HYBRID ITERATION METHOD FOR FIXED POINTS OF ASYMPIOTICALLY ϕ–DEMICONTRACTIVE MAPS IN REAL HILBERT SPACES

Uko Sunday Jim

Communicated by Ayman Badawi

MSC 2010 Classifications: Primary 47H09, 47H10; Secondary 47J05, 65J15.

Keywords and phrases: Hybrid iteration method, Asymptotically ϕ–demicontractive, Fixed point, Uniformly Lipschitzian, Hilbert spaces.

We acknowledge the anonymous reviewers for their useful comments.

Abstract. A strong convergence theorem of Hybrid iteration method to fixed points of asymptotically ϕ–demicontractive mapping is proved in real Hilbert spaces. Our results extend, generalize and complement the results of Wang [8], Osilike, Isiogugu and Nwokoro [14], and extend several others from asymptotically demicontractive to the more general class of asymptotically ϕ–demicontractive maps (see for example [2, 11, 17]).

1 Introduction

Let K be a nonempty subset of a real Hilbert space H. A mapping $T : K \to K$ is said to be asymptotically ϕ–demicontractive with a sequence $\{k_n\}_{n=1}^\infty \subseteq [1, \infty)$, if

$$\lim_{n \to \infty} k_n = 1, \text{ and } \forall x, y \in K, n \geq 1 \exists a \in (0, 1) \ni$$

$$\|T^n x - p\|^2 \leq k_n \|x - p\|^2 + \|x - T^n x\|^2 - \phi(\|x - T^n x\|),$$

(1.1)

where $\phi : [0, \infty) \to [0, \infty)$ is a nonincreasing continuous function with $\phi(0) = 0$ such that

$$\|T^n x - p\|^2 \leq a_n^2 \|x - p\|^2 + k_1 \|x - T^n x\|^2,$$

(1.2)

A mapping $T : K \to K$ is said to be k–strictly asymptotically pseudocontractive with a sequence $\{a_n\}_{n=1}^\infty \subseteq [1, \infty)$, if

$$\lim_{n \to \infty} a_n = 1, \text{ and } \forall x, y \in K, n \in N \exists a \in [0, 1) \exists$$

$$\|T^n x - T^n y\|^2 \leq k_n \|x - y\|^2 + k_1 \|(I - T^n)x - (I - T^n)y\|^2,$$

(1.3)

where I is the identity operator. The class of k–strictly asymptotically pseudocontractive and asymptotically demicontractive maps were first introduced in Hilbert spaces by Qihou [10]. Observe that a k–strictly asymptotically pseudocontractive map with a nonempty fixed point set $F(T)$ is asymptotically demicontractive. An example of a k–strictly asymptotically pseudocontractive map is given in Osilike et al. [16]. Furthermore, T is uniformly L–Lipschitzian if there exists a constant $L > 0 \ni$

$$\|T^n x - T^n y\| \leq L\|x - y\|,$$

(1.4)

$\forall x, y \in K$ and $n \geq 1$.

The class of asymptotically ϕ–demicontractive maps was first introduced in arbitrary real Banach spaces by Osilike and Isiogugu [13]. It is shown in [13] that the class of asymptotically demicontractive map is a proper subclass of the class of asymptotically ϕ–demicontractive maps (see for example [2, 11, 17]).
map while in [4], it is shown that every asymptotically demicontractive map is asymptotically φ–demicontractive with φ : [0, ∞) → [0, ∞) given by
\[\phi(t) = (1 - k)t^2 - \frac{1}{2}(a_n^2 - 1)\|x - p\|^2. \]

These classes of operators have been studied by several authors (See for example, [2, 3, 4, 5, 10, 11, 13, 17]). In [13] Osilike and Isiogugu proved the convergence of the modified averaging iteration process of Mann [19] to the fixed points of asymptotically φ–demicontractive maps. Specifically they proved the following:

Theorem 1.1. ([13], p. 65): Let E be a real Banach space and K a nonempty closed convex subset of E. Let \(T : K \to K \) be a completely continuous uniformly \(L \)-Lipschitzian asymptotically φ–demicontractive mapping with a sequence \(\{k_n\}_{n=1}^{\infty} \subseteq [1, \infty), \sum(a_n^2 - 1) < \infty. \) Let \(\{a_n\} \) be a real sequence satisfying (i) \(0 < a_n < 1 \) (ii) \(\sum a_n = \infty \) (iii) \(\sum a_n^2 < \infty. \) Then the sequence \(\{x_n\}_{n=1}^{\infty} \) generated from arbitrary \(x_1 \in K \) by the modified averaging Mann iteration process
\[x_{n+1} = (1 - a_n)x_n + a_nT^n x_n, \quad n \geq 1 \] (1.5)
converges strongly to a common fixed point of \(T. \)

Similarly, in [4], using the modified averaging implicit iteration scheme \(\{x_n\} \) of Sun [20], generated from an \(x_1 \in K, \) by
\[x_n = a_n x_{n-1} + (1 - a_n)T^i x_n, \quad n \geq 1 \]
where \(n = (k-1)N + i, i \in I = \{1, 2, 3, ..., N\}, \) Igokwe and Udofia [4] proved that under certain conditions on the iteration sequence \(\{a_n\}, \) the above iteration process \(\{x_n\} \) converges strongly to the common fixed point of the family \(\{T_i\}_{i=1}^{\infty} \) of \(N \) uniformly \(L_i \)-Lipschitzian asymptotically φ–demicontractive self maps of nonempty closed convex subset of a Hilbert space \(H. \)

The hybrid approximation methods below was first introduced by Yamada [7]. Yamada proposed the method in order to reduce the complexity in computation caused by the the projection \(P_K(u^* - \mu F(u^*)) \) in the fixed point equation
\[u^* = P_K(u^* - \mu F(u^*)) \] (1.6)
where \(P_K \) is a projection from a Hilbert space \(H \) onto a closed convex subset \(K \) of \(H. \) To solve variational inequalities associated with the fixed point equation (1.6), Yamada introduced the following iteration method: For arbitrary \(u_0 \in H; \)
\[u_{n+1} = T u_n - \lambda_{n+1} F(T u_n), \quad n \geq 0 \]
(where \(T \) is a nonexpansive mapping from \(H \) into itself, \(K \) is the fixed point set of \(T, F \) is \(\eta \)-strongly monotone and \(L \)-Lipschitzian on \(K, \) \(\{\lambda_n\} \) is a sequence in \((0, 1)\) and \(0 < \mu < \frac{2\eta}{L^2} \)).

Yamada proved strong convergence in the Hilbert space \(H. \)

Motivated by Yamada’s work, Wang [8] proposed a new explicit iteration scheme with a mapping \(F \) to approximate the fixed points of nonexpansive mapping \(T \) in Hilbert spaces and proved strong and weak convergence theorems. The explicit iteration scheme of Wang is given below:

Let \(T : H \to H \) be a nonexpansive mapping, \(F : H \to H \) an \(\eta \)-strongly monotone \(L \)-Lipschitzian mapping on \(K, \) \(\{\alpha_n\} \subset (0, 1), \{\lambda_n\} \subset [0, 1) \) and \(\mu \) a fixed constant in \((0, \frac{2\eta}{L^2})\).

For arbitrary initial point \(x_1 \in H, \) the explicit iteration scheme with mapping \(F \) is defined as follows
\[x_{n+1} = \alpha_n x_n + (1 - \alpha_n)(T x_n - \lambda_n + 1 F(T x_n)), \quad n \geq 0. \] (1.7)

In the sequel we shall need the mapping \(T^\lambda : E \to E \) defined by
\[T^\lambda = T x - \lambda F(T x), \quad \forall x \in H. \] (1.8)
With (1.8), we observe that (1.7) becomes
\[x_{n+1} = \alpha_n x_n + (1 - \alpha_n)T^{\lambda_{n+1}}x_n, \quad n \geq 0. \tag{1.9} \]

Recently Osilike et al. [14] extend the work of Wang to arbitrary Banach spaces without the strong monotonicity assumption on the hybrid operator \(F \). Specifically, they proved the following theorem.

