a7ﬁ7 Ys ’Y)f(x)
Invoking (4.9), we get

Y. (a,B,y,8) f(x) =0.
Therefore,
1'%, (a0, B,7,8) f(x) = I°%. (. B,7,7) f(x) = 0.
Hence, by (2.3)
(o, B,7,7) f(x)=0.

Now,
X . ,y_l
90 Bren) 1) = | LI (=) S0,
On considering (1.6), we get
X oyl
90 B17) 1) = [ ST (1) S0,

=1"Eup (1-%%) f(x)=0.

Therefore, by (2.3), we conclude that &, g (1—%) f(x) = 0 provided & g (1 —%%) f(x) is lo-
cally integrable.

Theorem 9. If Re(d) > 0 and z is in the complex plane cut along z > 1, then

1

R et KR et @10
0

In particular,
1 X
) — ,
(x—1)° {%jﬁf;(l—x/,) _1"([3—05)} = 57/(1—s/t)(x—s)5 L (1=%) du. (4.11)
t

Now, we prove the property in which one parameter can be completely replaced by any newly
introduced parameter.
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Theorem 10. If ¢, 8,7, 8,k € C; Re(),Re(B),Re(y) > 0; Re(k) >Re(5) >0, then forx > 0,

k o—1 5_1 tk—l

t
55 Eayh ()
/ RO @@aﬁ( A= rbes (1) (4.12)
0
Proof: If z is any complex number such that |z| > ¢, then

s)k7571S5 1

(- 5 = e (), ()
0/ T(8)C(k—3) ggﬁ()‘“ 0/ TOTG—0) X Fan+p) (6), "

n

On changing order of integration and summation, justified for the absolute convergence of inte-
grals under given conditions, we get

1/\" ¢
- (V) </Z) 51 San
= L Fan s HrOTE=9) (), [0t as

Substituting s = r u and using beta function, above integral reduces to
( ) tk+n71
= X B G o,

Using relation between Beta and Gamma function and putting z = —x, we get the required result.
It can be observed from (4.12) that the fourth parameter 8 is completely replaced by the newly
introduced parameter k.

B(k— 8,8 +n).

Inwhat follow is the result that prescribes the transformation of éﬁ:g under integral sign into
the fractional integral with randomly chosen parameter.

Theorem 11. If o, 3,7, 0,k € C,Re(at),Re(f),Re(y) > 0; Re(k) > Re(5) > 0, then for x >0
and f € S,

oo

/°°tk—1 gyk
o =[5
/ T

0

I\ k-5
;)J F(t)dr

oo [ t
A (t—s5)k 07181
— & (—=) f(t dt:/ t /—5% dsdt.
/ 0 25 (-0 O | TerE—e) a5 () s
0 0 0
Changing the order of integration, which is justified by Fubini’s theorem, we get
< < k—6-1
t—s)
é”” —5 d /7( 1)dt
0/ x> | Ta—s /¥

)Jkiéf(s)ds

0\8

5 Conclusion

Owing to the occurrence of four parameter generalized Mittag-Leffler function in the kernel of
the integral equations and having studied its properties, it is believed that results of this paper
can be extended to study singular integral equation on distribution spaces. Further, the function
in Theorems 6, 7 and 8 being locally integrable, may support investigations in wavelet analysis.
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