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Abstract. In this paper, we will introduce two generalizations of second submodules of a
module over a commutative ring and explore some basic properties of these classes of modules.

1 Introduction

Throughout this paper, R will denote a commutative ring with identity and "⊂" will denote the
strict inclusion. Further, Z will denote the ring of integers.

Let M be an R-module. A proper submodule P of M is said to be prime if for any r ∈ R and
m ∈M with rm ∈ P , we have m ∈ P or r ∈ (P :R M) [14]. A non-zero submodule S of M is
said to be second if for each a ∈ R, the homomorphism S

a→ S is either surjective or zero [19].
In this case AnnR(S) is a prime ideal of R.

Badawi gave a generalization of prime ideals in [9] and said such ideals 2- absorbing ideals.
A proper ideal I of R is a 2-absorbing ideal of R if whenever a, b, c ∈ R and abc ∈ I , then
ab ∈ I or ac ∈ I or bc ∈ I . He proved that I is a 2-absorbing ideal of R if and only if whenever
I1, I2, and I3 are ideals of R with I1I2I3 ⊆ I , then I1I2 ⊆ I or I1I3 ⊆ I or I2I3 ⊆ I . The authors
in [12] and [17] extended 2-absorbing ideals to 2-absorbing submodules. A proper submodule
N of M is called a 2-absorbing submodule of M if whenever abm ∈ N for some a, b ∈ R and
m ∈M , then am ∈ N or bm ∈ N or ab ∈ (N :R M). Several authors investigated properties of
2-absorbing submodules, for example see [12, 17, 18].

A submodule N of an R-module M is called strongly 2-absorbing if IJL ⊆ N for some
ideals I, J of R and a submodule L of M , then IL ⊆ N or JL ⊆ N or IJ ∈ (N :R M) [13].

The purpose of this paper is to introduce the dual notions of 2-absorbing and strongly 2-
absorbing submodules and obtain some related results.

2 2-absorbing second submodules

Let M be an R-module. A proper submodule N of M is said to be completely irreducible if
N =

⋂
i∈I Ni, where {Ni}i∈I is a family of submodules of M , implies that N = Ni for some

i ∈ I . It is easy to see that every submodule of M is an intersection of completely irreducible
submodules of M [15].

We frequently use the following basic fact without further comment.

Remark 2.1. Let N and K be two submodules of an R-module M . To prove N ⊆ K, it is
enough to show that if L is a completely irreducible submodule of M such that K ⊆ L, then
N ⊆ L.

Definition 2.2. Let N be a non-zero submodule of an R-module M . We say that N is a 2-
absorbing second submodule of M if whenever a, b ∈ R, L is a completely irreducible submod-
ule of M , and abN ⊆ L, then aN ⊆ L or bN ⊆ L or ab ∈ AnnR(N). This can be regarded as a
dual notion of the 2-absorbing submodule.

Example 2.3. (a) The Z-module Zn is a 2-absorbing second submodule of Zn if n = p or
n = pq, where p, q are prime integers.
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(b) Consider nZ as a submodule of the Z-module Z. Then n = pα1
1 ...pαt

t , where pαi
i (1 ≤ i ≤ t)

are distinct prime integers. For p1 ∈ Z and completely irreducible submodule pα1+2
1 Z of Z,

we have p1.p1.(nZ) ⊆ pα1+2
1 Z but p1.(nZ) 6⊆ pα1+2

1 Z and p1.p1 = p2
1 6∈ AnnZ(nZ) = (0).

Therefore, the Z-module Z has no 2-absorbing second submodule.

A non-zero R-module M is said to be secondary if for each a ∈ R the endomorphism of M
given by multiplication by a is either surjective or nilpotent [16].

Theorem 2.4. Let M be an R-module. Then we have the following.

(a) If either N is a second submodule of M or N is a sum of two second submodules of M ,
then N is 2-absorbing second.

(b) If N is a secondary submodule of M and R/AnnR(N) has no non-zero nilpotent element,
then N is 2-absorbing second.

Proof. (a) The first assertion is clear. To see the second assertion, let N1 and N2 be two second
submodules of M . We show that N1 + N2 is a 2-absorbing second submodule of M . Assume
that a, b ∈ R, L is a completely irreducible submodule of M , and ab(N1 +N2) ⊆ L. Since N1 is
second, abN1 = 0 or N1 ⊆ L by [3, 2.10]. Similarly, abN2 = 0 or N2 ⊆ L. If abN1 = 0 = abN2
(resp. N1 ⊆ L and N2 ⊆ L), then we are done. Now let abN1 = 0 and N2 ⊆ L. Then aN1 = 0 or
bN1 = 0 because AnnR(N1) is a prime ideal of R. If aN1 = 0, then a(N1 +N2) ⊆ aN1 +N2 ⊆
N2 ⊆ L. Similarly, if bN1 = 0, we get b(N1 +N2) ⊆ L as desired.

