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Abstract. Using an existing matrix method developed by the authors, a non-linear recur-
rence identity class is formulated for terms of a quasi Fibonacci sequence which—in addition to
fundamental sequence variables—is characterised by four arbitrary parameters. The possibility
for further systematic re-application of the technique is also discussed and illustrated.

1 Introduction

Denote by {wn}∞n=0 = {wn}∞0 = {wn(a, b; p, q)}∞0 , in standard format, the four-parameter
Horadam sequence produced by the second order linear recursion

wn+2 = pwn+1 − qwn, n ≥ 0, (1.1)

for which w0 = a and w1 = b are initial values. In this short paper we extend a matrix method
devised previously (to generate a non-linear recurrence identity class for Horadam sequence
terms, see [1]), and produce a new class that necessarily applies to terms of a so called quasi
Fibonacci sequence {wn(a, b; p,−1)}∞0 = {a, b, bp+a, bp2+ap+b, bp3+ap2+2bp+a, bp4+ap3+
3bp2 + 2ap+ b, . . .}. We then detail briefly how the approach can be re-applied to produce other
classes of identities with the same essential structure (but containing additional free parameters),
and illustrate the idea accordingly.

2 A Result and Proof

2.1 Result

Writing

ζ1(β, γ, δ, ε) = γε+ βδ,

ζ2(p;β, γ, δ, ε) = γδ + β(ε− δp),
ζ3(p;β, γ, δ, ε) = βδ + (γ − βp)(ε− δp), (2.1)

we establish the following result which describes a class of identities characterised by the four
parameters β, γ, δ, ε (over and above a, b that appear explicitly) through ζ1, ζ2 and ζ3 as defined.

Identity. For r, t ≥ 0, and arbitrary parameters β, γ, δ, ε,

w∗r+1(ζ1w
∗
t+1 + ζ2w

∗
t ) + w∗r(ζ2w

∗
t+1 + ζ3w

∗
t ) = (bζ1 + aζ2)w

∗
r+t+1 + (bζ2 + aζ3)w

∗
r+t,

where {w∗n}∞0 = {wn(a, b; p,−1)}∞0 is a quasi Fibonacci sequence.

2.2 Proof

Proof. Let

H(p, q) =

(
p −q
1 0

)
, (I.1)
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from which the recursion (1.1) readily delivers the matrix power relation(
wn

wn−1

)
= Hn−1(p, q)

(
w1

w0

)
(I.2)

that holds for n ≥1.
For arbitrary β, γ, the symmetric matrix

S[β,γ](p, q) =

(
γ β

β −(βp+ γq)

)
(I.3)

is the most general one that quasi-commutes with H(p, q)—what we mean by this [1] is that

S[β,γ](p, q)H(p, q) = [H(p, q)]TS[β,γ](p, q), (I.4)

writing T to denote transposition. With δ, ε also arbitrary, we introduce a similar (that is, quasi-
commuting) matrix

T[δ,ε](p, q) =

(
ε δ

δ −(δp+ εq)

)
. (I.5)

We will need the product matrix S[β,γ](p, q)T[δ,ε](p, q) to quasi-commute with H(p, q) in
order to formulate our identity class, and it is easily seen that this occurs iff H(p, q) is sym-
metric. For the sufficiency element of the argument we assume such symmetry and argue as
follows: HT = H ⇒ SHT = SH = HTS (by quasi-commutativity of S), so that (HTS)T =
(SHT )T ⇒ HT (ST) = S(HTT) = S(TH) (by quasi-commutativity of T) = (ST)H, as
required. The necessary element is similar (S[β,γ](p, q),T[δ,ε](p, q) are taken as invertible), and
is left as a routine reader exercise. The matrix H(p, q) is symmetric only for q = −1, so our
forthcoming result applies in fact to the sequence {wn(a, b; p,−1)}∞0 = {w∗n}∞0 , say, that is
generated (given w∗0 = a and w∗1 = b) by the recurrence

w∗n+2 = pw∗n+1 + w∗n, n ≥ 0, (I.6)

and which we call here a quasi Fibonacci sequence (possessing only one governing recursion
variable p).

