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Abstract. In this paper, we investigate the commutativity of rings with involution of the
second kind in which generalized derivations satisfy certain algebraic identities on ideals. More-
over, we extend some results for generalized derivations of prime rings to ideals. Finally, we
give examples to prove that various restrictions imposed in the hypothesis of our result are not
superfluous.

1 Introduction

Let R be a ring with center Z = Z(R). For any x, y ∈ R, the symbol [x, y] stands for the
commutator xy − yx, and x ◦ y stands for the anti-commutator xy + yx.

We shall use repeatedly the familiar commutator identities: [xy, z] = x[y, z] + [x, z]y and
[x, yz] = y[x, z] + [x, y]z for all x, y, z ∈ R. A ring R is called prime if for any x, y ∈ R,
xRy = (0) implies x = 0 or y = 0. A ring R is said to be of characteristic different from
2 if it satisfies: for any x ∈ R, 2x = 0 implies x = 0. An additive mapping d : R −→ R
is said to be a derivation on R if d(xy) = d(x)y + xd(y) holds for all x, y ∈ R. An additive
mapping F : R −→ R is called a generalized derivation on R if it is associated with a derivation
d : R −→ R satisfying F (xy) = F (x)y + xd(y) for all x, y ∈ R. An additive map ∗ : R −→ R
is said to be an involution if it satisfies the following conditions: (i) (xy)∗ = y∗x∗; and (ii)
(x∗)∗ = x for all x, y ∈ R. A ring with involution or a ∗-ring is a ring equipped with an
involution. In a ring with involution ∗, an element x is called hermition if x∗ = x, and skew-
hermition if x∗ = −x. The set of all hermition and skew-hermition elements denoted by H(R)
and S(R) respectively. An element x ∈ R is said to be normal if xx∗ = x∗x. A ring R is called
a normal ring if every element in R is a normal. For example, the ring of quaternions is normal
ring. An involution is said to be of the first kind if Z(R) ⊆ H(R), and of the second kind if
S(R) ∩ Z(R) 6= (0).

Over the past few years, several authors have studied the commutativity of a ring R that
admits certain specific types of derivations ( see [1], [3], [8], and [13]). In [4], M. Ashraf
and N. Rehman proved that if R is a prime ring, I is a nonzero ideal of R and R admitting a
derivation d, then R is commutative if the following conditions holds: d(xy) + xy ∈ Z(R), or
d(xy)− xy ∈ Z(R) for all x, y ∈ I .

There has been ongoing interest concerning the generalized derivations. For instance, Hvala
[7] introduced the first study in this direction, and he extended some results from derivations
to generalized derivations since the generalized derivations covers the concept of derivations.
Inspired by Ashraf’s work, M. Ashraf, et. al. [3] proved the results (and some others) in light of
a generalized derivation of a prime ring. Motivated by the above, our aim is to continue the line
of investigation regarding the study of commutativity for prime rings with involution admitting
a generalized derivation associated with a derivation satisfying certain algebraic identities.

2 Preliminaries

We shall use the following results which are essential to prove our main theorems:

Lemma 2.1. [[12], Lemma 2.1] Let R be a prime ring with involution of the second kind such
that char(R) 6= 2. If [x, x∗] ∈ Z(R) (or x ◦ x∗ ∈ Z(R)) for all x ∈ R, then R is commutative.
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Theorem 2.2. [[12], Theorem] Let R be a prime ring with involution ∗ such that char(R) 6= 2
provided with a derivation d. If d(h) = 0 for all h ∈ H(R) ∩ Z(R), then d(z) = 0 for all
z ∈ Z(R).

Lemma 2.3. [[11], Lemma 4] If R is a prime ring and 0 6= b ∈ Z(R) and ab ∈ Z(R), then
a ∈ Z(R).

Theorem 2.4. [[3], Theorem 2.1] Let R be a prime ring and let I be a nonzero ideal of R. If R
admits a generalized derivation F associated with a nonzero derivation d such that F (xy)−xy ∈
Z(R) for all x, y ∈ I , then R is commutative.