(b) Let a, b ∈ R, L be a completely irreducible submodule of M , and abN ⊆ L. Then if
aN ⊆ L or bN ⊆ L, we are done. Let aN 6⊆ L and bN 6⊆ L. Then a, b ∈

√
AnnR(N). Thus,

(ab)s ∈ AnnR(N) for some positive integer s. Therefore, ab ∈ AnnR(N) because R/AnnR(N)
has no non-zero nilpotent element.

Lemma 2.5. Let I be an ideal of R and N be a 2-absorbing second submodule of M . If a ∈ R,
L is a completely irreducible submodule of M , and IaN ⊆ L, then aN ⊆ L or IN ⊆ L or
Ia ∈ AnnR(N).

Proof. Let aN 6⊆ L and Ia 6∈ AnnR(N). Then there exists b ∈ I such that abN 6= 0. Now
as N is a 2-absorbing second submodule of M , baN ⊆ L implies that bN ⊆ L. We show that
IN ⊆ L. To see this, let c be an arbitrary element of I . Then (b + c)aN ⊆ L. Hence, either
(b+ c)N ⊆ L or (b+ c)a ∈ AnnR(N). If (b+ c)N ⊆ L, then since bN ⊆ L we have cN ⊆ L. If
(b+ c)a ∈ AnnR(N), then ca 6∈ AnnR(N), but caN ⊆ L. Thus cN ⊆ L. Hence, we conclude
that IN ⊆ L.

Lemma 2.6. Let I and J be two ideals of R and N be a 2-absorbing second submodule of M .
If L is a completely irreducible submodule of M and IJN ⊆ L, then IN ⊆ L or JN ⊆ L or
IJ ⊆ AnnR(N).

Proof. Let IN 6⊆ L and JN 6⊆ L. We show that IJ ⊆ AnnR(N). Assume that c ∈ I and d ∈ J .
By assumption there exists a ∈ I such that aN 6⊆ L but aJN ⊆ L. Now Lemma 2.6 shows that
aJ ⊆ AnnR(N) and so (I \ (L :R N))J ⊆ AnnR(N). Similarly there exists b ∈ (J \ (L :R N))
such that Ib ⊆ AnnR(N) and also I(J \(L :R N)) ⊆ AnnR(N). Thus we have ab ∈ AnnR(N),
ad ∈ AnnR(N) and cb ∈ AnnR(N). As a+ c ∈ I and b+ d ∈ J , we have (a+ c)(b+ d)N ⊆ L.
Therefore, (a + c)N ⊆ L or (b + d)N ⊆ L or (a + c)(b + d) ∈ AnnR(N). If (a + c)N ⊆ L,
then cN 6⊆ L. Hence c ∈ I \ (L :R N) which implies that cd ∈ AnnR(N). Similarly if
(b+ d)N ⊆ L, we can deduce that cd ∈ AnnR(N). Finally if (a+ c)(b+ d) ∈ AnnR(N), then
ab+ ad+ cb+ cd ∈ AnnR(N) so that cd ∈ AnnR(N). Therefore, IJ ⊆ AnnR(N).

Corollary 2.7. Let M be an R-module and N be a 2-absorbing second submodule of M . Then
IN is a 2-absorbing second submodules of M for all ideals I of R with I 6⊆ AnnR(N).

Proof. Let I be an ideal of R with I 6⊆ AnnR(N), a, b ∈ R, L be a completely irreducible
submodule of M , and abIN ⊆ L. Then aN ⊆ L or bIN ⊆ L or abIN = 0 by Lemma 2.5. If
bIN ⊆ L or abIN = 0, then we are done. If aN ⊆ L, then aIN ⊆ aN implies that aIN ⊆ L,
as needed.
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An R-module M is said to be a multiplication module if for every submodule N of M there
exists an ideal I of R such that N = IM [10].

Corollary 2.8. Let M be a multiplication 2-absorbing second R-module. Then every non-zero
submodule of M is a 2-absorbing second submodule of M .

Proof. This follows from Corollary 2.7.

The following example shows that the condition “M is a multiplication module" in Corollary
2.8 can not be omitted.

Example 2.9. For any prime integer p, let M = Zp∞ and N = 〈1/p3 + Z〉. Then clearly, M is a
2-absorbing second Z-module but p2〈1/p3 +Z〉 ⊆ 〈1/p+Z〉 implies that N is not a 2-absorbing
second submodule of M .

We recall that an R-module M is said to be a cocyclic module if SocR(M) is a large and
simple submodule of M [21]. (Here SocR(M) denotes the sum of all minimal submodules of
M .). A submodule L of M is a completely irreducible submodule of M if and only if M/L is a
cocyclic R-module [15].

Proposition 2.10. Let N be a 2-absorbing second submodule of an R-module M . Then we have
the following.