Remark 2.1. With q = −1 we observe that each of S[β,γ](p,−1) and T[δ,ε](p,−1) commute with
H(p,−1), from which it is elementary to show that the product matrix S[β,γ](p,−1)T[δ,ε](p,−1)
also commutes with H(p,−1) = [H(p,−1)]T ; in other words, S[β,γ](p,−1)T[δ,ε](p,−1) quasi-
commutes with H(p,−1).

Define, using (I.3) and (I.5), P[β,γ,δ,ε](p) to be the (quasi-commuting) product matrix

P[β,γ,δ,ε](p) = S[β,γ](p,−1)T[δ,ε](p,−1)

=

(
γ β

β γ − βp

)(
ε δ

δ ε− δp

)

=

(
ζ1 ζ2

ζ2 ζ3

)
, (I.7)

whose functional entries are given in (2.1). Then, we consider the construct

Tn(p;β, γ, δ, ε) = P[β,γ,δ,ε](p)Hn−1(p,−1)

(
w∗1
w∗0

)
. (I.8)

First, we write

Tn(p;β, γ, δ, ε) =

(
ζ1 ζ2

ζ2 ζ3

)(
w∗n
w∗n−1

)
=

(
ζ1w
∗
n + ζ2w

∗
n−1

ζ2w
∗
n + ζ3w

∗
n−1

)
(I.9)
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by (I.2)1 and (I.7), so that

(w∗1 , w
∗
0 )Tn(p;β, γ, δ, ε) = w∗1 (ζ1w

∗
n + ζ2w

∗
n−1) + w∗0 (ζ2w

∗
n + ζ3w

∗
n−1)

= (bζ1 + aζ2)w
∗
n + (bζ2 + aζ3)w

∗
n−1 (I.10)

and, in particular,

(w∗1 , w
∗
0 )Tr+t+1(p;β, γ, δ, ε) = (bζ1 + aζ2)w

∗
r+t+1 + (bζ2 + aζ3)w

∗
r+t. (I.11)

From (I.8) we may also write (appealing to the quasi-commutivity of P[β,γ,δ,ε](p) as needed,
along with (I.2) once more)

(w∗1 , w
∗
0 )Tr+t+1(p;β, γ, δ, ε) = (w∗1 , w

∗
0 )P

[β,γ,δ,ε](p)Hr+t(p,−1)

(
w∗1
w∗0

)

= (w∗1 , w
∗
0 )P

[β,γ,δ,ε](p)Ht+r(p,−1)

(
w∗1
w∗0

)

= (w∗1 , w
∗
0 )[H

t+r(p,−1)]TP[β,γ,δ,ε](p)

(
w∗1
w∗0

)

= (w∗1 , w
∗
0 )[H

t(p,−1)Hr(p,−1)]TP[β,γ,δ,ε](p)

(
w∗1
w∗0

)

= (w∗1 , w
∗
0 )[H

r(p,−1)]T [Ht(p,−1)]TP[β,γ,δ,ε](p)

(
w∗1
w∗0

)

=

(
w∗1
w∗0

)T
[Hr(p,−1)]TP[β,γ,δ,ε](p)Ht(p,−1)

(
w∗1
w∗0

)

=

[
Hr(p,−1)

(
w∗1
w∗0

)]T
P[β,γ,δ,ε](p)Ht(p,−1)

(
w∗1
w∗0

)

=

(
w∗r+1

w∗r

)T
P[β,γ,δ,ε](p)

(
w∗t+1

w∗t

)

= (w∗r+1, w
∗
r)

(
ζ1 ζ2

ζ2 ζ3

)(
w∗t+1

w∗t

)
= w∗r+1(ζ1w

∗
t+1 + ζ2w

∗
t ) + w∗r(ζ2w

∗
t+1 + ζ3w

∗
t ); (I.12)

the proof is concluded upon equating the r.h.s. expressions of (I.11) and (I.12).