Theorem 2.5. [[3], Theorem 2.3] Let R be a prime ring and let I be a nonzero ideal of R. If R
admits a generalized derivation F associated with a nonzero derivation d such that F (xy)−yx ∈
Z(R) for all x, y ∈ I , then R is commutative.

Theorem 2.6. [[9], Theorem 2.5] Let R be a prime ring and let I be a nonzero ideal of R. If R
admits a generalized derivation F associated with a nonzero derivation d such that F (x)F (y)−
xy ∈ Z(R) for all x, y ∈ I , then R is commutative.

Theorem 2.7. [[9], Theorem 2.6] Let R be a prime ring and let I be a nonzero ideal of R. If R
admits a generalized derivation F associated with a nonzero derivation d such that F (x)F (y)−
yx ∈ Z(R) for all x, y ∈ I , then R is commutative.

Theorem 2.8. [[10], Theorem 1] Let R be a ∗-prime ring with char(R) 6= 2, and F a generalized
derivation associated with a nonzero derivation d. If F is centralizing on a nonzero ∗-Jordan
ideal J , then R is commutative.

3 Main results

Theorem 3.1. Let (R, ∗) be a prime ring with involution of the second kind such that char(R) 6=
2, and I an ∗-ideal. If R admits a generalized derivation F associated with a derivation d such
that F (xx∗)− xx∗ ∈ Z(R) (or F (xx∗) + xx∗ ∈ Z(R)) for all x ∈ I , then R is commutative.

Proof. By the hypothesis, we have

F (xx∗)− xx∗ ∈ Z(R) for all x ∈ I. (3.1)

If F = 0, then xx∗ ∈ Z(R) for all x ∈ I , which implies that x ◦ x∗ ∈ Z(R) for all x ∈ I . Hence,
R is commutative by Lemma 2.1.
If F 6= 0, a linearization of the equation (3.1) gives

F (xy∗) + F (yx∗)− xy∗ − yx∗ ∈ Z(R) for all x, y ∈ I. (3.2)

Replacing y by yh in (3.2), where h ∈ Z(R) ∩H(R) \ {0}, we obtain

(xy∗ + yx∗)d(h) ∈ Z(R).

Then
[(xy∗ + yx∗)d(h), r] = 0 for all x, y ∈ I and r ∈ R.

It follows that
[xy∗ + yx∗, r]d(h) = 0.

The primeness of R forces that either [xy∗ + yx∗, r] = 0 or d(h) = 0.
Firstly, suppose that for all x, y ∈ I and r ∈ R we have [xy∗ + yx∗, r] = 0. Take y = y∗ to have
[xy + y∗x∗, r] = 0. That is

x[y, r] + [x, r]y + y∗[x∗, r] + [y∗, r]x∗ = 0 for all x, y ∈ I and r ∈ R. (3.3)

Substituting yk for y in (3.3), where k ∈ S(R) ∩ Z(R), we obtain

(x[y, r] + [x, r]y − y∗[x∗, r]− [y∗, r]x∗)k = 0.
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Since R is prime and S(R) ∩ Z(R) 6= (0), we get

x[y, r] + [x, r]y − y∗[x∗, r]− [y∗, r]x∗ = 0 for all x, y ∈ I and r ∈ R. (3.4)

Combining (3.3) and (3.4) and since char(R) 6= 2, we arrive at x[y, r] + [x, r]y = 0. Replacing
y by ys in the previous equation, where s ∈ R forces that xy[s, r] = 0. Thus, xRI[s, r] = (0)
for all x ∈ I and r, s ∈ R. In light of the primeness of R together with the fact that I 6= (0), the
last equation implies that R is commutative.
Now consider the case when d(h) = 0 for all h ∈ Z(R) ∩H(R) \ {0}. By Theorem 2.2 we get
d(k) = 0 for all k ∈ S(R) ∩ Z(R). Put y = yk in (3.2) to obtain

(−F (xy∗) + F (yx∗) + xy∗ − yx∗)k ∈ Z(R)

Since R is prime and S(R) ∩ Z(R) 6= (0), Lemma 2.3 yields that

F (xy∗)− F (yx∗)− xy∗ + yx∗ ∈ Z(R) (3.5)

Combining (3.2) and (3.5), we get 2(F (xy∗) − xy∗) ∈ Z(R). Since char(R) 6= 2, F (xy∗) −
xy∗ ∈ Z(R). Replacing y by y∗ in the previous equation, we arrive at F (xy) − xy ∈ Z(R) for
all x, y ∈ I . Therefore, in view of Theorem 2.4, the proof is complete.

