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Abstract. Let (R,M) be a special principal ideal ring (SPIR), but not a field. Fix p ∈ M
so that Rp = M , and let Y be an indeterminate over R. Let R ⊂ S be a ramified (integral
minimal) ring extension and S ⊂ T a decomposed (integral minimal) ring extension. Then S is
the only ring properly contained between R and T if and only if T is R-algebra isomorphic to
R[Y ]/(Y 2 − Y, p2Y ); when these equivalent conditions hold, S is R-algebra isomorphic to the
idealization R(+)R/M . (This result was already known in case either M2 = 0 or R/M ∼= F2.)
This work contributes to the characterization of the finite commutative rings with exactly two
proper (unital) subrings.

1 Introduction

This paper is a sequel to [8]. All rings and algebras considered below are commutative with
identity; all inclusions of rings, ring homomorphisms and algebra homomorphisms are unital.
Except in the concluding results, Corollary 2.5 and Remark 2.6, (R,M) denotes a (nonzero)
special principal ideal ring (in short, an SPIR), p denotes a fixed element ofM such thatRp =M ,
α denotes the index of nilpotence ofM (so thatMα = 0 6=Mα−1), U(R) denotes the set of units
of R, and Y denotes an indeterminate over R. By definition, an SPIR is a quasi-local principal
ideal ring whose unique maximal ideal is nilpotent. By convention in this manuscript, no field
is considered to be an SPIR. (So, α ≥ 2.) Adequate background on SPIRs can be found in [15,
page 245] (where, for instance, one can find the fact that p is determined up to a factor from
U(R)). Our main goal here is to establish the following facts. If R ⊂ S ⊂ T are rings such
that R ⊂ S is a ramified (integral minimal) ring extension and S ⊂ T is a decomposed (integral
minimal) ring extension, then S is the only ring properly contained between R and T if and only
if T isR-algebra isomorphic toR[Y ]/(Y 2−Y, p2Y ); when these equivalent conditions hold, S is
R-algebra isomorphic to the idealization R(+)R/M . (The required background on idealizations
can be found in [12].) These facts were established in [8, Example 2.5 and Theorem 2.6] under
the assumption that α = 2. Our main goal here is accomplished in Proposition 2.3 and Corollary
2.4.

It will be convenient to let T denote R[Y ]/(Y 2 − Y, p2Y ). Our path to Corollary 2.4 can be
summarized as follows. Theorem 2.1 (c) establishes that if R ⊂ S is a ramified ring extension
and S ⊂ T is a decomposed ring extension such that S is the only ring properly contained
between R and T , then (regardless of the value of α) either T is R-algebra isomorphic to T or
T is of the form T (p, u), where T (p, u) denotes a certain kind of R-algebra whose definition
via generator-and-relations in Section 2 depends on a parameter u ∈ U(R). Proposition 2.2 (a)
shows that if u ∈ U(R) with u − 1 6∈ M , then the second option in the conclusion of Theorem
2.1 (c) cannot arise. The same conclusion is shown in Proposition 2.2 (b) for certain u ∈ U(R)
with u − 1 ∈ M . After a case analysis treating the remaining possible descriptions of u − 1 in
terms of α, Proposition 2.3 uses all the earlier results in the paper to infer that the first option in
the conclusion of Theorem 2.1 (c) must arise.

This paper is built on a long sequence of papers that began with the definition of the FIP
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property of ring extensions in [1]. Those papers included a characterization of FIP in [7]; a
determination in [9, Theorem 4.1] of necessary and sufficient conditions for a juxtaposition of
minimal ring extensionsA ⊂ B andB ⊂ C to be such thatA ⊂ C satisfies FIP; as an application
of [9, Theorem 4.1], an attempted determination in [2, Theorem 2.9] of necessary and sufficient
conditions for a juxtaposition of minimal ring extensions A ⊂ B and B ⊂ C to be such that C is
the only ring properly contained between A and B; as an application of [2] (while its author was
unaware of an error in [2, Theorem 2.9 (b)]), a first attempt in [3] to characterize the rings with
exactly two proper subrings; and, in [8], a correction to [2, Theorem 2.9 (b)] and the resulting
errors that had ensued in [3], one upshot being a (valid) characterization of the rings with exactly
two proper subrings, including a classification up to isomorphism in the case of characteristic 0
[8, Corollaries 2.17 and 2.18] (see also [5, Corollaries 2.21 and 3.6]).