(a) If L is a completely irreducible submodule of M such that N 6⊆ L, then (L :R N) is a
2-absorbing ideal of R.

(b) If M is a cocyclic module, then AnnR(N) is a 2-absorbing ideal of R.

(c) If a ∈ R, then anN = an+1N , for all n ≥ 2.

(d) If AnnR(N) is a prime ideal of R, then (L :R N) is a prime ideal of R for all completely
irreducible submodules L of M such that N 6⊆ L.

Proof. (a) Since N 6⊆ L, we have (L :R N) 6= R. Let a, b, c ∈ R and abc ∈ (L :R N).
Then abN ⊆ (L :M c). Thus aN ⊆ (L :M c) or bN ⊆ (L :M c) or abN = 0 because by
[8, 2.1], (L :M c) is a completely irreducible submodule of M . Therefore, ac ∈ (L :R N) or
bc ∈ (L :R N) or ab ∈ (L :R N).

(b) Since M is cocyclic, the zero submodule of M is a completely irreducible submodule of
M . Thus the result follows from part (a).

(c) It is enough to show that a2N = a3N . It is clear that a3N ⊆ a2N . Let L be a completely
irreducible submodule of M such that a3N ⊆ L. Then a2N ⊆ (L :R a). Since N is 2-
absorbing second submodule and (L :R a) is a completely irreducible submodule of M by [8,
2.1], aN ⊆ (L :R a) or a2N = 0. Therefore, a2N ⊆ L. This implies that a2N ⊆ a3N .

(d) Let a, b ∈ R, L be a completely irreducible submodule of M such that N 6⊆ L, and
ab ∈ (L :R N). Then aN ⊆ L or bN ⊆ L or abN = 0. If abN = 0, then by assumption, aN = 0
or bN = 0. Thus in any cases we get that, aN ⊆ L or bN ⊆ L.

Theorem 2.11. Let N be a 2-absorbing second submodule of an R-module M . Then we have
the following.

(a) If
√
AnnR(N) = P for some prime ideal P of R and L is a completely irreducible sub-

module of M such that N 6⊆ L, then
√
(L :R N) is a prime ideal of R containing P .

(b) If
√
AnnR(N) = P ∩Q for some prime ideals P and Q of R, L is a completely irreducible

submodule of M such that N 6⊆ L, and P ⊆
√
(L :R N), then

√
(L :R N) is a prime ideal

of R.

Proof. (a) Assume that a, b ∈ R and ab ∈
√
(L :R N). Then there is a positive integer t such

that atbtN ⊆ L. By hypotheses, N is a 2-absorbing second submodule of M , thus atN ⊆ L
or btN ⊆ L or atbt ∈ AnnnR(N). If either atN ⊆ L or btN ⊆ L, we are done. So assume
that atbt ∈ AnnR(N). Then ab ∈

√
AnnR(N) = P and so a ∈ P or b ∈ P . It is clear that

P =
√
AnnR(N) ⊆

√
(L :R N). Therefore, a ∈

√
(L :R N) or b ∈

√
(L :R N).

(b) The proof is similar to that of part (a).
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Proposition 2.12. Let M be an R-module and let {Ki}i∈I be a chain of 2-absorbing second
submodules of M . Then ∪i∈IKi is a 2-absorbing second submodule of M .

Proof. Let a, b ∈ R, L be a completely irreducible submodule of M , and ab(∪i∈IKi) ⊆ L.
Assume that a(∪i∈IKi) 6⊆ L and b(∪i∈IKi) 6⊆ L. Then there are m,n ∈ I , where aKn 6⊆ L
and bKm 6⊆ L. Hence, for every Kn ⊆ Ks and Km ⊆ Kd we have aKs 6⊆ L and bKd 6⊆ L.
Therefore, for each submodule Kh such that Kn ⊆ Kh and Km ⊆ Kh we have abKh = 0.
Hence ab(∪i∈IKi) = 0, as needed.

Definition 2.13. We say that a 2-absorbing second submodule N of an R-module M is a maximal
2-absorbing second submodule of a submodule K of M , if N ⊆ K and there does not exist a
2-absorbing second submodule H of M such that N ⊂ H ⊂ K.

Lemma 2.14. Let M be an R-module. Then every 2-absorbing second submodule of M is
contained in a maximal 2-absorbing second submodule of M .

Proof. This is proved easily by using Zorn’s Lemma and Proposition 2.12.

Theorem 2.15. Every Artinian R-module M has only a finite number of maximal 2-absorbing
second submodules.

