Palestine Journal of Mathematics

Vol. 8(2)(2019) , 159-168 © Palestine Polytechnic University-PPU 2019

Some generalizations of second submodules

H. Ansari-Toroghy and F. Farshadifar

Communicated by Ayman Badawi

MSC 2010 Classifications: 13C13, 13C99.

Keywords and phrases: 2-absorbing second, completely irreducible, strongly 2-absorbing second.

Abstract. In this paper, we will introduce two generalizations of second submodules of a
module over a commutative ring and explore some basic properties of these classes of modules.

1 Introduction

Throughout this paper, R will denote a commutative ring with identity and "C" will denote the
strict inclusion. Further, Z will denote the ring of integers.

Let M be an R-module. A proper submodule P of M is said to be prime if for any » € R and
m € M with rm € P, we have m € Porr € (P :g M) [14]. A non-zero submodule S of M is
said to be second if for each a € R, the homomorphism S % S is either surjective or zero [19].
In this case Anng(S) is a prime ideal of R.

Badawi gave a generalization of prime ideals in [9] and said such ideals 2- absorbing ideals.
A proper ideal I of R is a 2-absorbing ideal of R if whenever a,b,c € R and abc € I, then
ab € Iorac € Iorbc e I. He proved that [ is a 2-absorbing ideal of R if and only if whenever
I, I, and I3 are ideals of R with I, I,13 C I,then I; I, C I or I1I3 C I or I,I3 C I. The authors
in [12] and [17] extended 2-absorbing ideals to 2-absorbing submodules. A proper submodule
N of M is called a 2-absorbing submodule of M if whenever abm € N for some a,b € R and
m € M, then am € N orbm € N orab € (N :g M). Several authors investigated properties of
2-absorbing submodules, for example see [12, 17, 18].

A submodule N of an R-module M is called strongly 2-absorbing if IJL C N for some
ideals I, J of R and a submodule L of M, then IL C Nor JLC NorIJ e (N :g M) [13].

The purpose of this paper is to introduce the dual notions of 2-absorbing and strongly 2-
absorbing submodules and obtain some related results.

2 2-absorbing second submodules

Let M be an R-module. A proper submodule N of M is said to be completely irreducible if
N = (N,e; Ni, where {N;}cy is a family of submodules of M, implies that N = N; for some
i € 1. It is easy to see that every submodule of M is an intersection of completely irreducible
submodules of M [15].

We frequently use the following basic fact without further comment.

Remark 2.1.Let N and K be two submodules of an R-module M. To prove N
enough to show that if L is a completely irreducible submodule of M such that K
NCL.

C K, itis
g L’

then

Definition 2.2. Let N be a non-zero submodule of an R-module M. We say that N is a 2-
absorbing second submodule of M if whenever a,b € R, L is a completely irreducible submod-
ule of M, and abN C L, then aN C L or bN C L or ab € Annp(N). This can be regarded as a
dual notion of the 2-absorbing submodule.

Example 2.3. (a) The Z-module Z,, is a 2-absorbing second submodule of Z,, if n = p or
n = pq, where p, g are prime integers.

OThis research was in part supported by a grant from IPM (No. 94130048)



160 H. Ansari-Toroghy and F. Farshadifar

(b) Consider nZ as a submodule of the Z-module Z. Then n = p{"'...pi", where p" (1 < i < t)
are distinct prime integers. For p; € Z and completely irreducible submodule p{" 27 of Z,
we have py.p;.(nZ) C p‘f‘”'zZ but p;.(nZ) £ p‘f'“Z and p;.py = p} & Anngz(nZ) = (0).
Therefore, the Z-module Z has no 2-absorbing second submodule.

A non-zero R-module M is said to be secondary if for each a € R the endomorphism of M
given by multiplication by a is either surjective or nilpotent [16].

Theorem 2.4. Let M be an R-module. Then we have the following.

(a) If either N is a second submodule of M or N is a sum of two second submodules of M,
then N is 2-absorbing second.

(b) If N is a secondary submodule of M and R/Anng(N) has no non-zero nilpotent element,
then N is 2-absorbing second.