Corollary 3.2. Let (R, ∗) be a prime ring with involution of the second kind such that char(R) 6=
2, and I an ∗-ideal. If R admits a generalized derivation F associated with a derivation d such
that F (xy)− xy ∈ Z(R) (or F (xy) + xy ∈ Z(R)) for all x, y ∈ I , then R is commutative.

Theorem 3.3. Let (R, ∗) be a prime ring with involution of the second kind such that char(R) 6=
2, and I an ∗-ideal. If R admits a generalized derivation F associated with a derivation d such
that F (xx∗)− x∗x ∈ Z(R) (or F (xx∗) + x∗x ∈ Z(R)) for all x ∈ I , then R is commutative.

Proof. We are given that

F (xx∗)− x∗x ∈ Z(R) for all x ∈ I. (3.6)

We can suppose that F 6= 0, so a linearization of (3.6) yields that

F (xy∗) + F (yx∗)− x∗y − y∗x ∈ Z(R) for all x, y ∈ I. (3.7)

Substitute yh for y in (3.7), where h ∈ Z(R) ∩H(R) \ {0} to obtain

[xy∗ + yx∗, r]d(h) = 0 for all x, y ∈ I and r ∈ R. (3.8)

Since R is prime, the equation (3.8) yields that either [xy∗ + yx∗, r] = 0 or d(h) = 0. For the
case [xy∗+ yx∗, r] = 0, the result follows by the same technique as in the proof of Theorem 3.1.
Now assume that d(h) = 0 for all h ∈ Z(R) ∩H(R) \ {0}. By Theorem 2.2, we have d(k) = 0
for all k ∈ S(R) ∩ Z(R). Replacing y by yk in (3.7), we get

(−F (xy∗) + F (yx∗)− x∗y + y∗x)k ∈ Z(R). (3.9)

Since R is prime and S(R) ∩ Z(R) 6= (0), Lemma 2.3 forces that

F (xy∗)− F (yx∗) + x∗y − y∗x ∈ Z(R) for all x, y ∈ I. (3.10)

Adding (3.7) to (3.10) and since char(R) 6= 2, we arrive at F (xy)− yx ∈ Z(R) for all x, y ∈ I .
Hence, by Theorem 2.5, R is commutative.

Corollary 3.4. Let (R, ∗) be a prime ring with involution of the second kind such that char(R) 6=
2, and I an ∗-ideal. If R admits a generalized derivation F associated with a derivation d such
that F (xy)− yx ∈ Z(R) (or F (xy) + yx ∈ Z(R)) for all x, y ∈ I , then R is commutative.

Theorem 3.5. Let (R, ∗) be a prime ring with involution of the second kind such that char(R) 6=
2, and I an ∗-ideal. If R admits a generalized derivation F associated with a derivation d
such that F (x)F (x∗) − xx∗ ∈ Z(R) (or F (x)F (x∗) + xx∗ ∈ Z(R)) for all x ∈ I , then R is
commutative.
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Proof. By the hypothesis, we have

F (x)F (x∗)− xx∗ ∈ Z(R) for all x ∈ I. (3.11)

As above we can suppose that F 6= 0, and by linearizing the last relation, we find that

F (x)F (y∗) + F (y)F (x∗)− xy∗ − yx∗ ∈ Z(R) for all x, y ∈ I. (3.12)

Write yh instead of y in (3.12), where h ∈ Z(R) ∩H(R) \ {0} to get

[F (x)y∗ + yF (x∗), r]d(h) = 0 for all r ∈ R. (3.13)

The primeness of R forces that either [F (x)y∗ + yF (x∗), r] = 0 or d(h) = 0. Consider the case
when [F (x)y∗ + yF (x∗), r] = 0, that is

[F (x)y∗, r] + [yF (x∗), r] = 0 (3.14)

Replacing y by yz, where z ∈ Z(R), we get

[F (x)y∗, r]z∗ + [yF (x∗), r]z = 0 (3.15)