Proof. Suppose that the result is false. Let Σ denote the collection of non-zero submodules N
of M such that N has an infinite number of maximal 2-absorbing second submodules. The
collection Σ is non-empty because M ∈ Σ and hence has a minimal member, S say. Then S
is not 2-absorbing second submodule. Thus there exist a, b ∈ R and a completely irreducible
submodule L of M such that abS ⊆ L but aS 6⊆ L, bS 6⊆ L, and abS 6= 0. Let V be a maximal
2-absorbing second submodule of M contained in S. Then aV ⊆ L or bV ⊆ L or abV = 0. Thus
V ⊆ (L :M a) or V ⊆ (L :M b) or V ⊆ (0 :M ab). Therefore, V ⊆ (L :S a) or V ⊆ (L :S b)
or V ⊆ (0 :S ab). By the choice of S, the modules (L :S a), (L :S b), and (0 :S ab) have only
finitely many maximal 2-absorbing second submodules. Therefore, there is only a finite number
of possibilities for the module S which is a contradiction.

3 Strongly 2-absorbing second submodules

Definition 3.1. Let N be a non-zero submodule of an R-module M . We say that N is a strongly
2-absorbing second submodule of M if whenever a, b ∈ R, L1, L2 are completely irreducible
submodules of M , and abN ⊆ L1 ∩L2, then aN ⊆ L1 ∩L2 or bN ⊆ L1 ∩L2 or ab ∈ AnnR(N).
This can be regarded as a dual notion of the strongly 2-absorbing submodule.

Clearly every strongly 2-absorbing second submodule is a 2-absorbing second submodule.
In [18, 2.3], the authors show that N is a 2-absorbing submodule of an R-module M if and only
if N is a strongly 2-absorbing submodule of M . Dually, this motivates the following question.

Question 3.2. Let M be an R-module. Is every 2-absorbing second submodule of M a strongly
2-absorbing second submodule of M?

Theorem 3.3. Let N be a submodule of an R-module M . The following statements are equiva-
lent:

(a) N is a strongly 2-absorbing second submodule of M ;

(b) If N 6= 0, IJN ⊆ K for some ideals I, J of R and a submodule K of M , then IN ⊆ K or
JN ⊆ K or IJ ∈ AnnR(N);

(c) N 6= 0 and for each a, b ∈ R, we have abN = aN or abN = bN or abN = 0.

Proof. (a)⇒ (b). Assume that IJN ⊆ K for some ideals I, J of R, a submodule K of M , and
IJ 6⊆ AnnR(N). Then by Lemma 2.6, for all completely irreducible submodules L of M with
K ⊆ L either IN ⊆ L or JN ⊆ L. If IN ⊆ L (resp. JN ⊆ L) for all completely irreducible
submodules L of M with K ⊆ L, we are done. Now suppose that L1 and L2 are two completely
irreducible submodules of M with K ⊆ L1, K ⊆ L2, IN 6⊆ L1, and JN 6⊆ L2. Then IN ⊆ L2
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and JN ⊆ L1. Since IJN ⊆ L1 ∩ L2, we have either IN ⊆ L1 ∩ L2 or JN ⊆ L1 ∩ L2. As
IN ⊆ L1 ∩ L2, we have IN ⊆ L1 which is a contradiction. Similarly from JN ⊆ L1 ∩ L2 we
get a contradiction.

(b)⇒ (a). This is clear.
(a) ⇒ (c). By part (a), N 6= 0. Let a, b ∈ R. Then abN ⊆ abN implies that aN ⊆ abN or

bN ⊆ abN or abN = 0. Thus abN = aN or abN = bN or abN = 0.
(c)⇒ (a). This is clear.

Lemma 3.4. Let M be an R-module, N ⊂ K be two submodules of M , and K be a strongly
2-absorbing second submodule of M . Then K/N is a strongly 2-absorbing second submodule
of M/N .

Proof. This is straightforward.

Proposition 3.5. Let N be a strongly 2-absorbing second submodule of an R-module M . Then
we have the following.

(a) AnnR(N) is a 2-absorbing ideal of R.

(b) If K is a submodule of M such that N 6⊆ K, then (K :R N) is a 2-absorbing ideal of R.

(c) If I is an ideal of R, then InN = In+1N , for all n ≥ 2.

(d) If (L1 ∩ L2 :R N) is a prime ideal of R for all completely irreducible submodules L1 and
L2 of M such that N 6⊆ L1 ∩ L2, then AnnR(N) is a prime ideal of R.

Proof. (a) Let a, b, c ∈ R and abc ∈ AnnR(N). Then abN ⊆ abN implies that aN ⊆ abN or
bN ⊆ abN or abN = 0 by Theorem 3.3. If abN = 0, then we are done. If aN ⊆ abN , then
caN ⊆ cabN = 0. In other case, we do the same.

(b) Let a, b, c ∈ R and abc ∈ (K :R N). Then acN ⊆ K or bcN ⊆ K or abcN = 0. If
acN ⊆ K or bcN ⊆ K, then we are done. If abcN = 0, then the result follows from part (a).