According to [8, Corollary 2.17] (or [5, Corollary 3.6]), two of the six parts of the above-
mentioned characterization in the case of positive characteristic fell short of providing a classi-
fication up to isomorphism. Those two parts concerned certain towers A ⊂ B and B ⊂ C of
integral minimal ring extensions of finite rings, where A is of the form Z/pαZ with p a prime
number and α ≥ 2, A ⊂ B is ramified, and B ⊂ C is either ramified or decomposed. In the
situation where B ⊂ C is ramified, apart from the characterization given in [5, Theorem 3.1]
and the subcase for which a classification was found in [5, Corollary 3.7], it seems that nothing
further is known at this time. As for the situation where B ⊂ C is decomposed, Proposition 2.3
and Corollary 2.4 settle that question, while Corollary 2.5 and Remark 2.6 explain how the work
in this paper contributes to the overall question of classification up to isomorphism.

We assume that the reader has a copy of [8] (and possibly also copies of [7], [9] and [2]) at
hand. Nevertheless, for the sale of completeness, we next recall some notation and provide a
modicum of background on minimal ring extensions. If A ⊆ B are rings, then [A,B] denotes
the set of “intermediate rings," that is, the set of rings D such that A ⊆ D ⊆ B. As in [10], a
ring extension A ⊂ B is called a minimal ring extension if there does not exist a ring properly
contained between A and B. A minimal ring extension A ⊂ B is either integrally closed (in
the sense that A is integrally closed in B) or integral. If A ⊂ B is a minimal ring extension,
it follows from [10, Théorème 2.2 (i) and Lemme 1.3] that there exists a unique maximal ideal
M of A (called the crucial maximal ideal of A ⊂ B) such that the canonical injective ring
homomorphism AM → BM can be viewed as a minimal ring extension while the canonical
ring homomorphism AP → BP is an isomorphism for all prime ideals P of A except M . If
A ⊂ B is an integral minimal ring extension with crucial maximal ideal M , there are three
possibilities: A ⊂ B is said to be respectively inert, ramified, or decomposed ifB/MB (= B/M )
is isomorphic, as an algebra over the field K := A/M , to a minimal field extension of K,
K[X]/(X2), or K ×K.

If A is a ring, then Spec(A) denotes the set of prime ideals of A. As usual, if A is a ring with
E an A-module and P ∈ Spec(A), then EP := EA\P ; Fq denotes the finite field of cardinality
q; ⊂ denotes proper inclusion; and |U | denotes the cardinal number of a set U . (In particular, if
A ⊂ B ⊂ C are rings, then B is the only ring contained properly between A and C if and only
if |[A,C]| = 3.) The symbols X and Y denote indeterminates over the ambient ring(s). We use
the standard notation for conductors and annihilators. Any unexplained material is standard, as
in [11], [13].

2 Results

Let (R,M) be an SPIR, with p ∈ M such that Rp = M . If u ∈ U(R), it will be convenient
to say that an R-algebra T is an R-algebra of the form T (p, u) if there exists y ∈ T such that
T = R[y], y2 = y and p2y = p2u (in T ). Notice that R-algebras of the form T (p, u) need not
be R-algebra isomorphic. Indeed, 0 is an R-algebra of the form T (p, u), as is the (nonzero)
R-algebra R[X]/(X2 − X, p2X − p2u). In particular, if T is an R-algebra of the form T (p, u)
whose structure is induced by a ring homomorphism f : R→ T , then f need not be an injection.
Two relevant situations where such a structure map is shown to not be an injection are given in
Proposition 2.2, which considers certain kinds of R-algebras of the form T (p, u). This result
allows Proposition 2.3 to focus attention on some relevant different kinds of R-algebras of the
form T (p, u). We begin with Theorem 2.1, whose part (c) presents a dichotomy in which R-



Intermediate Rings 3

algebras of the form T (p, u) play an essential role.