Multiply (3.14) by z∗ from the right and substract the result from (3.15) to obtain [yF (x∗), r](z−
z∗) = 0, that is

(y[F (x), r] + [y, r]F (x))(z − z∗) = 0 (3.16)

Since R is prime, either z − z∗ = 0 or y[F (x), r] + [y, r]F (x) = 0. If z − z∗ = 0, then z = z∗,
a contradiction since the involution ∗ is of the second kind. Thus, y[F (x), r] + [y, r]F (x) = 0.
Substitute ty for y in the last equation, where t ∈ R, to get [t, r]yF (x) = 0 that is [t, r]IRF (x) =
(0) for all x ∈ I and r, t ∈ R. By using the primeness of R together with the fact that F 6= 0,
we get [t, r]I = (0). That is [t, r]RI = (0). Since R is prime and I 6= (0), we conclude that
[t, r] = 0 for all r, t ∈ R. Hence, R is commutative.

Corollary 3.6. Let (R, ∗) be a prime ring with involution of the second kind such that char(R) 6=
2, and I an ∗-ideal. If R admits a generalized derivation F associated with a derivation d such
that F (x)F (y)−xy ∈ Z(R) (or F (x)F (y)+xy ∈ Z(R)) for all x, y ∈ I , then R is commutative.

Theorem 3.7. Let (R, ∗) be a prime ring with involution of the second kind such that char(R) 6=
2, and I an ∗-ideal. If R admits a generalized derivation F associated with a derivation d
such that F (x)F (x∗) − x∗x ∈ Z(R) (or F (x)F (x∗) + x∗x ∈ Z(R)) for all x ∈ I , then R is
commutative.

Proof. We can suppose that F 6= 0, by the hypothesis we have

F (x)F (x∗)− x∗x ∈ Z(R) for all x ∈ I. (3.17)

Linearizing (3.17), we get

F (x)F (y∗) + F (y)F (x∗)− x∗y − y∗x ∈ Z(R) for all x, y ∈ I. (3.18)

Replacing y by y∗, we have

F (x)F (y) + F (y∗)F (x∗)− x∗y∗ − yx ∈ Z(R) for all x, y ∈ I. (3.19)

Substituting yh for y where h ∈ Z(R) ∩H(R) \ {0}, we obtain

(F (x)F (y) + F (y∗)F (x∗)− x∗y∗ − yx)h+ (F (x)y + y∗F (x∗))d(h) ∈ Z(R). (3.20)

By using (3.19), we have

(F (x)y + y∗F (x∗))d(h) ∈ Z(R) for all x, y ∈ I. (3.21)

By invoking the primeness of R and from Lemma 2.3, the last relation implies that either d(h) =
0 or F (x)y + y∗F (x∗) ∈ Z(R).
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If d(h) = 0 for all h ∈ Z(R) ∩ H(R) \ {0}, then Theorem 2.2 implies that d(Z(R)) = {0}.
Substituting ys for y in (3.19), where s ∈ Z(R) ∩ S(R) \ {0}, we get

(F (x)F (y)− F (y∗)F (x∗) + x∗y∗ − yx)s ∈ Z(R) for all x, y ∈ I. (3.22)

Since R prime and s ∈ Z(R) ∩ S(R) \ {0}, we get

F (x)F (y)− F (y∗)F (x∗) + x∗y∗ − yx ∈ Z(R).

Combining the previous relation with (3.19), and since char(R) 6= 2, we deduce

F (x)F (y)− yx ∈ Z(R) for all x, y ∈ I. (3.23)

By using Theorem 2.7, we conclude that R is commutative.
If F (x)y + y∗F (x∗) ∈ Z(R) for all x, y ∈ I , then by replacing y by ys, where s ∈ Z(R) ∩
S(R) \ {0}, we obtain F (x)y − y∗F (x∗) ∈ Z(R). Thus, F (x)y ∈ Z(R) which implies that
[F (x)y, r] = 0 for all r ∈ R. Therefore,

[F (x), r]y + F (x)[y, r] = 0.