Theorem 1.2. Let \(E \) be an arbitrary real Banach space, \(T : K \rightarrow K \) a nonexpansive mapping with \(F(T) \neq \emptyset \), and \(F : E \rightarrow E \) an \(L \)-Lipschitzian mapping. Let \(\{x_n\} \) be the sequence generated from an arbitrary \(x_1 \in E \) by (1.9) and \(\{\alpha_n\} \) and \(\lambda_n \) are real sequences in \([0, 1)\) satisfying the conditions:

(i) \(0 < \alpha \leq \alpha_n < 1, \forall n \geq 1 \) and for some \(\alpha \in (0, 1) \),

(ii) \(\sum_{n=1}^{\infty} (1 - \alpha_n) = \infty \),

(iii) \(\sum_{n=1}^{\infty} \lambda_n < \infty \).

Then (a) \(\lim_{n \rightarrow \infty} \|x_n - x^*\| \) exists for each \(x^* \in F(T) \),

(b) \(\lim_{n \rightarrow \infty} \|x_n - Tx_n\| = 0 \),

(c) \(\{x_n\} \) converges strongly to a fixed point of \(T \) if and only if \(\lim \inf_{n \rightarrow \infty} d(x_n, F(T)) = 0 \).

The main purpose of this paper is to modify (1.9) and proved that the modified hybrid iteration process converges to fixed points of \(N \) uniformly \(L \)-asymptotically \(\phi \)-demicontractive mappings in Hilbert space. Our results extend, generalize and complement the results of Wang [8], Osilike, Isiogugu and Nwokoro [14], and extend several others in literature (see for example, [2, 5, 11, 13, 17]). In the sequel we shall make use of the following lemma.

Lemma 1.3. (17, p. 80): Let \(\{a_n\} \), \(\{b_n\} \) and \(\{\delta_n\} \) be sequences of nonnegative real numbers satisfying the inequality
\[a_{n+1} \leq (1 + \delta_n)a_n + b_n, \quad n \geq 1. \]

If \(\sum_{n=1}^{\infty} \delta_n < \infty \) and \(\sum_{n=1}^{\infty} b_n < \infty \) then \(\lim_{n \rightarrow \infty} a_n \) exists. In particular, if \(\{a_n\} \) has a subsequence which converges strongly to zero, then \(\lim_{n \rightarrow \infty} a_n = 0 \).

2 MAIN RESULTS

Theorem 2.1 (Main Theorem). Let \(H \) be a real Hilbert space and \(K \) be a nonempty closed convex subset of \(H \). Let \(T : K \rightarrow K \) be \(N \) uniformly \(L_1 \)-Lipschitzian asymptotically \(\phi \)-demicontractive self maps of \(K \) with sequence \(\{a_n\}_{n=1}^{\infty} \subseteq [1, \infty) \) such that \(\sum_{n=1}^{\infty} (a_n - 1) < \infty \) \(\forall i \in I = \{1, 2, ..., N\} \) and \(F(T) = \{x \in K : Tx = x\} \neq \emptyset \). Suppose \(F : K \rightarrow K \) be an \(L_2 \)-Lipschitzian mappings. Let \(\{x_n\}_{n=1}^{\infty} \) be the sequence generated from an arbitrary \(x_1 \in K \) by
\[x_{n+1} = \alpha_n x_n + (1 - \alpha_n)T^{\lambda_n+1}x_n, \quad n \geq 1 \tag{2.1} \]
where \(T^{\lambda_n+1}x_n := T\lambda_nx_n - \lambda_{n+1}x_n = \lambda_{n+1}F(T)x_n, \quad \mu > 0 \) and \(n = (k-1)N \). Let \(\{a_n\}_{n=1}^{\infty} \) and \(\{\lambda_n\}_{n=1}^{\infty} \) be two real sequences in \([0, 1)\) satisfying the conditions:

(i) \(0 < \alpha \leq a_n \leq \beta < 1 \) and for some \(\alpha, \beta \in (0, 1) \),

(ii) \(\sum_{n=1}^{\infty} (1 - \alpha_n) = \infty \),

(iii) \(\sum_{n=1}^{\infty} (1 - \alpha_n)^2 < \infty \),

(iv) \(\sum_{n=1}^{\infty} \lambda_n < \infty \).

Then,

(a) \(\lim_{n \rightarrow \infty} \|x_n - p\| \) exists for each \(p \in F(T) \),

(b) \(\lim_{n \rightarrow \infty} \|x_n - Tx_n\| = 0 \),

(c) \(\{x_n\}_{n=1}^{\infty} \) converges strongly to a fixed point of \(T \) if and only if there exists a subsequence \(\{x_{n_j}\}_{j=1}^{\infty} \) of \(\{x_n\}_{n=1}^{\infty} \) which converges strongly to \(p \) of \(T \).
Proof. We use result of Reinerman [9] (see also [1, 12]) and the fact that \(T \) and \(F \) are \(L \)–Lipschitzian.

\[||tx + (1 - t)y||^2 = t||x||^2 + (1 - t)||y||^2 - t(1 - t)||x - y||^2 \]

(2.2)

which holds \(\forall x, y \in H \). Let \(p \in F \), then using (2.1) and (2.2), we have

\[\|x_{n+1} - p\|^2 = \| (\alpha_n x_n + (1 - \alpha_n) T^{\lambda_n+1} x_n) - p \|^2 \]

\[\leq \alpha_n \| x_n - p \|^2 + (1 - \alpha_n) \| T^{\lambda_n+1} x_n - p \|^2 \]

\[- \alpha_n (1 - \alpha_n) \| x_n - T^{\lambda_n+1} x_n \|^2 \]

(2.3)

Observe that \((1 - \alpha_n) \| x_n - T^{\lambda_n+1} x_n \| = \| x_{n+1} - x_n \| \) and

\[\| x_{n+1} - x_n \|^2 = \| x_{n+1} - x_n \|^2 \]

\[\| T^{\lambda_n+1} x_n - p \|^2 = \| (T^k x_n - \lambda_{n+1} \mu F(T^k x_n) - p) \|^2 \]

\[\leq \| T^k x_n - p \|^2 + \lambda_{n+1} \mu \| F(T^k x_n) \|^2 \]

\[+ \lambda_{n+1}^2 \mu^2 \| F(T^k x_n) \|^2 \]

(2.5)

since \(2 \| F(T^k x_n) \|^2 \| T^k x_n - p \|^2 \leq \| F(T^k x_n) \|^2 + \| (T^k x_n - p) \|^2, \) then

\[\| T^{\lambda_n+1} x_n - p \|^2 = \| T^k x_n - p \|^2 + \lambda_{n+1} \mu \| F(T^k x_n) \|^2 \]

\[+ \lambda_{n+1}^2 \mu^2 \| F(T^k x_n) \|^2 \]

\[\leq \| 1 + \alpha_n \|^2 + \lambda_{n+1} \mu \| F(T^k x_n) \|^2 \]

\[+ \lambda_{n+1}^2 \mu^2 \| F(T^k x_n) \|^2 \]

(2.6)

