On sum and ratio formulas for Lucas-balancing numbers

Ravi Kumar Davala and G.K. Panda
Communicated by Jose Luis Lopez-Bonilla

MSC 2010 Classifications: Primary 11B39.
Keywords and phrases: Balancing and Lucas-balancing numbers, Balancer, Binet form..

Abstract

In this paper we give explicit sum formulas for consecutive Lucas-balancing numbers, consecutive even/odd Lucas-balancing numbers, squares of consecutive Lucas-balancing numbers, squares of consecutive even/odd Lucas-balancing numbers and pronic product of Lucasbalancing numbers. Sums of these numbers with alternative signs are also considered. When indices of Lucas-balancing sequence are in arthritic progression, ratios of sum/differences follow certain interesting patterns.

1 Introduction

As defined by Behera and second author of this paper in [1], balancing numbers and balancers are solutions of the diophantine equation

$$
1+2+\cdots+(n-1)=(n+1)+(n+2)+\cdots+(n+r)
$$

It is customary to denote the $n^{\text {th }}$ balancing number by B_{n} and the corresponding balancer by R_{n}. Further, $C_{n}=\sqrt{8 B_{n}^{2}+1}$ is called the $n^{t h}$ Lucas-balancing number [9]. The Binet forms of B_{n}, C_{n} and R_{n} are respectively

$$
B_{n}=\frac{\alpha^{2 n}-\beta^{2 n}}{4 \sqrt{2}}, C_{n}=\frac{\alpha^{2 n}+\beta^{2 n}}{2} \quad \text { and } \quad R_{n}=\frac{\alpha^{2 n-1}-\beta^{2 n-1}}{4 \sqrt{2}}-\frac{1}{2}
$$

where $\alpha=1+\sqrt{2}$ and $\beta=1-\sqrt{2}$. For basic details of balancing, Lucas-balancing numbers and balancers the readers are advised to refer to [10].

The objective of this paper is to develop certain interesting sum formulas involving Lucasbalancing numbers in terms of balancing and Lucas-balancing numbers. Certain similar sum formulas involving Fibonacci, Lucas and Pell-Lucas numbers were studied by cerin [2, 3, 4, 5, 6], while sum formulas involving balancing numbers were developed by the authors in [8] and Ray [12]. Davala [7], Ray and Sahu in [12] independently developed some binomial and convolution sums involving balancing and Lucas-balancing numbers using the Binet forms and generating functions.

The following known results will be helpful in the subsequent sections. We will be frequently using these results with/without further reference. For details of the proofs from (a) to (d) the readers are advised to refer to [10].

For any non-negative integer m, n and x
(a) $C_{m+n}=B_{m} C_{n+1}-B_{m-1} C_{n}$
(b) $C_{m \pm n}=C_{m} C_{n} \pm 8 B_{m} B_{n}$
(c) $B_{m \pm 1}=3 B_{m} \pm C_{m}$
(d) $B_{m}=3 B_{m+1}-C_{m+1}$
(e) $2 R_{n}=C_{n}-2 B_{n}-1$
(f) $C_{m}=B_{n+1} C_{m+n}-B_{n} C_{m+n+1}$
(g) $C_{m+(n+1) x}=2 C_{m+n x} C_{x}-C_{m+(n-1) x}$

The proofs of (e) and (f) are as follows:

$$
\begin{aligned}
B_{n+1} C_{m+n}-B_{n} C_{m+n+1} & =\left(3 B_{n}+C_{n}\right) C_{m+n}-B_{n}\left(3 C_{m+n}-8 B_{m+n}\right) \\
& =C_{m+n} C_{n}-8 B_{m+n} B_{n}=C_{m},
\end{aligned}
$$

from which (e) follows. Further (f) follows from

$$
\begin{aligned}
2 C_{m+n x} C_{x}-C_{m+(n-1) x} & =2 C_{m+n x} C_{x}-\left(B_{x+1} C_{m+n x}-B_{x} C_{m+n x+1}\right) \\
& =C_{m+n x}\left(2 C_{x}-B_{x+1}\right)+B_{x} C_{m+n x+1} \\
& =-C_{m+n x} B_{x-1}+B_{x} C_{m+n x+1}=C_{m+(n+1) x} .
\end{aligned}
$$

2 Sum formulas involving Lucas-balancing numbers

In this section, we obtain certain sum formulas involving linear and nonlinear combinations of Lucas-balancing numbers.