Write yF (x) instead of y in the last expression to obtain F (x)y[F (x), r] = 0. Thus, [F (x), r]RI[F (x), r] =
(0). In light of the primeness of R, either I[F (x), r] = (0) or [F (x), r] = 0. If the initial case
holds, then IR[F (x), r] = (0). Since R is prime and I 6= (0), both cases yield that [F (x), r] = 0
for all x ∈ I and r ∈ R. This forces that

F (x) ∈ Z(R) for all x ∈ I. (3.24)

Since an ideal is a Jordan ideal, then in view of Theorem 2.8, R must be commutative.

Corollary 3.8. Let (R, ∗) be a prime ring with involution of the second kind such that char(R) 6=
2, and I an ∗-ideal. If R admits a generalized derivation F associated with a derivation d such
that F (x)F (y)−yx ∈ Z(R) (or F (x)F (y)+yx ∈ Z(R)) for all x, y ∈ I , then R is commutative.

Theorem 3.9. Let (R, ∗) be a prime ring with involution of the second kind such that char(R) 6=
2, and I an ∗-ideal. If R admits a non zero generalized derivation F associated with a nonzero
derivation d such that F (xx∗) + d(xx∗) ∈ Z(R) for all x ∈ I , then R is commutative.

Proof. We are given that

F (xx∗) + d(xx∗) ∈ Z(R) for all x ∈ I. (3.25)

A linearization of the last relation gives

F (xy∗) + F (yx∗) + d(xy∗) + d(yx∗) ∈ Z(R) for all x, y ∈ I. (3.26)

Replacing y by yh in the above expression, where h ∈ Z(R) ∩H(R) \ {0}, we get

(xy∗ + yx∗)d(h) ∈ Z(R) for all x, y ∈ I. (3.27)

Then by Lemma 2.3, we get xy∗ + yx∗ ∈ Z(R) or d(h) = 0.
If xy∗ + yx∗ ∈ Z(R), then this yields that R is commutative (Reasoning as in the proof of
Theorem 3.1.)
If d(h) = 0 for all h ∈ Z(R)∩H(R)\{0}, then in view of Theorem 2.2 we have d(Z(R)) = {0}.
Replacing y by ys where s ∈ Z(R) ∩ S(R) \ {0}, we obtain

−F (xy∗) + F (yx∗)− d(xy∗) + d(yx∗) ∈ Z(R) for all x, y ∈ I. (3.28)

Comparing (3.26) and (3.28), we arrive at F (xy∗) + d(xy∗) ∈ Z(R). That is

F (xy) + d(xy) ∈ Z(R) for all x, y ∈ I. (3.29)

This can be written as (F (x) + d(x))y+ 2xd(y) ∈ Z(R). Substitute yr for y in the last relation,
where r ∈ R to obtain [xyd(r), r] = 0 for all x, y ∈ I and r ∈ R. Thus, xy[d(r), r]+x[y, r]d(r)+
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[x, r]yd(r) = 0 for all x, y ∈ I and r ∈ R. Put wx instead of x in the previous equation, where
w ∈ R, and use it again to obtain [w, r]xyd(r) = 0 for all x, y ∈ I and r, w ∈ R. That is,
[w, r]xRId(r) = (0) for all x ∈ I and r, w ∈ R. By invoking the primeness of R, either
[w, r]x = 0 or Id(r) = (0). The latter case gives that IRd(r) = (0). Since R is prime and by
our hypothesis for I and d, we get a contradiction.
Therefore, [w, r]x = 0 for all x ∈ I and r, w ∈ R. Then [w, r]RI = (0) for all r, w ∈ R.
Since I 6= (0) and R is prime, we conclude that [w, r] = 0 for all r, w ∈ R, and hence R is
commutative.

Corollary 3.10. Let (R, ∗) be a prime ring with involution of the second kind such that char(R) 6=
2, and I an ∗-ideal. If R admits a generalized derivation F associated with a derivation d such
that F (xy) + d(xy) ∈ Z(R) for all x, y ∈ I , then R is commutative.

Theorem 3.11. Let (R, ∗) be a prime ring with involution of the second kind such that char(R) 6=
2, and I an ∗-ideal. If R admits a generalized derivation F associated with a derivation d such
that F (xx∗) + d(x∗x) ∈ Z(R) for all x ∈ I , then R is commutative.