Remark 2.2. While S[β,γ](p, q) (I.3) and T[δ,ε](p, q) (I.5) are non-commutative, the matrices
S[β,γ](p,−1) and T[δ,ε](p,−1) do commute (this is reflected by the invariance of the parameters
ζ1, ζ2, ζ3 (2.1) under the interchange β ↔ δ, γ ↔ ε), so that no additional result is offered by
swapping the order of the latter matrices and re-running the proof methodology using a reverse
product matrix P̂[β,γ,δ,ε](p) = T[δ,ε](p,−1)S[β,γ](p,−1) (since P̂[β,γ,δ,ε](p) = P[β,γ,δ,ε](p)).

We finish by noting that, on choosing δ = 0, ε = 1, then T[0,1](p,−1) contracts to the 2 × 2
identity matrix I2, P[β,γ,0,1](p) = S[β,γ](p,−1), and our result reads (with ζ1(β, γ, 0, 1) = γ,
ζ2(p;β, γ, 0, 1) = β and ζ3(p;β, γ, 0, 1) = γ − βp)

w∗r+1(γw
∗
t+1 + βw∗t ) + w∗r(βw

∗
t+1 + [γ − βp]w∗t )

= (bγ + aβ)w∗r+t+1 + (bβ + a[γ − βp])w∗r+t. (2.2)

1For clarity, with q = −1 (I.2) becomes (w∗
n, w

∗
n−1)

T = Hn−1(p,−1)(w∗
1 , w

∗
0 )
T .
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Using (I.6) as appropriate, this is seen to match a special case of the result [1, Identity (Gener-
alised), p.408]

wr+1(γwt+1 + βwt)− qwr(γwt + βwt−1)

= γbwr+t+1 + (βb− γqa)wr+t − βqawr+t−1, (2.3)

for the fully general Horadam sequence {wn(a, b; p, q)}∞0 , on setting q = −1 in the latter (and
replacing w with w∗ throughout—we leave the simple algebra involved to the interested reader).
As a point of interest, we note that (2.2) offers a route directly back to the q = −1 version of an
original Horadam 1965 identity for his sequence if we set β = −p, γ = 1 (see Appendix A).

3 Extensions

The approach taken lends itself to extension that we discuss briefly here. We introduce a matrix

U[µ,σ](p) =

(
σ µ

µ σ − µp

)
, (3.1)

and, writing S[β,γ](p,−1),T[δ,ε](p,−1) as, resp., S[β,γ](p),T[δ,ε](p), form the (triple) product

Q[β,γ,δ,ε,µ,σ](p) = S[β,γ](p)T[δ,ε](p)U[µ,σ](p)

= P[β,γ,δ,ε](p)U[µ,σ](p)

=

(
ζ1 ζ2

ζ2 ζ3

)(
σ µ

µ σ − µp

)

=

(
ζ1σ + ζ2µ ζ1µ+ ζ2(σ − µp)
ζ2σ + ζ3µ ζ2µ+ ζ3(σ − µp)

)

=

(
φ1 φ2

φ2 φ3

)
, (3.2)

where (recall that any two commuting symmetric matrices produce a symmetric product)2

φ1(p;β, γ, δ, ε, µ, σ) = ζ1σ + ζ2µ,

φ2(p;β, γ, δ, ε, µ, σ) = ζ2σ + ζ3µ,

φ3(p;β, γ, δ, ε, µ, σ) = ζ2µ+ ζ3(σ − µp); (3.3)

it then follows immediately that our previous identity (which is the µ = 0, σ = 1 instance, in
which case U[0,1](p) = I2 and φ1 = ζ1, φ2 = ζ2, φ3 = ζ3) becomes w∗r+1(φ1w

∗
t+1 + φ2w

∗
t ) +

w∗r(φ2w
∗
t+1 + φ3w

∗
t ) = (bφ1 + aφ2)w∗r+t+1 + (bφ2 + aφ3)w∗r+t, characterised (a, b aside) by

the six arbitrary parameters β, γ, δ, ε, µ, σ creating the combinations φ1, φ2, φ3. The order of the
matrices S[β,γ](p),T[δ,ε](p) and U[µ,σ](p) within Q[β,γ,δ,ε,µ,σ](p) has no bearing on the resulting
identity as they are pairwise commuting—this also applies to those matrices within quadruple
and quintuple products, and so on, should the procedure be continued.