Proof. (a) The first assertion is clear. To see the second assertion, let Ny and N, be two second
submodules of M. We show that N} + NV, is a 2-absorbing second submodule of M. Assume
that a,b € R, L is a completely irreducible submodule of M, and ab(N; + N,) C L. Since Nj is
second, abN; = 0 or N1 C L by [3, 2.10]. Similarly, abN, = 0 or N, C L. If abN; = 0 = abNV,
(resp. N1 C Land N, C L), then we are done. Now let abN; = 0and N, C L. ThenaN; = 0or
bN; = 0 because Annpr(Ny) is a prime ideal of R. If aN; = 0, then a(N; + N,) C aNy + N, C
N, C L. Similarly, if bN; = 0, we get b(N; + N,) C L as desired.

(b) Let a,b € R, L be a completely irreducible submodule of M, and abN C L. Then if
aN C LorbN C L, we are done. Let aN ¢ L and bN € L. Then a,b € /Anng(N). Thus,
(ab)® € Anng(N) for some positive integer s. Therefore, ab € Anng(N) because R/Anng(N)
has no non-zero nilpotent element. O

Lemma 2.5. Let [ be an ideal of R and N be a 2-absorbing second submodule of M. If a € R,
L is a completely irreducible submodule of M, and IaN C L, then aN C Lor IN C L or
Ia € Anng(N).

Proof. Let aN ¢ L and Ia ¢ Anngr(N). Then there exists b € I such that abN # 0. Now
as N is a 2-absorbing second submodule of M, baN C L implies that bN C L. We show that
IN C L. To see this, let ¢ be an arbitrary element of I. Then (b + c)aN C L. Hence, either
(b+c¢)N C Lor (b+c)a € Anng(N). If (b+c¢)N C L, then since bN C L we have cN C L. If
(b+c)a € Anng(N), then ca &€ Anng(N), but caN C L. Thus ¢N C L. Hence, we conclude
that IN C L. O

Lemma 2.6. Let [ and J be two ideals of R and N be a 2-absorbing second submodule of M.
If L is a completely irreducible submodule of M and IJN C L, then IN C Lor JN C L or
IJ C Anng(N).

Proof. Let IN € Land JN € L. We show that IJ C Anng(N). Assume thatc € I and d € J.
By assumption there exists a € I such that aN € L but aJN C L. Now Lemma 2.6 shows that
aJ C Anng(N)andso (I\(L:gr N))J C Anng(N). Similarly there exists b € (J\ (L :gr N))
such that b C Anng(N)and also I(J\(L :g N)) C Anng(N). Thus we have ab € Anng(N),
ad € Anng(N)and cb € Anng(N). Asa+c € Tandb+d € J, we have (a+c¢)(b+d)N C L.
Therefore, (a + ¢)N C Lor (b+d)N C Lor (a+c)(b+d) € Anng(N). If (a+ ¢)N C L,
then cN € L. Hence ¢ € I\ (L :g N) which implies that cd € Anng(N). Similarly if
(b+ d)N C L, we can deduce that cd € Anng(N). Finally if (a + ¢)(b+ d) € Anng(N), then
ab+ ad + cb+ c¢d € Anng(N) so that cd € Anng(N). Therefore, I.J C Anng(N). i

Corollary 2.7. Let M be an R-module and N be a 2-absorbing second submodule of M. Then
IN is a 2-absorbing second submodules of M for all ideals I of R with I € Anng(N).

Proof. Let I be an ideal of R with I ¢ Anng(N), a,b € R, L be a completely irreducible
submodule of M, and abIN C L. ThenaN C LorbIN C L or abIN = 0 by Lemma 2.5. If
bIN C Lor abIN = 0, then we are done. If aN C L, then aIN C aN implies that aIN C L,
as needed. O
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An R-module M is said to be a multiplication module if for every submodule N of M there
exists an ideal I of R such that N = IM [10].

Corollary 2.8. Let M be a multiplication 2-absorbing second R-module. Then every non-zero
submodule of M is a 2-absorbing second submodule of M.

Proof. This follows from Corollary 2.7. O

The following example shows that the condition “M is a multiplication module" in Corollary
2.8 can not be omitted.

Example 2.9. For any prime integer p, let M = Z,~ and N = (1/p* + Z). Then clearly, M is a
2-absorbing second Z-module but p?(1/p* +Z) C (1/p+ Z) implies that N is not a 2-absorbing
second submodule of M.