Theorem 2.1. For natural numbers k and m
(a) $\sum_{i=0}^{m} C_{i}=\frac{1}{2}\left[B_{m+1}+B_{m}+1\right]$,
(b) $\sum_{i=0}^{m}(-1)^{i} C_{i}=\left\{\begin{array}{l}R_{m+1}+1 \text { if } m \text { is even, } \\ -R_{m+1} \text { if } m \text { is odd. }\end{array}\right.$
(c) $\sum_{i=0}^{m} C_{k+2 i}=C_{k+m} B_{m+1}$
(d) $\sum_{i=0}^{m}(-1)^{i} C_{k+2 i}=\frac{1}{6}\left[(-1)^{m} C_{k+2 m+1}+C_{k-1}\right]$

Proof. The proof of (a) follows from induction. We use the Binet form of Lucas-balancing numbers to prove (b), (c) and (d).

Proof of (b) :

$$
\begin{aligned}
\sum_{i=0}^{m}(-1)^{i} C_{i} & =\frac{1}{2} \sum_{i=0}^{m}(-1)^{i}\left[\alpha^{2 i}+\beta^{2 i}\right]=\frac{1}{2}\left[\sum_{i=0}^{m}\left(-\alpha^{2}\right)^{i}+\sum_{i=0}^{m}\left(-\beta^{2}\right)^{i}\right] \\
& =\frac{1}{2}\left[\frac{(-1)^{m} \alpha^{2 m+2}+1}{\alpha^{2}+1}+\frac{(-1)^{m} \beta^{2 m+2}+1}{\beta^{2}+1}\right] \\
& =\frac{1}{2}\left[\frac{(-1)^{m} \alpha^{2 m+2}+1}{2 \sqrt{2} \alpha}-\frac{(-1)^{m} \beta^{2 m+2}+1}{2 \sqrt{2} \beta}\right] \\
& =\frac{1}{4 \sqrt{2}}\left[(-1)^{m} \alpha^{2 m+1}-\beta-(-1)^{m} \beta^{2 m+1}+\alpha\right] \\
& =\frac{1}{4 \sqrt{2}}\left[(-1)^{m}\left(\alpha^{2 m+1}-\beta^{2 m+1}\right)+2 \sqrt{2}\right] \\
& =\left\{\begin{array}{l}
R_{m+1}+1 \text { if m is even, } \\
-R_{m+1} \text { if m is odd. }
\end{array}\right.
\end{aligned}
$$

Proof of (c) :

$$
\begin{aligned}
\sum_{i=0}^{m} C_{k+2 i} & =\frac{1}{2} \sum_{i=0}^{m}\left[\alpha^{2 k+4 i}+\beta^{2 k+4 i}\right] \\
& =\frac{1}{2}\left[\alpha^{2 k} \sum_{i=0}^{m}\left(\alpha^{4}\right)^{i}+\beta^{2 k} \sum_{i=0}^{m}\left(\beta^{4}\right)^{i}\right] \\
& =\frac{1}{2}\left[\left(\frac{\alpha^{2 k+4 m+4}-\alpha^{2 k}}{\alpha^{4}-1}\right)+\left(\frac{\beta^{2 k+4 m+4}-\beta^{2 k}}{\beta^{4}-1}\right)\right] \\
& =\frac{1}{2}\left[\left(\frac{\alpha^{2 k+4 m+4}-\alpha^{2 k}}{4 \sqrt{2} \alpha^{2}}\right)-\left(\frac{\beta^{2 k+4 m+4}-\beta^{2 k}}{4 \sqrt{2} \beta^{2}}\right)\right] \\
& =\frac{1}{8 \sqrt{2}}\left[\alpha^{2 k+4 m+2}-\alpha^{2 k-2}-\beta^{2 k+4 m+2}+\beta^{2 k-2}\right] \\
& =\frac{1}{2}\left[B_{k+2 m+1}-B_{k-1}\right] \\
& =C_{k+m} B_{m+1} .
\end{aligned}
$$