Theorem 2.1. Let (R,M) be an SPIR. Fix p ∈M so thatRp =M , and let Y be an indeterminate
over R. Let R ⊂ S be a ramified ring extension and S ⊂ T a decomposed ring extension such
that |[R, T ]| = 3. Let α (≥ 2) denote the index of nilpotence of M , and let N denote the unique
prime ideal of S. Then:

(a) There exists a (necessarily nonunit) element y of T such that T = R[y], y2 = y, and
either p2y = 0 or p2y = p2u for some u ∈ U(R). For any such element y, the element py ∈
N \R = N \M ; moreover, S = R[py], (py)2 ∈M and (py)3 ∈M .

(b) If there exists y ∈ T such that T = R[y], y2 = y and p2y = 0, then T is R-algebra
isomorphic to T (:= R[Y ]/(Y 2 − Y, p2Y )).

(c) Either T is R-algebra isomorphic to T or T is an R-algebra of the form T (p, u) for some
u ∈ U(R).

(d) If T is an R-algebra of the form T (p, 1) (that is, T (p, u) with u = 1), then T is R-algebra
isomorphic to T .

Proof. We assume familiarity with the basic properties and characterizations of ramified exten-
sions and decomposed extensions that were collected in [7, Theorems 2.2 and 2.3]. As in the
first paragraph of the proof of [8, Theorem 2.2], the hypothesis that R ⊂ S is ramified and
the fact that M is the only prime ideal of R combine to show that S has a unique prime ideal,
say, N . (We will not explicitly mention appeals to standard facts about the behavior of prime
ideals in integral extensions, such as the Lying-over Theorem, as we assume familiarity with
those facts, as in [11], [13].) Then, necessarily, N is the crucial maximal ideal of S ⊂ T , and
so (S : T ) = N by [10, Théorème 2.2 (ii)]. In particular, yN ⊆ N . Also, the hypothesis
that S ⊂ T is decomposed and the fact that N is the only prime ideal of S combine to show
that T has only two (distinct) prime ideals, say, Q1 and Q2; and that Q1Q2 = Q1 ∩ Q2 = N ;
moreover, there exists y ∈ T such that T = S[y], y2 − y ∈ N and, of course, yN ⊆ N . It
follows easily that T = S + Sy. Note also that y ∈ Q1 ∪ Q2 (for if y were a unit of T , then
y − 1 = y−1(y2 − y) ∈ TN = N ⊆ S and T = S[y − 1] ⊆ S, a contradiction to the fact that
S ⊂ T ). In addition, the hypothesis that R ⊂ S is ramified (necessarily with crucial maximal
ideal M ) provides x ∈ N such that S = R[x], x2 ∈ N2 ⊆ M and, similarly, x3 = x2x ∈ M ,
so that S = R + Rx. Furthermore, if y is as above, then, since xy ∈ NT = N ⊆ S, we see
that T = S + Sy = (R + Rx) + (R + Rx)y = R + Rx+ Ry. It will be useful to observe that
py has all the above-mentioned properties of x. (Here is how to see the most important of those
facts, with the others following as above. Since |[R, T ]| = 3 and [8, Theorem 2.2] yield that
(R : T ) = M2, the hypothesis that R is an SPIR then ensures that p 6∈ M2 = (R :R y), so that
py ∈ N(Q1∪Q2)\R ⊆ N \R = N \M , whence S = R[py] by the minimality of R ⊂ S.) Next,
observe that it is clear from the construction of T that, if T is R-algebra isomorphic to T , then
there exists w ∈ T such that T = R[w], w2 = w and p2w = 0. For the case α = 2, Example 2.5
and Theorem 2.6 of [8] can be combined to show that T is R-algebra isomorphic to T . Thus, it
follows from the above comments that, in the proofs of (a)-(d), we may suppose henceforth that
α ≥ 3.