We recall that an R-module M is said to be a cocyclic module if Socr(M) is a large and
simple submodule of M [21]. (Here Socg(M) denotes the sum of all minimal submodules of
M.). A submodule L of M is a completely irreducible submodule of M if and only if M /L is a
cocyclic R-module [15].

Proposition 2.10. Let N be a 2-absorbing second submodule of an R-module M. Then we have
the following.

(a) If L is a completely irreducible submodule of M such that N € L, then (L :g N) is a
2-absorbing ideal of R.

(b) If M is a cocyclic module, then Anng (V) is a 2-absorbing ideal of R.
(c) Ifa € R, then a” N = a™*! N, for all n > 2.

(d) If Anng (V) is a prime ideal of R, then (L :z N) is a prime ideal of R for all completely
irreducible submodules L of M such that N € L.

Proof. (a) Since N ¢ L, we have (L :p N) # R. Let a,b,c € R and abc € (L :g N).
Then abN C (L :p; ¢). Thus aN C (L :p ¢) or bN C (L :pr ¢) or abN = 0 because by
[8, 2.1], (L :as c) is a completely irreducible submodule of M. Therefore, ac € (L :g N) or
bce (L:gp N)orabe (L:g N).

(b) Since M is cocyclic, the zero submodule of M is a completely irreducible submodule of
M. Thus the result follows from part (a).

(c) It is enough to show that a> N = a>N. It is clear that a>N C a>N. Let L be a completely
irreducible submodule of M such that ¢ N C L. Then >N C (L :p a). Since N is 2-
absorbing second submodule and (L :r a) is a completely irreducible submodule of M by [8,
2.1],aN C (L :p a) or a>N = 0. Therefore, a> N C L. This implies that a> N C a>N.

(d) Let a,b € R, L be a completely irreducible submodule of M such that N ¢ L, and
ab€ (L:g N). ThenaN C LorbN C LorabN = 0. If abN = 0, then by assumption, aN = 0
or bN = 0. Thus in any cases we get that, aN C L or bN C L. O

Theorem 2.11. Let N be a 2-absorbing second submodule of an R-module M. Then we have
the following.

(a) If \/Anngr(N) = P for some prime ideal P of R and L is a completely irreducible sub-
module of M such that N L, then /(L :g N) is a prime ideal of R containing P.

(b) If \/Anng(N) = PN Q for some prime ideals P and Q of R, L is a completely irreducible

submodule of M such that N € L,and P C /(L :gr N), then \/(L :g N) is a prime ideal
of R.

Proof. (a) Assume that a,b € R and ab € /(L :g N). Then there is a positive integer ¢ such
that a8 N C L. By hypotheses, N is a 2-absorbing second submodule of M, thus !N C L
or N C L or a'd* € Annng(N). If either a! N C L or b'N C L, we are done. So assume
that a’b* € Anng(N). Then ab € /Anng(N) = Pandsoa € Porb € P. Itis clear that

P = \/Anngr(N) C /(L :g N). Therefore,a € \/(L :r N)orbe /(L :g N).

(b) The proof is similar to that of part (a). O
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Proposition 2.12. Let M be an R-module and let {K;},c; be a chain of 2-absorbing second
submodules of M. Then U;c K is a 2-absorbing second submodule of M.

Proof. Let a,b € R, L be a completely irreducible submodule of M, and ab(U;erK;) C L.
Assume that a(U;erK;) € L and b(U;e; K;) € L. Then there are m,n € I, where aK,, € L
and bK,, Z L. Hence, for every K,, C K, and K,,, C K, we have aK, L and bK,; Z L.
Therefore, for each submodule K}, such that K,, C K}, and K,, C K} we have abK; = 0.
Hence ab(U;er K;) = 0, as needed. O

Definition 2.13. We say that a 2-absorbing second submodule N of an R-module M is a maximal
2-absorbing second submodule of a submodule K of M, if N C K and there does not exist a
2-absorbing second submodule H of M suchthat N C H C K.

Lemma 2.14. Let M be an R-module. Then every 2-absorbing second submodule of M is
contained in a maximal 2-absorbing second submodule of M.

Proof. This is proved easily by using Zorn’s Lemma and Proposition 2.12. O

Theorem 2.15. Every Artinian R-module M has only a finite number of maximal 2-absorbing
second submodules.