(c) It is enough to show that I2N = I3N . It is clear that I3N ⊆ I2N . Since N is strongly
2-absorbing second submodule, I3N ⊆ I3N implies that I2N ⊆ I3N or IN ⊆ I3N or I3N = 0
by Theorem 3.3. If I2N ⊆ I3N or IN ⊆ I3N , then we are done. If I3N = 0, then the result
follows from part (a).

(d) Suppose that a, b ∈ R and abN = 0. Assume contrary that aN 6= 0 and bN 6= 0. Then
there exist completely irreducible submodules L1 and L2 of M such that aN 6⊆ L1 and bN 6⊆ L2.
Now since (L1 ∩L2 :R N) is a prime ideal of R, 0 = abN ⊆ L1 ∩L2 implies that bN ⊆ L1 ∩L2
or aN ⊆ L1 ∩ L2. In any cases, we have a contradiction.

Remark 3.6. ([9, Theorem 2.4]). If I is a 2-absorbing ideal of R, then one of the following
statements must hold:

(a)
√
I = P is a prime ideal of R such that P 2 ⊆ I;

(b)
√
I = P ∩Q, PQ ⊆ I , and

√
I

2 ⊆ I where P and Q are the only distinct prime ideals of R
that are minimal over I .

Theorem 3.7. If N is a strongly 2-absorbing second submodule of M and N 6⊆ K, then either
(K :R N) is a prime ideal of R or there exists an element a ∈ R such that (K :R aN) is a prime
ideal of R.

Proof. By Preposition 3.5 and Remark 3.6, we have one of the following two cases.

(a) Let
√

AnnR(N) = P , where P is a prime ideal of R. We show that (K :R N) is a prime
ideal of R when P ⊆ (K :R N). Assume that a, b ∈ R and ab ∈ (K :R N). Hence
aN ⊆ K or bN ⊆ K or ab ∈ AnnR(N). If either aN ⊆ K or bN ⊆ K, we are done. Now
assume that ab ∈ AnnR(N). Then ab ∈ P and so a ∈ P or b ∈ P . Thus, a ∈ (K :R N) or
b ∈ (K :R N) and the assertion follows. If P 6⊆ (K :R N), then there exists a ∈ P such
that aN 6⊆ K. By Remark 3.6, P 2 ⊆ AnnR(N) ⊆ (K :R N), thus P ⊆ (K :R aN). Now
a similar argument shows that (K :R aN) is a prime ideal of R.
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(b) Let
√

AnnR(N) = P ∩Q, where P and Q are distinct prime ideals of R. If P ⊆ (K :R N),
then the result follows by a similar proof to that of part (a). Assume that P 6⊆ (K :R N).
Then there exists a ∈ P such that aN 6⊆ K. By Remark 3.6, we have PQ ⊆ AnnR(N) ⊆
(K :R N). Thus, Q ⊆ (K :R aN) and the result follows by a similar proof to that of part
(a).

Let M be an R-module. A prime ideal P of R is said to be a coassociated prime of M if
there exists a cocyclic homomorphic image T of M such that P = AnnR(T ). The set of all
coassociated prime ideals of M is denoted by CoassR(M) [20].

Theorem 3.8. Let N be a strongly 2-absorbing second submodule of an R-module M . Then we
have the following.

(a) If
√
AnnR(N) = P for some prime ideal P of R, L1 and L2 are completely irreducible

submodules of M such that N 6⊆ L1, and N 6⊆ L2, then either
√
(L1 :R N) ⊆

√
(L2 :R N)

or
√
(L2 :R N) ⊆

√
(L1 :R N). Hence, CoassR(N) is a totally ordered set.

(b) If
√
AnnR(N) = P ∩ Q for some prime ideals P and Q of R, L1 and L2 are completely

irreducible submodules of M such that N 6⊆ L1 and N 6⊆ L2, and P ⊆
√
(L1 :R N) ∩√

(L2 :R N), then either
√
(L1 :R N) ⊆

√
(L2 :R N) or

√
(L2 :R N) ⊆

√
(L1 :R N).

Hence, CoassR(N) is the union of two totally ordered sets.

Proof. (a) Assume that
√
(L1 :R N) 6⊆

√
(L2 :R N). We show that

√
(L2 :R N) ⊆

√
(L2 :R N).

Suppose that a ∈
√
(L1 :R N) and b ∈

√
(L2 :R N). Then there exists a positive integer s

such that asN ⊆ L1, bsN ⊆ L2, and bsN 6⊆ L1. If asN ⊆ L1 ∩ L2, then asN ⊆ L2 and
so a ∈

√
(L2 :R N). Now assume that asN 6⊆ L1 ∩ L2. Then asbs ∈ AnnR(N) because

asbsN ⊆ L1 ∩ L2, asN 6⊆ L1 ∩ Ł2, and bsN 6⊆ L1 ∩ L2. Thus, ab ∈ P . If b ∈ P , then bsN ⊆ L1
which is a contradiction. Hence a ∈ P and so a ∈

√
(L2 :R N). Let P,Q ∈ CoassR(N). Then

there exist completely irreducible submodules L1 and L2 of M such that P = (L1 :R N) and
Q = (L2 :R N). Thus, P =

√
(L1 :R N) and Q =

√
(L2 :R N). Hence, either P ⊆ Q or

Q ⊆ P and this completes the proof.
(b) The proof is similar to that of part (a).