(a) Suppose, for the moment, that we have been able to choose the (necessarily nonunit)
element y so that T = R[y] and y2 = y. In that case, the above comments allow us to choose
x = py. Then px = p2y = p2y2 = (py)2 = x2. In addition, the assertions in the final sentence
of the statement of (a) then follow from the preceding paragraph. Thus, having momentarily
assumed that y2 = y, we may also assume, without loss of generality, that p2y 6= 0. Since
p2y = p(py) ∈ N2 ⊆M , the hypothesis that R is an SPIR provides a positive integer k ≤ α− 1
and u ∈ U(R) such that p2y = pku. As in the beginning of the fourth paragraph of the proof of
[8, Theorem 2.6], the hypotheses ensure that k 6= 1. Hence, without loss of generality, 3 ≤ k
(and α ≥ 4). Then, by reworking the subsequent part of the fourth paragraph of the proof of [8,
Theorem 2.6], we can construct an element z ∈ T such that T = R[z], z2 = z and p2z = 0.
Thus, to complete the proof of (a), it will suffice to prove that we can indeed find an element y
so that T = R[y] and y2 = y.

As noted above, we do have an element y such that T = S[y] and y2 − y ∈ N . Hence y 6∈ S
(for otherwise, T = S[y] = S, a contradiction); a fortiori, y 6∈ R. Since R[y] ∈ [R, T ] =
{R,S, T}, it follows by the process of elimination that R[y] = T . We now proceed with an
indirect argument; that is, we suppose that a satisfactory replacement for y cannot be found (and
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we seek a contradiction).
Since N is the unique prime ideal of S, N is a nil ideal (cf. [11, Corollary 2.10]). As

idempotents can be lifted modulo any nil ideal (cf. [14, Proposition 1, page 72]), there exists
e = e2 ∈ T such that ζ := y − e ∈ N . It is known that N = M + Rx (see, for instance, the
first paragraph of the proof of [8, Theorem 2.6]). Now, if m ∈ M , we have T = R[y −m] and
(y−m)2−(y−m) ∈ N , the latter point following since y2−y ∈ N ,M ⊆ N and 2my ∈ NT = T .
Thus, by harmlessly modifying y (and ζ) by subtracting an element of M , we can assume that
ζ ∈ Rx. Choose r ∈ R such that ζ = rx. Observe that Mx ⊆ N2 ⊆ M . So if r ∈ M , then
y − e ∈ M and, harmlessly modifying y (and ζ) by subtracting an element of M , we would be
able to replace y with the idempotent e (and we would have the desired contradiction). Thus,
without loss of generality r ∈ R \M = U(R). Then there is no harm in replacing x with rx,
and so we can assume that ζ = x; that is, y = e+ x. Then T = S[y] = S[e+ x] = S[e], the last
equation holding since x ∈ S. But R[e] 6= S since e 6∈ S (for otherwise, y = ζ+ e ∈ N +S = S
and T = S[y] ⊆ S, a contradiction); a fortiori, R[e] 6= R. By another application of the process
of elimination, R[e] = T . Thus, e has the properties that no element y was supposed to have.
This (desired) contradiction completes the proof of (a).

(b) By hypothesis, there exists (a nonunit element) z ∈ T such that T = R[z], z2 = z and
p2z = 0. By the final assertion in (a), we may redefine x := pz ∈ N \ R, with the upshot that
x2 = p2z = px = 0 and S = R[x] = R+ Rx = R+ Rpz. But we can say more, by using a set
S that figured prominently in several proofs in [5] and [8].

Considering M as an additive subgroup of R, choose a set S of coset representatives of M
in R with the property that {0, 1} ⊆ S. As in the proof of [8, Theorem 2.6], we have T = R+
Spz+Sz, in the sense that each element of T can be uniquely expressed in the form a+σpz+τz
where a ∈ R and σ, τ ∈ S. Note that when the elements of T are expressed in this way, the
addition and multiplication tables for T are determined (with answers unambiguously expressed
in the form a + σpz + τz), essentially for the following reasons: the arithmetic operations on
R are given; each element of R is of the form λ + µ for some uniquely determined λ ∈ S and
µ ∈M ; z2 = z; (pz)2 = 0; (pz)z = pz; and Mpz = Rp2z = 0.

Similarly, combining [8, Example 2.5] and the proof of [8, Theorem 2.6], y1 := Y + (Y 2 −
Y, p2Y ) ∈ T and x1 := py1 are such that T = R[y1], y2

1 = y1, p2y1 = 0, x2
1 = 0 and x1 ∈ N1 \R,

where N1 denotes the unique prime ideal of the unique element S1 of [R, T ] \ {R, T }; and
T = R+Sx1 +Sy1, in the sense that each element of T can be uniquely expressed in the form
a+ σx1 + τy1 where a ∈ R and σ, τ ∈ S. As above, the addition and multiplication tables for
T are determined. Define a function g : T → T as follows. If ξ ∈ T , express ξ as a+ σx1 + τy1
where a ∈ R and {σ, τ} ⊆ S; then let

g(ξ) = g(a+ σx1 + τy1) := a+ σpz + τz.