Proof. Suppose that the result is false. Let £ denote the collection of non-zero submodules N
of M such that NV has an infinite number of maximal 2-absorbing second submodules. The
collection ¥ is non-empty because M € X and hence has a minimal member, S say. Then S
is not 2-absorbing second submodule. Thus there exist a,b € R and a completely irreducible
submodule L of M such that abS C LbutaS € L, bS & L, and abS # 0. Let V' be a maximal
2-absorbing second submodule of M contained in S. ThenaV C Lor bV C L or abV = 0. Thus
VC(L:ya)orV C(L:pb)orV C(0:p ab). Therefore, V C (L :sa)orV C (L :5b)
or V C (0 :5 ab). By the choice of S, the modules (L :5 a), (L :g b), and (0 :g ab) have only
finitely many maximal 2-absorbing second submodules. Therefore, there is only a finite number
of possibilities for the module S which is a contradiction. O

3 Strongly 2-absorbing second submodules

Definition 3.1. Let IV be a non-zero submodule of an R-module M. We say that N is a strongly
2-absorbing second submodule of M if whenever a,b € R, L, L, are completely irreducible
submodules of M, and abN C L1N Ly, thenaN C LiNLyorbN C LyN Ly orab € Anng(N).
This can be regarded as a dual notion of the strongly 2-absorbing submodule.

Clearly every strongly 2-absorbing second submodule is a 2-absorbing second submodule.
In [18, 2.3], the authors show that IV is a 2-absorbing submodule of an R-module M if and only
if N is a strongly 2-absorbing submodule of M. Dually, this motivates the following question.

Question 3.2. Let M be an R-module. Is every 2-absorbing second submodule of M a strongly
2-absorbing second submodule of M ?

Theorem 3.3. Let N be a submodule of an R-module M. The following statements are equiva-
lent:

(a) N is a strongly 2-absorbing second submodule of M;

(b) If N #£0, IJN C K for some ideals I, J of R and a submodule K of M, then IN C K or
JN CKorlJe Anng(N);

(¢) N # 0 and for each a,b € R, we have abDN = aN or abN = bN or abN = 0.

Proof. (a) = (b). Assume that IJN C K for some ideals I, J of R, a submodule K of M, and
IJ € Anng(N). Then by Lemma 2.6, for all completely irreducible submodules L of M with
K C Leither IN C Lor JN C L. If IN C L (resp. JN C L) for all completely irreducible
submodules L of M with K C L, we are done. Now suppose that L; and L, are two completely
irreducible submodules of M with K C Ly, K C Ly, IN € Lj,and JN ¢ L;. Then IN C L,
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and JN C L;. Since IJN C L; N Ly, we have either IN C LiNLyor JN C LN L. As
IN C LyN Ly, we have IN C L; which is a contradiction. Similarly from JN C L; N L, we
get a contradiction.

(b) = (a). This is clear.

(a) = (c). By part (a), N # 0. Let a,b € R. Then abN C abN implies that aN C abN or
bN C abN or abN = 0. Thus abN = aN or abN = bN or abN = 0.

(¢) = (a). This is clear. ]

Lemma 3.4. Let M be an R-module, N C K be two submodules of M, and K be a strongly
2-absorbing second submodule of M. Then K /N is a strongly 2-absorbing second submodule
of M/N.

Proof. This is straightforward. O

Proposition 3.5. Let NV be a strongly 2-absorbing second submodule of an R-module M. Then
we have the following.

(a) Anng(N) is a 2-absorbing ideal of R.
(b) If K is a submodule of M such that N K, then (K :p N) is a 2-absorbing ideal of R.
(c) If I is an ideal of R, then I"N = "' N, for all n > 2.

(d) If (L; N L, :gr N) is a prime ideal of R for all completely irreducible submodules L; and
L, of M suchthat N € L; N Ly, then Anng(N) is a prime ideal of R.

Proof. (a) Let a,b,c € R and abc € Anng(N). Then abN C abN implies that aN C abN or
bN C abN or abN = 0 by Theorem 3.3. If abN = 0, then we are done. If aN C abN, then
calN C cabN = 0. In other case, we do the same.

(b) Let a,b,c € Rand abc € (K :g N). Then acN C K or bceN C K or abcN = 0. If
acN C K or bcN C K, then we are done. If abcN = 0, then the result follows from part (a).