In [17, 2.10], it is shown that, if R be a Noetherian ring, M a finitely generated multiplication
R-module, N a proper submodule of M such that AssR(M/N) is a totally ordered set, and
(N :R M) is a 2-absorbing ideal of R, then N is a 2-absorbing submodule of M . In the following
theorem we see that some of this conditions are redundant.

Theorem 3.9. Let N be a submodule of a multiplication R-module M such that (N :R M) is a
2-absorbing ideal of R. Then N is a 2-absorbing submodule of M .

Proof. As (N :R M) 6= R, N 6= M . Let a, b ∈ R, m ∈ M , and abm ∈ N . Since M is a
multiplication R-module, there exists an ideal I of R such that Rm = IM . Thus abIM ⊆ N .
Hence, abI ⊆ (N :R M). Now by assumption, ab ∈ (N :R M) or aI ⊆ (N :R M) or
bI ⊆ (N :R M). Therefore, ab ∈ (N :R M) or aIM ⊆ N or bIM ⊆ N . Thus ab ∈ (N :R M)
or am ∈ N or bm ∈ N .

An R-module M is said to be a comultiplication module if for every submodule N of M
there exists an ideal I of R such that N = (0 :M I), equivalently, for each submodule N of M ,
we have N = (0 :M AnnR(N)) [7].

Theorem 3.10. Let N be a submodule of a comultiplication R-module M . Then we have the
following.

(a) If AnnR(N) is a 2-absorbing ideal of R, then N is a strongly 2-absorbing second submod-
ule of M . In particular, N is a 2-absorbing second submodule of M .

(b) If M is a cocyclic module and N is a 2-absorbing second submodule of M , then N is a
strongly 2-absorbing second submodule of M .
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Proof. (a) Let a, b ∈ R, K be a submodule of M , and abN ⊆ K. Then we have AnnR(K)abN =
0. So by assumption, AnnR(K)aN = 0 or AnnR(K)bN = 0 or abN = 0. If abN = 0,
we are done. If AnnR(K)aN = 0 or AnnR(K)bN = 0, then AnnR(K) ⊆ AnnR(aN) or
AnnR(K) ⊆ AnnR(bN). Hence, aN ⊆ K or bN ⊆ K since M is a comultiplication R-module.

(b) By Proposition 2.10, AnnR(N) is a 2-absorbing ideal of R. Thus the result follows from
part (a).

The following example shows that Theorem 3.10 (a) is not satisfied in general.

Example 3.11. By [7, 3.9], the Z-module Z is not a comultiplication Z-module. The submodule
N = pZ of Z, where p is a prime number, is not strongly 2-absorbing second submodule. But
AnnZ(pZ) = 0 is a 2-absorbing ideal of R.

For a submodule N of an R-module M the the second radical (or second socle) of N is
defined as the sum of all second submodules of M contained in N and it is denoted by sec(N)
(or soc(N)). In case N does not contain any second submodule, the second radical of N is
defined to be (0) (see [11] and [2]).

Theorem 3.12. Let M be a finitely generated comultiplication R-module. If N is a strongly
2-absorbing second submodule of M , then sec(N) s a strongly 2-absorbing second submodule
of M .

Proof. Let N be a strongly 2-absorbing second submodule of M . By Proposition 3.5 (a),
AnnR(N) is a 2-absorbing ideal of R. Thus by [9, 2.1],

√
AnnR(N) is a 2-absorbing ideal

of R. By [5, 2.12], AnnR(sec(N)) =
√
AnnR(N). Therefore, AnnR(sec(N)) is a 2-absorbing

ideal of R. Now the result follows from Theorem 3.10 (a).

Lemma 3.13. Let f : M → Ḿ be a monomorphism of R-modules. If Ĺ is a completely irre-
ducible submodule of f(M), then f−1(Ĺ) is a completely irreducible submodule of M .

Proof. This is strighatforward.

Lemma 3.14. Let f : M → Ḿ be a monomorphism of R-modules. If L is a completely irre-
ducible submodule of M , then f(L) is a completely irreducible submodule of f(M).

Proof. Let {Ńi}i∈I be a family of submodules of f(M) such that f(L) = ∩i∈IŃi. Then L =
f−1f(L) = f−1(∩i∈IŃi) = ∩i∈If−1(Ńi). This implies that there exists i ∈ I such that L =
f−1(Ńi) since L is a completely irreducible submodule of M . Therefore, f(L) = ff−1(Ńi) =
f(M) ∩ Ńi = Ńi, as requested.