By the above comments about unique expressibility, it is clear that g is a bijection. Moreover,
since the addition (resp., multiplication) tables for T and T are completed in essentially the
same way, it is also clear that g is an R-algebra homomorphism. (For a more formal proof of the
preceding assertion, one can repeat verbatim the thirteenth through the sixteenth paragraphs of
the proof of [8, Theorem 2.6].) Therefore, g is an R-algebra isomorphism from T (on)to T .

(c) It suffices to combine (a) and (b) with the definition of an R-algebra of the form T (p, u).
(d) Since T is an R-algebra of the form T (p, 1), there exists y ∈ T such that T = R[y],

y2 = y and p2y = p2 (in T ). Then z := 1−y ∈ T satisfies R[z] = R[y] = T , z2 = 1−2y+y2 =
1 − 2y + y = 1 − y = z and p2z = p2 − p2y = 0. Replacing y with z, we now see that an
application of (b) completes the proof.

We show next that if the second option in the conclusion of Theorem 2.1 (c) holds and M2 6=
0, some important necessary conditions are imposed on the unit u.

Proposition 2.2. Let (R,M) be an SPIR. Let α denote the index of nilpotence ofM , and suppose
that α 6= 2 (that is, α ≥ 3). Fix p ∈M so thatRp =M . Let u ∈ U(R). Let T be anR-algebra of
the form T (p, u) whose structure is induced by a ring homomorphism f : R→ T . Suppose that
either (a) u−1 6∈M (that is, u−1 ∈ U(R)) or (b) 0 6= u−1 ∈Mk \Mk+1 with 1 ≤ k < α−2.
Then f is not an injection.



Intermediate Rings 5

Proof. (a) Set b0 := b1 := b2 := 1, b3 := (1− u)−1(p− 1)− 2,
a0 := p2(1− u), a1 := −p2[p− 2(1− u)] and
a2 := −p2[(1−u)−1(p− 1)− 2] = −p2b3. Since T is an R-algebra of the form T (p, u), we have
T = R[y] and y2 − y = 0 = p2y − p2u. Thus

0 = (y2 − y)(a2y
2 + a1y + a0) + (p2y − p2u)(b3y

3 + b2y
2 + b1y + b0).

It is straightforward to check that the displayed expression simplifies to 0 = p3y2 − p2u. Hence
p3y = p3y2 = p2u = p2y. Then p3y − p2y = 0, and so (p − 1)p2y = 0. Since p − 1 ∈ U(R),
multiplication by (p − 1)−1 gives p2y = 0. Thus p2u = 0 in T , whence p2 = 0 in T ; that is,
f(p2) = 0. But p2 6= 0 in R since α 6= 2, and so f is not an injection.

(b) Since R is an SPIR, the hypothesis allows us to write 1−u = pkv for some 1 ≤ k < α−2
and v ∈ U(R). Consequently pk+2 6= 0, since k+2 < α. Set b0 := pkv, b1 := b2 =: 0, b3 := −1,
a0 := a1 := pk+2v and a2 = p2. Since T is an R-algebra of the form T (p, u), we have T = R[y]
and y2 − y = 0 = p2y − p2u = p2y − p2 + pk+2v. Thus

0 = (y2 − y)(a2y
2 + a1y + a0) + (p2y − p2u)(b3y

3 + b2y
2 + b1y + b0).

It is straightforward to check that the displayed expression simplifies to 0 = −uvpk+2 (in T );
that is, f(−uvpk+2) = 0. Hence f(pk+2) = (−uv)−1f(−uvpk+2) = 0. But pk+2 6= 0 in R, and
so f is not an injection.

In view of Theorem 2.1 and Proposition 2.2, one should study more deeply R-algebras T of
the form T (p, u) for units u such that u−1 ∈M . For that context, Proposition 2.3 gives the final
steps in resolving our main question.