(c) It is enough to show that I?N = I3N. Itis clear that I3’N C I?N. Since N is strongly
2-absorbing second submodule, I*N C I3 N implies that I>’N C I’*Nor IN C I’Nor I’N =0
by Theorem 3.3. If I>N C I°N or IN C I’N, then we are done. If I N = 0, then the result
follows from part (a).

(d) Suppose that a,b € R and abN = 0. Assume contrary that a/N # 0 and bN # 0. Then
there exist completely irreducible submodules L; and L, of M such thataN & L; and bN & L.
Now since (L; N L, :g N) is a prime ideal of R, 0 = abN C L; N L, implies that bN C Ly N L,
or aN C L; N Ly. In any cases, we have a contradiction. O

Remark 3.6. ([9, Theorem 2.4]). If [ is a 2-absorbing ideal of R, then one of the following
statements must hold:

(a) VI=Pisa prime ideal of R such that P? C I;

) VI=PNnQ,PQ CI,and ﬁz C I where P and ( are the only distinct prime ideals of R
that are minimal over I.

Theorem 3.7. If N is a strongly 2-absorbing second submodule of M and N ¢ K, then either
(K :r N) is a prime ideal of R or there exists an element o € R such that (K :p aN) is a prime
ideal of R.

Proof. By Preposition 3.5 and Remark 3.6, we have one of the following two cases.

(a) Let v/Anng(N) = P, where P is a prime ideal of R. We show that (K :z N) is a prime
ideal of R when P C (K :p N). Assume that a,b € R and ab € (K :p N). Hence
aN C KorbN C K orab € Anng(N). If either aN C K or bN C K, we are done. Now
assume that ab € Anng(N). Thenab € Pandsoa € Porb € P. Thus,a € (K :g N) or
b € (K :g N) and the assertion follows. If P & (K :p N), then there exists a € P such
that aN ¢ K. By Remark 3.6, P> C Anng(N) C (K :g N), thus P C (K :p aN). Now
a similar argument shows that (K :g aN) is a prime ideal of R.
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(b) Let \/Anngr(N) = PNQ, where P and () are distinct prime ideals of R. If P C (K :g N),
then the result follows by a similar proof to that of part (a). Assume that P € (K :g N).
Then there exists a € P such that aN ¢ K. By Remark 3.6, we have PQ C Anng(N) C
(K :gr N). Thus, Q C (K :g aN) and the result follows by a similar proof to that of part
(a).

O

Let M be an R-module. A prime ideal P of R is said to be a coassociated prime of M if
there exists a cocyclic homomorphic image 7' of M such that P = Anng(T). The set of all
coassociated prime ideals of M is denoted by Coassr (M) [20].

Theorem 3.8. Let NV be a strongly 2-absorbing second submodule of an R-module M. Then we
have the following.

(a) If \/Anngr(N) = P for some prime ideal P of R, Ly and L, are completely irreducible
submodules of M such that N ¢ Ly, and N € Lo, then either v/(L; :r N) € /(L2 :g N)
or\/(Ly:r N) C /(L1 :r N). Hence, Coassr(N) is a totally ordered set.

(b) If \/Annr(N) = P N Q for some prime ideals P and Q of R, L; and L, are completely
irreducible submodules of M such that N € Ly and N € L, and P C /(L1 :g N) N

V/(Lz :r N), then either \/(L; :g N) C /(Ly:g N) or \/(Ly:r N) C /(L :r N).

Hence, Coassg(IN) is the union of two totally ordered sets.

Proof. (a) Assumethat /(L1 :r N) € /(L2 :r N). We show that \/(Ls :gr N) C /(Ls :r N).
Suppose that a € /(Ly :g N) and b € /(L :g N). Then there exists a positive integer s
such that a*N C Ly, BN C L, and b°N ¢ L;. If a°*N C Ly N Ly, then a*N C L, and
so a € y/(Lp:g N). Now assume that a*N & L; N Lp. Then a®b* € Anng(N) because
a*b*N C LiNLy,a® N € LiNky,and b°N & Ly N Ly. Thus, ab € P. If b € P, then b°N C L,
which is a contradiction. Hence a € P and so a € /(L2 :g N). Let P,Q € Coassg(N). Then
there exist completely irreducible submodules L; and L, of M such that P = (L; :x N) and
Q = (L :g N). Thus, P = /(L :g N) and Q = /(L :g N). Hence, either P C Q or
@ C P and this completes the proof.