Substitute (2.5), (2.6) into (2.4)

\[\| x_{n+1} - p \|^2 \leq \alpha_n \| x_n - p \|^2 + (1 - \alpha_n) \| T^k x_n - p \|^2 \]

\[+ \lambda_{n+1} \mu \| F(T^k x_n) \|^2 \]

\[- \alpha_n (1 - \alpha_n) \| x_n - T^{\lambda_n+1} x_n \|^2 \]

\[= \alpha_n \| x_n - p \|^2 + (1 - \alpha_n) \| 1 + \alpha_n \|^2 + \lambda_{n+1} \mu \| F(T^k x_n) \|^2 \]

\[+ \lambda_{n+1}^2 \mu^2 \| F(T^k x_n) \|^2 \]

\[- \alpha_n (1 - \alpha_n) \| x_n - T^{\lambda_n+1} x_n \|^2 \]

(2.7)

since \(\| F(T^k x_n) \| = L_1 L_2 \| x_n - p \| + ||F(p)||, \) then

\[\| F(T^k x_n) \|^2 = \{ L_1 L_2 \| x_n - p \| + ||F(p)|| \}^2 \]

\[= L_1^2 L_2^2 \| x_n - p \|^2 + 2 L_1 L_2 \| x_n - p \| ||F(p)|| + ||F(p)||^2 \]

\[\leq L_1 L_2 (L_1 L_2 + 1) \| x_n - p \|^2 + (L_1 L_2 + 1) ||F(p)||^2 \]

(2.8)

Substitute (2.8) into (2.7)

\[\| x_{n+1} - p \|^2 \leq \alpha_n \| x_n - p \|^2 + (1 - \alpha_n) \| 1 + \alpha_n \|^2 + \lambda_{n+1} \mu \| F(T^k x_n) \|^2 \]

\[+ (1 - \alpha_n) \lambda_{n+1} \mu \| 1 + \alpha_n \|^2 \| L_1 L_2 (L_1 L_2 + 1) \| x_n - p \|^2 \]

\[+ (L_1 L_2 + 1) ||F(p)||^2 \]

\[- \alpha_n (1 - \alpha_n) \| x_n - T^{\lambda_n+1} x_n \|^2 \]

(2.9)
Now estimating (2.9) using (1.1)

$$
\|T^k x_n - T^k p\|^2 \leq \left[1 + \frac{1}{2}(a_n - 1)\right] \|x_n - p\|^2 + \|x_n - T^k x\|^2 - \phi(\|x - T^k x_n\|).\tag{2.10}
$$

Also \(\|x_n - T^k x_n\| = \|x_n - p + T^k x_n\| \leq \|x_n - p\| + \|T^k x_n - p\| = (L + 1)\|x_n - p\|.

Hence

$$
\|x_n - T^k x_n\|^2 = (L + 1)^2\|x_n - p\|^2. \tag{2.11}
$$

Substitute (2.8) into (2.7)

$$
\|T^k x_n - T^k p\|^2 \leq \left[1 + \frac{1}{2}(a_n - 1)\right] \|x_n - p\|^2 + (L + 1)^2\|x_n - p\|^2 - \phi(\|x_n - T^k x_n\|).\tag{2.12}
$$

Substitute (2.12) into (2.9)

$$
\|x_{n+1} - p\|^2 \leq \alpha_n \|x_n - p\|^2 + (1 - \alpha_n)\left[1 + \lambda_n + \mu\right] \left[1 + \frac{1}{2}(a_n - 1)\right] \|x_n - p\|^2 + (L + 1)^2\|x_n - p\|^2 + (1 - \alpha_n)\lambda_n + \mu\|x_n - p\|^2 - 2(1 - \alpha_n)\|x_{n+1} - p\|^2 - 2(1 - \alpha_n)^2\alpha_n \|x_{n+1} - p\|^2 - 2(1 - \alpha_n)^2\alpha_n \lambda_n + \mu\|L_1 L_2 + 1\|\|F(p)\|^2. \tag{2.13}
$$