Theorem 3.15. Let f : M → Ḿ be a monomorphism of R-modules. Then we have the follow-
ing.

(a) If N is a strongly 2-absorbing second submodule of M , then f(N) is a 2-absorbing second
submodule of Ḿ .

(b) If N is a 2-absorbing second submodule of M , then f(N) is a 2-absorbing second submod-
ule of f(M).

(c) If Ń is a strongly 2-absorbing second submodule of Ḿ and Ń ⊆ f(M), then f−1(Ń) is a
2-absorbing second submodule of M .

(d) If Ń is a 2-absorbing second submodule of f(M), then f−1(Ń) is a 2-absorbing second
submodule of M .

Proof. (a) Since N 6= 0 and f is a monomorphism, we have f(N) 6= 0. Let a, b ∈ R, Ĺ be
a completely irreducible submodule of Ḿ , and abf(N) ⊆ Ĺ. Then abN ⊆ f−1(Ĺ). As N is
strongly 2-absorbing second submodule, aN ⊆ f−1(Ĺ) or bN ⊆ f−1(Ĺ) or abN = 0. Therefore,

af(N) ⊆ f(f−1(Ĺ)) = f(M) ∩ Ĺ ⊆ Ĺ

or
bf(N) ⊆ f(f−1(Ĺ)) = f(M) ∩ Ĺ ⊆ Ĺ
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or abf(N) = 0, as needed.
(b) This is similar to the part (a).
(c) If f−1(Ń) = 0, then f(M) ∩ Ń = ff−1(Ń) = f(0) = 0. Thus Ń = 0, a contradiction.

Therefore, f−1(Ń) 6= 0. Now let a, b ∈ R, L be a completely irreducible submodule of M , and
abf−1(Ń) ⊆ L. Then

abŃ = ab(f(M) ∩ Ń) = abff−1(Ń) ⊆ f(L).

As Ń is strongly 2-absorbing second submodule, aŃ ⊆ f(L) or bŃ ⊆ f(L) or abŃ = 0. Hence
af−1(Ń) ⊆ f−1f(L) = L or bf−1(Ń) ⊆ f−1f(L) = L or abf−1(Ń) = 0, as desired.

(d) By using Lemma 3.14, this is similar to the part (c).

Corollary 3.16. Let M be an R-module and N ⊆ K be two submodules of M . Then we have
the following.

(a) If N is a strongly 2-absorbing second submodule of K, then N is a 2-absorbing second
submodule of M .

(b) If N is a strongly 2-absorbing second submodule of M , then N is a 2-absorbing second
submodule of K.

Proof. This follows from Theorem 3.15 by using the natural monomorphism K →M .

A non-zero submodule N of an R-module M is said to be a weakly second submodule of M
if rsN ⊆ K, where r, s ∈ R and K is a submodule of M , implies either rN ⊆ K or sN ⊆ K
[4].

Proposition 3.17. Let N ba a non-zero submodule of an R-module M . Then N is a weakly
second submodule of M if and only if N is a strongly 2-absorbing second submodule of M and
AnnR(N) is a prime ideal of R.

Proof. Clearly, if N is a weakly second submodule of M , then N is a strongly 2-absorbing
second submodule of M and by [4, 3.3], AnnR(N) is a prime ideal of R. For the converse, let
abN ⊆ H for some a, b ∈ R and submodule K of M such that neither aN ⊆ H nor bN ⊆ H .
Then ab ∈ AnnR(N) and so either a ∈ AnnR(N) or b ∈ AnnR(N). This contradiction shows
that N is weakly second.

The following example shows that the two concepts of strongly 2-absorbing second submod-
ule and weakly second submodule are different in general.

Example 3.18. Let p, q be two prime numbers, N =< 1/p+Z >, and K =< 1/q +Z >. Then
N ⊕K is not a weakly second submodule of the Z-module Zp∞ ⊕Zq∞ . But N ⊕K is a strongly
2-absorbing second submodule of the Z-module Zp∞ ⊕ Zq∞ .

Proposition 3.19. Let M be an R-module and {Ki}i∈I be a chain of strongly 2-absorbing second
submodules of M . Then ∪i∈IKi is a strongly 2-absorbing second submodule of M .

Proof. Let a, b ∈ R, H be a submodule of M , and ab(∪i∈IKi) ⊆ H . Assume that a(∪i∈IKi) 6⊆
H and b(∪i∈IKi) 6⊆ H . Then there are m,n ∈ I , where aKn 6⊆ H and bKm 6⊆ H . Hence, for
every Kn ⊆ Ks and Km ⊆ Kd, we have that aKs 6⊆ H and bKd 6⊆ H . Therefore, for each
submodule Kh such that Kn ⊆ Kh and Km ⊆ Kh we have abKh = 0. Hence ab(∪i∈IKi) = 0,
as needed.