(b) The proof is similar to that of part (a). O

In[17,2.10], it is shown that, if R be a Noetherian ring, M a finitely generated multiplication
R-module, N a proper submodule of M such that Assg(M/N) is a totally ordered set, and
(N :p M) is a2-absorbing ideal of R, then N is a 2-absorbing submodule of M. In the following
theorem we see that some of this conditions are redundant.

Theorem 3.9. Let N be a submodule of a multiplication R-module M such that (N :gp M) is a
2-absorbing ideal of R. Then NN is a 2-absorbing submodule of M.

Proof. As (N :g M) # R, N # M. Leta,b € R, m € M, and abm € N. Since M is a
multiplication R-module, there exists an ideal I of R such that Rm = IM. Thus abIM C N.
Hence, abl C (N :gp M). Now by assumption, ab € (N :g M) oral C (N :g M) or
bI C (N :g M). Therefore, ab € (N :p M) oraIM C N or bIM C N. Thus ab € (N :gp M)
oram € N orbm € N. O

An R-module M is said to be a comultiplication module if for every submodule N of M
there exists an ideal I of R such that N = (0 :p, [ ), equivalently, for each submodule N of M,
we have N = (0 :py Anng(N)) [7].

Theorem 3.10. Let NV be a submodule of a comultiplication R-module M. Then we have the
following.

(a) If Anng(N) is a 2-absorbing ideal of R, then N is a strongly 2-absorbing second submod-
ule of M. In particular, NV is a 2-absorbing second submodule of M.

(b) If M is a cocyclic module and N is a 2-absorbing second submodule of M, then N is a
strongly 2-absorbing second submodule of M.
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Proof. (a)Leta,b € R, K be a submodule of M, and abN C K. Then we have Anng(K)abN =
0. So by assumption, Anng(K)aN = 0 or Anng(K)bN = 0 or abN = 0. If abN = 0,
we are done. If Anng(K)aN = 0 or Anng(K)bN = 0, then Anng(K) C Anng(aN) or
Anng(K) C Anng(bN). Hence, aN C K or bN C K since M is a comultiplication R-module.

(b) By Proposition 2.10, Anng (V) is a 2-absorbing ideal of R. Thus the result follows from
part (a). O

The following example shows that Theorem 3.10 (a) is not satisfied in general.

Example 3.11. By [7, 3.9], the Z-module Z is not a comultiplication Z-module. The submodule
N = pZ of Z, where p is a prime number, is not strongly 2-absorbing second submodule. But
Anngz(pZ) = 0 is a 2-absorbing ideal of R.

For a submodule N of an R-module M the the second radical (or second socle) of N is
defined as the sum of all second submodules of M contained in N and it is denoted by sec(N)
(or soc(N)). In case N does not contain any second submodule, the second radical of N is
defined to be (0) (see [11] and [2]).

Theorem 3.12. Let M be a finitely generated comultiplication R-module. If N is a strongly
2-absorbing second submodule of M, then sec(NN) s a strongly 2-absorbing second submodule
of M.

Proof. Let N be a strongly 2-absorbing second submodule of M. By Proposition 3.5 (a),
Anng(N) is a 2-absorbing ideal of R. Thus by [9, 2.1], \/Anng(N) is a 2-absorbing ideal

of R. By [53, 2.12], Anng(sec(N)) = v/ Anng(N). Therefore, Anng(sec(N)) is a 2-absorbing
ideal of R. Now the result follows from Theorem 3.10 (a). O

Lemma 3.13.Let f : M — M bea monomorphism of R-modules. If L is a completely irre-
ducible submodule of f(M), then f~!(L) is a completely irreducible submodule of M.

Proof. This is strighatforward. O

Lemma 3.14. Let f : M — M be a monomorphism of R-modules. If L is a completely irre-
ducible submodule of M, then f(L) is a completely irreducible submodule of f(M).

Proof. Let {Ni}ie[ be a family of submodules of f(M) such that f(L) = NierN;. Then L =
(L) = 7' (NierNi) = Nierf~'(N;). This implies that there exists i € I such that L =

FHVy) since L is a completely irreducible submodule of M. Therefore, f(L) = ff “I(N;) =
f(M) N N; = N, as requested. O

Theorem 3.15. Let f : M — M be a monomorphism of R-modules. Then we have the follow-
ing.