(1 - \alpha_n)

$$
\|x_{n+1} - p\|^2 \leq \{1 - \alpha_n\} \alpha_n \|x_n - p\|^2 + (1 - \alpha_n)^2\left[1 + \lambda_n + \mu\right] \left[1 + \frac{1}{2}(a_n - 1)\right] \|x_n - p\|^2 + (L + 1)^2\|x_n - p\|^2 + (1 - \alpha_n)^2\lambda_n + \mu\|x_n - p\|^2 - 2(1 - \alpha_n)^2\alpha_n \|x_{n+1} - p\|^2 - 2(1 - \alpha_n)^2\alpha_n \lambda_n \lambda_n + \mu\|L_1 L_2 + 1\|\|F(p)\|^2. \tag{2.14}
$$

(1 - \alpha_n)

$$
\|x_{n+1} - p\|^2 \leq \{1 - \alpha_n\} \alpha_n \|x_n - p\|^2 + (1 - \alpha_n)^2\left[1 + \lambda_n + \mu\right] \left[1 + \frac{1}{2}(a_n - 1)\right] \|x_n - p\|^2 + (L + 1)^2\|x_n - p\|^2 + (1 - \alpha_n)^2\lambda_n + \mu\|x_n - p\|^2 - 2(1 - \alpha_n)^2\alpha_n \|x_{n+1} - p\|^2 - 2(1 - \alpha_n)^2\alpha_n \lambda_n \lambda_n + \mu\|L_1 L_2 + 1\|\|F(p)\|^2. \tag{2.15}
$$
Setting

\[\Psi_n = (1 - \alpha_n)\alpha_n + (1 - \alpha_n)^2[1 + \lambda_{n+1}\mu]\left[1 + \frac{1}{2}(a_{in} - 1)\right] \]
\[+ (1 - \alpha_n)^2[1 + \lambda_{n+1}\mu](L + 1)^2 \]
\[+ (1 - \alpha_n)^2L_1L_2(L_1L_2 + 1)\lambda_{n+1}\mu[1 + \lambda_{n+1}\mu] \]
\[- 2(1 - \alpha_n)^2\alpha_n\lambda_{n+1}\mu L_1L_2(L_1L_2 + 1) \] \hspace{1cm} (2.16)

and

\[\eta_n = (1 - \alpha_n)^2\lambda_{n+1}\mu[1 + \lambda_{n+1}\mu](L_1L_2 + 1) \]
\[- 2(1 - \alpha_n)^2\alpha_n\lambda_{n+1}\mu(L_1L_2 + 1) \]

\[\|x_{n+1} - p\|^2 \leq \left\{ 1 + \frac{\Psi_n - (1 - \alpha_n)}{(1 - \alpha_n)}\right\}\|x_n - p\|^2 \]
\[- (1 - \alpha_n)^2[1 + \lambda_{n+1}\mu]\phi(\|x_n - T^kx_n\|) \]
\[+ \frac{\eta_n}{(1 - \alpha_n)}\|F(p)\|^2 - \frac{2(1 - \alpha_n)^2\alpha_n}{(1 - \alpha_n)}\|T^kx_n - x_n\|^2 \] \hspace{1cm} (2.17)

\[\|x_{n+1} - p\|^2 \leq \left\{ 1 + \frac{\Psi_n - (1 - \alpha_n)}{(1 - \alpha_n)}\right\}\|x_n - p\|^2 \]
\[- (1 - \alpha_n)^2[1 + \lambda_{n+1}\mu]\phi(\|x_n - T^kx_n\|) \]
\[+ \frac{\eta_n}{(1 - \alpha_n)}\|F(p)\|^2 - \frac{2(1 - \alpha_n)^2\alpha_n}{(1 - \alpha_n)}\|T^kx_n - x_n\|^2 \]
\[- 2(1 - \alpha_n)^2\alpha_n\|T^kx_n - x_n\|^2 + \sigma_n \] \hspace{1cm} (2.18)

since \(-\frac{1}{(1-\alpha_n)} \leq -1\), we have

\[\|x_{n+1} - p\|^2 \leq \left\{ 1 + \delta_{in}\right\}\|x_n - p\|^2 \]
\[- (1 - \alpha_n)^2[1 + \lambda_{n+1}\mu]\phi(\|x_n - T^kx_n\|) \]
\[- 2(1 - \alpha_n)^2\alpha_n\|T^kx_n - x_n\|^2 + \sigma_n \] \hspace{1cm} (2.19)