Proposition 2.3. Let (R,M) be an SPIR. Let α denote the index of nilpotence of M . Fix p ∈M
so that Rp = M . Let R ⊂ S be a ramified ring extension and S ⊂ T a decomposed ring
extension such that |[R, T ]| = 3. Then T is R-algebra isomorphic to T .

Proof. By [8, Theorem 2.6], parts (c) and (d) of Theorem 2.1, and Proposition 2.2, we may
assume, without loss of generality, that T is anR-algebra of the form T (p, u) for some u ∈ U(R)
such that 0 6= u−1 ∈Mk \Mk+1 with 1 ≤ α−2 ≤ k ≤ α−1. By the definition of an R-algebra
of the form T (p, u), we have T = R[y], with y2 = y and p2y = p2u. Since R is an SPIR, the
hypothesis allows us to write 1− u = pkv, with (1 ≤ α− 2 ≤ k ≤ α− 1 and) v ∈ U(R). Then,
since k + 2 ≥ α ensures that pk+2 = 0,

p2y = p2u = p2(1− pkv) = p2 − pk+2v = p2.

Thus, without loss of generality, u = 1. Therefore, an application of Theorem 2.1 (d) completes
the proof.

We can now extend the first assertion in [8, Theorem 2.6] from the case α = 2 to the general
case.

Corollary 2.4. Let (R,M) be an SPIR. Fix p ∈ M so that Rp = M . Let α denote the index of
nilpotence of M , and let Y be an indeterminate over R. Then:

(a) Let R ⊂ S be a ramified ring extension and S ⊂ T a decomposed ring extension. Then
|[R, T ]| = 3 if and only if T is R-algebra isomorphic to R[Y ]/(Y 2 − Y, p2Y ); when these
equivalent conditions hold, S is R-algebra isomorphic to the idealization R(+)R/M .

(b) Let T be a ring having R as a subring. Then T is R-algebra isomorphic to R[Y ]/(Y 2 −
Y, p2Y ) if and only if there exists S ∈ [R, T ] such that R ⊂ S is a ramified ring extension, S ⊂ T
is a decomposed ring extension and |[R, T ]| = 3.

Proof. According to [8, Example 2.5], T := R[Y ]/(Y 2 − Y, p2Y ) has a subring, say S1, such
that R ⊂ S1 is ramified, S1 ⊂ T is decomposed, |[R, T ]| = 3, and S1 is R-algebra isomorphic
to R(+)R/M . Now, consider any ring extension R ⊆ T such that there exists an R-algebra
isomorphism g : T → T . Then the assignment E 7→ g(E) determines a bijection [R, T ] →
[R, T ], and so |[R, T ]| = |[R, T ]| = 3. In addition, S∗ := g(S1) is such that R ⊂ S∗ is a ramified
ring extension and S∗ ⊂ T a decomposed ring extension. (Indeed, R ⊂ S∗ (resp., S∗ ⊂ T )
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inherits the property of being a minimal ring extension from R ⊂ S (resp., S ⊂ T ), by [4,
Lemma 2.1 (a)]; it is also straightforward to see that ring isomorphisms preserve the “ramified"
and “decomposed" (and “inert") properties.) Thus, S∗ is the unique element of [R, T ] \ {R, T}.
Also, since g|S1 : S1 → S∗ is an R-algebra isomorphism, we get that S∗ ∼= (S1 ∼=) R(+)R/M
as R-algebras.

(a) In view of the above comments, it remains only to prove that if |[R, T ]| = 3, then T is
R-algebra isomorphic to T . This, in turn, follows from Proposition 2.3.

(b) The “only if" assertion follows from the above comments, while the “if" assertion was
established in (a).

We can now deduce the following improvement of [8, Corollary 2.17] (equivalently, of [5,
Corollary 3.6]).