(a) If N is a strongly 2-absorbing second submodule of M, then f(N) is a 2-absorbing second
submodule of M.

(b) If N is a 2-absorbing second submodule of M, then f(N) is a 2-absorbing second submod-
ule of f(M).

(c) If N is a strongly 2-absorbing second submodule of A/ and N C f (M), then f~1 (N )is a
2-absorbing second submodule of M.

(d) If N is a 2-absorbing second submodule of f(M), then f~!(N) is a 2-absorbing second
submodule of M.

Proof. (a) Since N # 0 and f is a mongmorphism, we ha\ie f(N) # 0. Let a, b/ € R, L be
a completely irreducible submodule of M, and abf(N) C L. Then abN C f~!(L). As N is
strongly 2-absorbing second submodule, aN C f~!(L) orbN C f~!(L) or abN = 0. Therefore,

af(N)C f(f~ (L) =f(M)nLCL

or

S
=
2
N
g
=
=
Il
=
D
)
N
=
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orabf(N) = 0, as needed.

(b) This is similar to the part (a).

() If f~'(N) =0, then f(M)NN = ff~'(N) = f(0) = 0. Thus N = 0, a contradiction.
Therefore, f~'(N) # 0. Now let a,b € R, L be a completely irreducible submodule of M, and
abf~'(N) C L. Then

abN = ab(f(M) N N) = abf f~'(N) C f(L).

As N is strongly 2-absorbing second submodule, aN C f(L) or bN C f(L)or abN = 0. Hence
af Y{(N)C ff(L)=Lorbf~'(N) C f~1f(L) = Lorabf~'(N) = 0, as desired.
(d) By using Lemma 3.14, this is similar to the part (c). O

Corollary 3.16. Let M be an R-module and N C K be two submodules of M. Then we have
the following.

(a) If N is a strongly 2-absorbing second submodule of K, then N is a 2-absorbing second

submodule of M.
(b) If N is a strongly 2-absorbing second submodule of M, then N is a 2-absorbing second
submodule of K.
Proof. This follows from Theorem 3.15 by using the natural monomorphism K — M. O

A non-zero submodule NV of an R-module M is said to be a weakly second submodule of M
if rsN C K, where r,s € R and K is a submodule of M, implies either rN C K or sN C K

[4].

Proposition 3.17. Let N ba a non-zero submodule of an R-module M. Then N is a weakly
second submodule of M if and only if N is a strongly 2-absorbing second submodule of M and
Anng(N) is a prime ideal of R.

Proof. Clearly, if N is a weakly second submodule of M, then NNV is a strongly 2-absorbing
second submodule of M and by [4, 3.3], Anng (V) is a prime ideal of R. For the converse, let
abN C H for some a,b € R and submodule K of M such that neither aN C H nor bN C H.
Then ab € Anng(N) and so either a € Anng(N) or b € Anng(N). This contradiction shows
that IV is weakly second. O

The following example shows that the two concepts of strongly 2-absorbing second submod-
ule and weakly second submodule are different in general.

Example 3.18. Let p, ¢ be two prime numbers, N =< 1/p+Z >,and K =< 1/q+ Z >. Then
N ® K is not a weakly second submodule of the Z-module Zpe @ Zg-. But N @ K is a strongly
2-absorbing second submodule of the Z-module Z,~ @© Zg.

Proposition 3.19. Let M be an R-module and { K };c; be a chain of strongly 2-absorbing second
submodules of M. Then U, K; is a strongly 2-absorbing second submodule of M.

Proof. Leta,b € R, H be a submodule of M, and ab(U;crK;) C H. Assume that a(U;c 1 K;) €
H and b(U;c;K;) € H. Then there are m,n € I, where aK,, € H and bK,, ¢ H. Hence, for
every K,, C K, and K,,, C Ky, we have that aK; € H and bKy ¢ H. Therefore, for each
submodule K}, such that K,, C K}, and K,,, C K}, we have abK;, = 0. Hence ab(U;c;K;) = 0,
as needed. O

Definition 3.20. We say that a 2-absorbing second submodule N of an R-module M is a maximal
strongly 2-absorbing second submodule of a submodule K of M, if N C K and there does not
exist a strongly 2-absorbing second submodule H of M suchthat N C H C K.