where

\[\delta_{in} = \Psi_n - (1 - \alpha_n) \]
\[= (1 - \alpha_n)\alpha_n + (1 - \alpha_n)^2[1 + \lambda_{n+1}\mu]\left[1 + \frac{1}{2}(a_{in} - 1)\right] \]
\[+ (1 - \alpha_n)^2[1 + \lambda_{n+1}\mu](L + 1)^2 \]
\[+ (1 - \alpha_n)^2L_1L_2(L_1L_2 + 1)\lambda_{n+1}\mu[1 + \lambda_{n+1}\mu] \]
\[- 2(1 - \alpha_n)^2\alpha_n\lambda_{n+1}\mu L_1L_2(L_1L_2 + 1) - (1 - \alpha_n) \]
\[= (1 - \alpha_n)^2\lambda_{n+1}\mu + \frac{1}{2}(1 - \alpha_n)^2[1 + \lambda_{n+1}\mu](a_{in} - 1) \]
\[+ (1 - \alpha_n)^2[1 + \lambda_{n+1}\mu](L + 1)^2 \]
\[+ (1 - \alpha_n)^2L_1L_2(L_1L_2 + 1)\lambda_{n+1}\mu[1 + \lambda_{n+1}\mu] \]
\[- 2(1 - \alpha_n)^2\alpha_n\lambda_{n+1}\mu L_1L_2(L_1L_2 + 1) \] \hspace{1cm} (2.20)

and

\[\sigma_n = \eta_n\|F(p)\|^2 - \{ (1 - \alpha_n)^2\lambda_{n+1}\mu[1 + \lambda_{n+1}\mu](L_1L_2 + 1) \]
\[- 2(1 - \alpha_n)^2\alpha_n\lambda_{n+1}\mu(L_1L_2 + 1)\} \|F(p)\|^2 \]
\[\|x_{n+1} - p\|^2 \leq \left\{ 1 + \delta_{in}\right\}\|x_n - p\|^2 \]
\[- (1 - \alpha_n)^2[1 + \lambda_{n+1}\mu]\phi(\|x_n - T^kx_n\|) \]
\[+ \frac{\eta_n}{(1 - \alpha_n)}\|F(p)\|^2 - \frac{2(1 - \alpha_n)^2\alpha_n}{(1 - \alpha_n)}\|T^kx_n - x_n\|^2 \] \hspace{1cm} (2.21)
From conditions \((ii)\) \(- (v)\), \(\sum_{n=1}^{\infty} \delta_n < \infty\) and \(\sum_{n=1}^{\infty} \sigma_n < \infty\). Thus using Lemma 1.3, it follows that \(\lim_{n \to \infty} ||x_n - p||\) exists and \(\{x_n\}\) is bounded, thus completing the proof of (a). Since \(\{x_n\}\) is bounded, then there exists \(M > 0\) such that \(||x_n - p|| \leq M \forall n \geq 1\). It follows from (2.19) that

\[
(1 - \alpha_n)^2[1 + \lambda_{n+1}\mu \phi(||x_n - T^k x_n||)] \leq \{1 + \delta_n\} ||x_n - p||^2
- ||x_{n+1} - p||^2 + \sigma_n
\]

\[
\sum_{j=N}^{\infty} (1 - \alpha_j)^2[1 + \lambda_j\mu \phi(||x_j - T^k x_j||)] \leq \sum_{j=N}^{\infty} \{(1 + \delta_j) ||x_j - p||^2
- ||x_{j+1} - p||^2 + \sigma_j\}
\]

\[
= \sum_{j=N}^{\infty} \{||x_j - p||^2 - ||x_{j+1} - p||^2 + \delta_j ||x_j - p||^2 + \sigma_j\}
\]

\[
\sum_{n=1}^{\infty} (1 - \alpha_n)^2[1 + \lambda_{n+1}\mu \phi(||x_n - T^k x_n||)] \leq ||x_N - p||^2
+ M^2 \sum_{n=1}^{\infty} \delta_n + \sum_{n=1}^{\infty} \sigma_n < \infty
\]