Proof. We are given that

F (xx∗) + d(x∗x) ∈ Z(R) for all x ∈ I. (3.30)

A linearization of the last relation gives

F (xy∗) + F (yx∗) + d(x∗y) + d(y∗x) ∈ Z(R) for all x, y ∈ I. (3.31)

Replacing y by yh, where h ∈ Z(R) ∩H(R) \ {0}, we get

(xy∗ + yx∗ + x∗y + y∗x)d(h) ∈ Z(R) for all x, y ∈ I. (3.32)

As above we obtain R is commutative or d(Z(R)) = {0}. For the last case, replacing y by ys in
(3.31), where s ∈ Z(R) ∩ S(R) \ {0}, we obtain

−F (xy∗) + F (yx∗) + d(x∗y)− d(y∗x) ∈ Z(R) for all x, y ∈ I. (3.33)

Combining (3.31) with (3.33), we arrive at

F (xy∗) + d(y∗x) ∈ Z(R) for all x, y ∈ I. (3.34)

Replacing y by y∗, we see that

F (xy) + d(yx) ∈ Z(R) for all x, y ∈ I. (3.35)

That is
F (x)y + xd(y) + d(y)x+ yd(x) ∈ Z(R) for all x, y ∈ I. (3.36)

We have I ∩ Z(R) 6= (0). Otherwise, F (x)y + xd(y) + d(y)x+ yd(x) = 0, and replacing y by
yd(x), we get xyd2(x) + d(y)d(x)x − d(y)xd(x) + yd2(x)x = 0. Write xy instead y to obtain
d(x)y[d(x), x] = 0 which implies that [d(x), x] = 0 for all x ∈ I . Since an ideal is a Jordan ideal
and a derivation is a generalized derivation, then Theorem 2.8 forces that R is a commutative
ring. This contradict our supposition, then I ∩ Z(R) 6= (0). Let now 0 6= z ∈ I ∩ Z(R) and
replacing y by z, we find that

(F (x) + d(x))z ∈ Z(R) for all x ∈ I. (3.37)

By using Lemma 2.3, we obtain

F (x) + d(x) ∈ Z(R) for all x ∈ I.

Replacing x by xy in the last relation, we arrive at

F (xy) + d(xy) ∈ Z(R) for all x, y ∈ I. (3.38)

Since (3.38) is the same as (3.29), then arguing as above, we conclude that R is commutative.
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Corollary 3.12. Let (R, ∗) be a prime ring with involution of the second kind such that char(R) 6=
2, and I an ∗-ideal. If R admits a generalized derivation F associated with a derivation d such
that F (xy) + d(yx) ∈ Z(R) for all x, y ∈ I , then R is commutative.

The follwing example proves that ∗ is the second kind is not superfluous in Theorems 3.1,
3.3, 3.5, 3.7, 3.9 and 3.11.

Example1.

Let us consider R the ring of the 2 × 2 matrices with coefficients in Z and

(
a b

c d

)∗

=(
d −b
−c a

)
.

Let d and F defined as: F

((
a b

c d

))
= d

((
a b

c d

))
=

(
0 b

−c 0

)
. It is straightfor-

ward to check that (R, ∗) is a prime ring with involution of the first kind such that

XX∗ ∈ Z(R) and F (X)F (X∗) ∈ Z(R) for all X =

(
a b

c d

)
∈ R.

Clearly, the conditions of Theorems 3.1, 3.3, 3.5, 3.7, 3.9 and 3.11 are satisfied but R is not
commutative.
Now, we show that in Theorems 3.1, 3.3, 3.5, 3.7, 3.9, and 3.11 the hypothesis of ∗-ideal is
crucial.

Example 2.
Let R be a noncommutative prime ring which admits a nonzero derivation d and let R = R×R0.
If we set I = R × {0}; then I is a nonzero ideal of the ∗ex-prime ring R. Furthermore, if
we defined F (x, y) = (d(x), 0); then F is a derivation of R so F is a generalized derivation
associated itself which satisfies conditions of Theorems 3.1, 3.3, 3.5, 3.7, 3.9 and 3.11. But R is
a noncommutative ring.
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