Definition 3.20. We say that a 2-absorbing second submodule N of an R-module M is a maximal
strongly 2-absorbing second submodule of a submodule K of M , if N ⊆ K and there does not
exist a strongly 2-absorbing second submodule H of M such that N ⊂ H ⊂ K.

Lemma 3.21. Let M be an R-module. Then every strongly 2-absorbing second submodule of
M is contained in a maximal strongly 2-absorbing second submodule of M .

Proof. This is proved easily by using Zorn’s Lemma and Proposition 3.19.
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Definition 3.22. Let N be a submodule of an R-module M . We define the strongly 2-absorbing
second radical of N as the sum of all strongly 2-absorbing second submodules of M contained
in N and we denote it by s.2.sec(N). In case N does not contain any strongly 2-absorbing
second submodule, the strongly 2-absorbing second radical of N is defined to be (0). We say
that N 6= 0 is a strongly 2-absorbing second radical submodule of M if s.2.sec(N) = N .

Proposition 3.23. Let N and K be two submodules of an R-module M . Then we have the
following.

(a) If N ⊆ K, then s.2.sec(N) ⊆ s.2.sec(K).

(b) s.2.sec(N) ⊆ N .

(c) s.2.sec(s.2.sec(N)) = s.2.sec(N).

(d) s.2.sec(N) + s.2.sec(K) ⊆ s.2.sec(N +K).

(e) s.2.sec(N ∩K) = s.2.sec(s.2.sec(N) ∩ s.2.sec(K)).

(g) If N +K = s.2.sec(N) + s.2.sec(K), then s.2.sec(N +K) = N +K.

Proof. These are straightforward.

Corollary 3.24. Let N be a submodule of an R-module M . If s.2.sec(N) 6= 0, then s.2.sec(N)
is a strongly 2-absorbing second radical submodule of M .

Proof. This follows from Proposition 3.23 (c).

Theorem 3.25. Let M be an R-module. If M satisfies the descending chain condition on strongly
2-absorbing second radical submodules, then every non-zero submodule of M has only a finite
number of maximal strongly 2-absorbing second submodules.

Proof. Suppose that there exists a non-zero submodule N of M such that it has an infinite
number of maximal strongly 2-absorbing second submodules. Then s.2.sec(N) is a strongly
2-absorbing second radical submodule of M and s.2.sec(N) has an infinite number of maxi-
mal strongly 2-absorbing second submodules. Let S be a strongly 2-absorbing second radical
submodule of M chosen minimal such that S has an infinite number of maximal strongly 2-
absorbing second submodules. Then S is not strongly 2-absorbing second. Thus there exist
r, t ∈ R and a submodule L of M such that rtS ⊆ L but rS 6⊆ L, tS 6⊆ L, and rtS 6= 0. Let V
be a maximal strongly 2-absorbing second submodule of M contained in S. Then V ⊆ (L :S r)
or V ⊆ (L :S t) or V ⊆ (0 :S rt) so that V ⊆ s.2.sec((K :S r)) or V ⊆ s.2.sec((K :S t)) or
V ⊆ s.2.sec((0 :S rt)). By the choice of S, the modules s.2.sec((K :S r)), s.2.sec((K :S t)),
and s.2.sec((0 :S rt)) have only finitely many maximal strongly 2-absorbing second submod-
ules. Therefore, there is only a finite number of possibilities for the module S, which is a
contradiction.

Corollary 3.26. Every Artinian R-module has only a finite number of maximal strongly 2-
absorbing second submodules.

Theorem 3.27. Let M be an R-module. If E is an injective R-module and N is a 2-absorbing
submodule of M such that HomR(M/N,E) 6= 0, then HomR(M/N,E) is a strongly 2-absorbing
second R-module.

Proof. Let r, s ∈ R. Since N is a 2-absorbing submodule of M , we can assume that (N :M
rs) = (N :M r) or (N :M rs) = M . Since E is an injective R-module, by replacing M with
M/N in [4, 3.13 (a)], we have HomR(M/(N :M r), E) = rHomR(M/N,E). Therefore,

rsHomR(M/N,E) = HomR(M/(N :M rs), E) =

HomR(M/(N :M r), E) = rHomR(M/N,E)

or
rsHomR(M/N,E) = HomR(M/(N :M rs), E) =

HomR(M/M,E) = 0,

as needed
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Theorem 3.28. Let M be a strongly 2-absorbing second R-module and F be a right exact linear
covariant functor over the category of R-modules. Then F (M) is a strongly 2-absorbing second
R-module if F (M) 6= 0.

Proof. This follows from [4, 3.14] and Theorem 3.3 (c)⇔ (d).
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