Lemma 3.21. Let M be an R-module. Then every strongly 2-absorbing second submodule of
M is contained in a maximal strongly 2-absorbing second submodule of M.

Proof. This is proved easily by using Zorn’s Lemma and Proposition 3.19. O
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Definition 3.22. Let N be a submodule of an R-module M. We define the strongly 2-absorbing
second radical of N as the sum of all strongly 2-absorbing second submodules of M contained
in N and we denote it by s.2.sec(N). In case N does not contain any strongly 2-absorbing
second submodule, the strongly 2-absorbing second radical of N is defined to be (0). We say
that N # 0 is a strongly 2-absorbing second radical submodule of M if s.2.sec(N) = N.

Proposition 3.23. Let V and K be two submodules of an R-module M. Then we have the
following.

(a) If N C K, then s.2.sec(N) C s.2.sec(K).

(b) s.2.sec(N) C

(c) s.2.sec(s.2.se ( )) = s.2.sec(N).

(d) s.2.sec(N) + s.2.sec(K) C s.2.sec(N + K).

(e) s.2.sec(N NK) = s.2.sec(s.2.sec(N) N s.2.sec(K)).

(g) f N+ K = s.2.sec(N) + s.2.sec(K), then s.2.sec(N + K) = N + K.

Proof. These are straightforward. O

Corollary 3.24. Let N be a submodule of an R-module M. If s.2.sec(N) # 0, then s.2.sec(N)
is a strongly 2-absorbing second radical submodule of M.

Proof. This follows from Proposition 3.23 (c). O

Theorem 3.25. Let M be an R-module. If M satisfies the descending chain condition on strongly
2-absorbing second radical submodules, then every non-zero submodule of M has only a finite
number of maximal strongly 2-absorbing second submodules.

Proof. Suppose that there exists a non-zero submodule N of M such that it has an infinite
number of maximal strongly 2-absorbing second submodules. Then s.2.sec(N) is a strongly
2-absorbing second radical submodule of M and s.2.sec(IN) has an infinite number of maxi-
mal strongly 2-absorbing second submodules. Let .S be a strongly 2-absorbing second radical
submodule of M chosen minimal such that S has an infinite number of maximal strongly 2-
absorbing second submodules. Then S is not strongly 2-absorbing second. Thus there exist
r,t € R and a submodule L of M such that ¢S C LbutrS & L, tS € L, and rtS # 0. Let VV
be a maximal strongly 2-absorbing second submodule of M contained in S. Then V' C (L :5 r)
orVC (L:st)orV C (0:grt)sothatV C s2.sec((K :g 7)) orV C s2.sec((K :gt)) or
V C s.2.sec((0 :5 rt)). By the choice of S, the modules s.2.sec((K :g5 1)), s.2.sec((K :s t)),
and s.2.sec((0 :5 rt)) have only finitely many maximal strongly 2-absorbing second submod-
ules. Therefore, there is only a finite number of possibilities for the module S, which is a
contradiction. O

Corollary 3.26. Every Artinian R-module has only a finite number of maximal strongly 2-
absorbing second submodules.

Theorem 3.27. Let M be an R-module. If E is an injective R-module and N is a 2-absorbing
submodule of M such that Homg (M /N, E) # 0, then Hompg(M/N, E) is a strongly 2-absorbing
second R-module.

Proof. Let r,s € R. Since N is a 2-absorbing submodule of M, we can assume that (N :ps

rs) = (N :p 7) or (N :p rs) = M. Since E is an injective R-module, by replacing M with

M/N in [4, 3.13 (a)], we have Hompg(M/(N :pr 1), E) = rHompg(M/N, E). Therefore,
rsHomgp(M/N,E) = Homr(M/(N :p1s), E) =

Homp(M/(N :p 1), E) =rHompr(M/N, E)

or
rsHomgr(M/N,E) = Homgr(M/(N :p7s),E) =

Homgr(M/M,E) =0,

as needed O
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Theorem 3.28. Let M be a strongly 2-absorbing second R-module and F' be a right exact linear
covariant functor over the category of R-modules. Then F(M) is a strongly 2-absorbing second
R-module if F(M) # 0.

Proof. This follows from [4, 3.14] and Theorem 3.3 (¢) < (d). o
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