4 Summary

In this paper we have taken an established technique, and extended it to produce a new non-
linear recurrence identity class for terms of a quasi Fibonacci sequence; further re-application of
the methodology has also been discussed and illustrated. It is worth emphasising that the type
of approach adopted would appear to be restricted to sequence generating linear recurrences of
degree two only, for those natural analogues of H(p, q) (I.1) capturing the essence of recursions

2We clarify the expected symmetry of Q[β,γ,δ,ε,µ,σ](p) (as exhibited by P[β,γ,δ,ε](p) (I.7)) by noting that ζ1µ+ ζ2(σ−
µp) = ζ2σ + ζ3µ since, from (2.1), it is seen that the relation ζ1 − pζ2 = ζ3 holds.
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of degree three and beyond—in higher dimensional versions of (I.2)—can evidently never be
symmetric matrices.

All results have been verified using known Horadam sequence term closed forms for wn(a, b;
p, q) which have been modified to accommodate the designated recurrence value q = −1; the
reader is referred to Appendix B, in the interest of completeness, for some details.

Appendix A

Consider (2.2). With β = −p, γ = 1, then (appealing only, but repeatedly, to (I.6)) its l.h.s. =
w∗r+1(w

∗
t+1−pw∗t )+w∗r(−pw∗t+1+[1+p2]w∗t ) = w∗t+1(w

∗
r+1−pw∗r)+w∗t (−p[w∗r+1−pw∗r ]+w∗r) =

w∗t+1w
∗
r−1 +w∗t (−pw∗r−1 +w∗r) = w∗t+1w

∗
r−1 +w∗t (w

∗
r − pw∗r−1) = w∗t+1w

∗
r−1 +w∗tw

∗
r−2, while

the r.h.s. = (b−ap)w∗r+t+1+(−bp+a[1+p2])w∗r+t = b(w∗r+t+1−pw∗r+t)−ap(w∗r+t+1−pw∗r+t)+
aw∗r+t = bw∗r+t−1− apw∗r+t−1 +aw∗r+t = bw∗r+t−1 +a(w∗r+t− pw∗r+t−1) = bw∗r+t−1 +aw∗r+t−2.
In other words,

w∗t+1w
∗
r−1 + w∗tw

∗
r−2 = bw∗r+t−1 + aw∗r+t−2, (A.1)

or
w∗t+1w

∗
r+1 + w∗tw

∗
r = bw∗r+t+1 + aw∗r+t, (A.2)

which is the q = −1 instance of Horadam’s identity that dates back to one of his seminal 1965
articles and is given (in an equivalent form) as [1, Identity (Horadam), p. 406].

Appendix B

The general Horadam recurrence (1.1) has associated characteristic equation

λ2 − pλ+ q = 0, (B.1)

with (i) distinct (non-degenerate case; p2 6= 4q) solutions α(p, q) = (p+
√
p2 − 4q)/2, β(p, q) =

(p−
√
p2 − 4q)/2 as the basis of a closed form

wn(a, b; p, q) = wn(α(p, q), β(p, q), a, b) =
(b− aβ)αn − (b− aα)βn

α− β
, n ≥ 0, (B.2)

and (ii) non-distinct (degenerate case; p2 = 4q) solutions α(p) = β(p) = p/2 which yield a
corresponding closed form

wn(a, b; p, p2/4) = wn(α(p), a, b) = bnαn−1 − a(n− 1)αn, n ≥ 0. (B.3)

When q = −1, w∗n = wn(a, b; p,−1) follows immediately in either case; the non-degenerate
roots closed form solution (B.2) holds with α, β = α(p,−1), β(p,−1) = (p±

√
p2 + 4)/2 in the

case p2 6= −4, while the degenerate (p2 = −4) roots closed form solution (B.3) has two variants
since α(p) = α(±2i) = (±2i)/2 = ±i.
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