Conditions (iii) and (iv) imply that \(\lim_{n \to \infty} \phi(||x_n - T^k x_n||) = 0\). Since \(\phi\) is an increasing and continuous, then \(\lim_{n \to \infty} ||x_n - T^k x_n|| = 0\). Observe that,

\[
||x_n - T^k x_n|| = ||x_n - T^k x_n + T^k x_n - T x_n|| \leq ||x_n - T^k x_n||
+ ||T^k x_n - T x_n||
\]

\[
\leq ||x_n - T^k x_n|| + ||T^k x_n - T x_n|| = ||x_n - T x_n||
+ ||TT^{k-1} x_n - T x_n||
\]

\[
\leq ||x_n - T^k x_n|| + L ||T^{k-1} x_n - x_n||
= ||x_n - T^k x_n|| + L ||T^{k-1} x_n - T^{k-1} x_{n-1} + T^{k-1} x_{n-1} - x_n||
\]

\[
\leq ||x_n - T^k x_n|| + L ||T^{k-1} x_{n-1} - x_{n-1}|| + L ||x_n - x_{n-1}||
= ||x_n - T^k x_n|| + L(L + 1)||x_n - x_{n-1}||
+ L ||T^{k-1} x_{n-1} - x_{n-1}||
\]

(2.22)

Observe that,

\[
||x_n - x_{n-1}|| = ||x_n - x_{n-1} - (\alpha_{n-1} x_{n-1} + (1 - \alpha_{n-1}) T^{k-1} x_{n-1} - \lambda_{n-1} \mu F(T^{k-1} x_{n-1}))||
- \lambda_{n-1} \mu F(T^{k-1} x_{n-1}))||
\]

\[
\leq ||x_n - T^{k-1} x_{n-1}|| + \lambda_{n-1} \mu ||F(T^{k-1} x_{n-1})||
\]

(2.23)

\[
||x_n - T x_n|| \leq ||x_n - T^k x_n|| + L(L + 2) ||x_n - T^{k-1} x_{n-1}||
\]

\[
+ \lambda_{n-1} \mu (L + 1) L_1^2 L_2 ||x_{n-1} - p|| + \lambda_{n-1} \mu (L + 1) ||F(p)||.
\]

(2.24)

Hence \(\lim_{n \to \infty} ||x_n - T x_n|| = 0\). Thus completing the proof of (b). Since \(\{x_n\}_{n=1}^{\infty}\) has a subsequence \(\{x_n\}_{j=1}^{\infty}\) which converges strongly to \(p\) and \(\lim_{n \to \infty} ||x_n - p|| = 0\) exists, by Lemma 1.3. Thus completing the proof. □
3 CONCLUDING REMARKS

Remark 3.1. If T is in addition completely continuous or demicompact, then $\{x_n\}_{n=1}^{\infty}$ converges strongly to a fixed point of T. Furthermore, if T satisfies condition (A), then $\liminf_{n \to +\infty} d(x_n, F(T)) = 0$, so under the conditions of Theorem 2.1, if T satisfies condition (A), then $\{x_n\}_{n=1}^{\infty}$ converges strongly to a fixed point of T.

Remark 3.2. The strong monotonicity condition imposed on F in [8] is not required in our results.

Remark 3.3. Our results extend, generalize and complement the results of Wang [8], Osilike, Isiogugu and Nwokoro [14] and others in literature.

References

Author information

Uko Sunday Jim, Department of Mathematics, University of Uyo, P. M. B. 1017, Uyo, Nigeria.

E-mail: ukojim@uniuyo.edu.ng

Received: July 4, 2017.
Accepted: February 19, 2018.