Corollary 2.5. Up to isomorphism, the rings R of positive characteristic that have exactly two
proper subrings can be characterized as follows. The prime ring of R is (isomorphic to) the
direct product

∏k
i=1 Z/p

αi
i Z, where p = p1, p2, . . . , pk are pairwise distinct prime numbers for

some positive integer k and α = α1, α2, . . . , αk are positive integers (and possibly αi = αj for
some i 6= j). Then (up to isomorphism), R is the direct product E ×

∏k
i=2 Z/p

αi
i Z, where E is

a ring satisfying (exactly) one of the following six conditions:
(a) E = F

pq2 , where q is a prime number (which is possibly equal to p);
(b) E = Fpq × Fp, where q is a prime number (which is possibly equal to p);
(c) E = R1, the ring that was constructed (in terms of any given prime number p) in [3,

Proposition 2.11];
(d) α ≥ 2 and E = Z/pαZ× Fpq , where q is a prime number (which is possibly equal to p);
(e) α ≥ 2, there exists a (local) ring (B,N) such that both A := Z/pαZ ⊂ B and B ⊂ E are

ramified extensions, and there exists an element y such that E = B[y], y2 ∈ B, y3 ∈ B, yN ⊆ N
and either y2 6∈ A or py 6∈ A.

(f) E = R[Y ]/(Y 2 − Y, p2Y ), where R := Z/pαZ with p a prime number, α ≥ 2 an integer,
and Y an indeterminate over R.

Furthermore, for each prime number p and each integer α ≥ 2, there exist at least two,
but only finitely many, isomorphism classes of rings R that form part of a set of data satisfying
the above condition (e).

Proof. The statement of this corollary has been obtained by replacing condition (f) of [8, Corol-
lary 2.17] with the above condition (f). For the sake of completeness, we recall that condition (f)
of [8, Corollary 2.17] states the following: “α ≥ 2, there exists a (local) ring (B,N) such that
A := Z/pαZ ⊂ B is a ramified extension, B ⊂ E is a decomposed extension, and the maximal
ideal M of A satisfies (A : E) = M2." In the just-quoted condition, the clause “the maximal
ideal M of A satisfies (A : E) =M2" can be replaced by “|[A,E]| = 3", in view of [8, Theorem
2.2]. It now follows from Corollary 2.4 (b) that the two conditions (f) are equivalent.

Remark 2.6. (a) As noted in the Introduction, one has yet to classify up to isomorphism the rings
E satisfying condition (e) in Corollary 2.5. If/when that classification will be completed, one will
have a classification up to isomorphism of the rings having exactly two proper subrings. Indeed,
we noted earlier that [5] and [8] provided such a classification for the case of characteristic 0,
and so we need only indicate why a satisfactory handling of condition (e) would suffice to give a
corresponding classification for positive characteristic. This fact can perhaps be seen on the basis
of category theory, building on the fact that if Λ1 and Λ2 are rings, then the category of (Λ1×Λ2)-
modules is equivalent to the product of the category of Λ1-modules and the category of Λ2-
modules. But more prosaic methods can be used to show that isomorphisms of relevant algebras
over rings of the form

∏k
i=1 Z/p

αi
i Z can be characterized by “coordinatewise isomorphisms":

see [6, Remark 2.5]. Moreover, other prosaic methods can be used to establish a more general
result, namely, that isomorphisms of relevant algebras can be characterized by “coordinatewise
isomorphisms" when working over base rings that are arbitrary (possible infinite) direct products
of rings: see [6, Theorem 2.2 or Corollary 2.3].

(b) It may be helpful to recast some of the above comments here. The sharpening of condition
(f) from [8, Corollary 2.17] that was given in condition (f) of Corollary 2.5 can be combined with
the comments in (a) in order to classify up to isomorphism the rings E of (positive) characteristic



Intermediate Rings 7

n :=
∏k
i=1 p

αi
i , where p1, p2, . . . , pk is a nonempty finite list of pairwise distinct prime numbers

and α1, α2, . . . , αk are positive integers (and possibly αi = αj for some i 6= j), such that there
exist a ramified extensionA ∼= Z/nZ ⊂ B and a decomposed extension B ⊂ E with |[A, E ]| = 3.
Similarly, if/when the classification up to isomorphism of the rings E satisfying condition (e) in
Corollary 2.5 will be completed, the upshot will be the classification up to isomorphism of the
rings E of (positive) characteristic n such that there exist a ramified extension A ∼= Z/nZ ⊂ B
and a ramified extension B ⊂ E with |[A, E ]| = 3. If/when that will be achieved, it will follow
from the work in [3], [5], [8] and this paper that the rings with exactly two proper subrings will
have been classified up to isomorphism.
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