Proof of (d) :

$$
\begin{aligned}
\sum_{i=0}^{m}(-1)^{i} C_{k+2 i} & =\frac{1}{2} \sum_{i=0}^{m}(-1)^{i}\left[\alpha^{2 k+4 i}+\beta^{2 k+4 i}\right] \\
& =\frac{1}{2}\left[\alpha^{2 k} \sum_{i=0}^{m}\left(-\alpha^{4}\right)^{i}+\beta^{2 k} \sum_{i=0}^{m}\left(-\beta^{4}\right)^{i}\right] \\
& =\frac{1}{2}\left[\left(\frac{(-1)^{m} \alpha^{2 k+4 m+4}+\alpha^{2 k}}{\alpha^{4}+1}\right)+\left(\frac{(-1)^{m} \beta^{2 k+4 m+4}+\beta^{2 k}}{\beta^{4}+1}\right)\right] \\
& =\frac{1}{2}\left[\left(\frac{(-1)^{m} \alpha^{2 k+4 m+4}+\alpha^{2 k}}{6 \alpha^{2}}\right)+\left(\frac{(-1)^{m} \beta^{2 k+4 m+4}+\beta^{2 k}}{6 \beta^{2}}\right)\right] \\
& =\frac{1}{12}\left[(-1)^{m} \alpha^{2 k+4 m+2}+\alpha^{2 k-2}+(-1)^{m} \beta^{2 k+4 m+2}+\beta^{2 k-2}\right] \\
& =\frac{1}{6}\left[(-1)^{m} C_{k+2 m+1}+C_{k-1}\right]
\end{aligned}
$$

The proof of following theorem is similar to that of Theorem 2.1. As a further reference, the readers are advised to go through [7].

Theorem 2.2. For natural numbers k and m
(a) $\sum_{i=0}^{m} C_{k+i}^{2}=\frac{1}{2}\left[C_{m+2 k} B_{m+1}+m+1\right]$,
(b) $\sum_{i=0}^{m}(-1)^{i} C_{k+i}^{2}=\frac{1}{12}\left[(-1)^{m} C_{2 m+2 k+1}+C_{2 k-1}+3\left(1+(-1)^{m}\right)\right]$,
(c) $\sum_{i=0}^{m} C_{k+2 i}^{2}=\frac{1}{12}\left[C_{2 m+2 k} B_{2 m+2}+6(m+1)\right]$,
(d) $\sum_{i=0}^{m}(-1)^{i} C_{k+2 i}^{2}=\frac{1}{68}\left[(-1)^{m} C_{4 m+2 k+2}+C_{2 k-2}+17\left(1+(-1)^{m}\right)\right]$.
(e) $\sum_{i=0}^{m} C_{k+i} C_{k+i+1}=\frac{1}{2}\left[C_{m+2 k+1} B_{m+1}+3(m+1)\right]$,
(f) $\sum_{i=0}^{m}(-1)^{i} C_{k+i} C_{k+i+1}=\frac{1}{12}\left[(-1)^{m} C_{2 m+2 k+2}+C_{2 k}+9\left(1+(-1)^{m}\right)\right]$,
(g) $\sum_{i=0}^{m} C_{k+2 i} C_{k+2 i+1}=\frac{1}{12}\left[C_{2 m+2 k+1} B_{2 m+2}+18(m+1)\right]$,
(h) $\sum_{i=0}^{m}(-1)^{i} C_{k+2 i} C_{k+2 i+1}=\frac{1}{68}\left[(-1)^{m} C_{4 m+2 k+3}+C_{2 k-1}+51\left(1+(-1)^{m}\right)\right]$.

In the following theorem we present few sum formulas involving balancing and Lucasbalancing numbers. We give the proofs of (a) and (f) only, while the proofs of $(b),(c),(d)$ and (e) can be proved by induction or by the use of Binet formulas for balancing and Lucasbalancing numbers.

Theorem 2.3. For $n \in \mathbb{N}$

(a) $\sum_{i=0}^{m} B_{k+n i} C_{k+n i}=\frac{1}{2 B_{n}} B_{2 k+n m} B_{(m+1) n}$
(b) $\sum_{i=0}^{m}(-1)^{i} B_{k+n i} C_{k+n i}=\frac{1}{4 C_{n}}\left[(-1)^{m} B_{2 k+n(2 m+1)}-B_{2 k-n}\right]$
(c) $\sum_{i=0}^{m} B_{k+n i} C_{k+n i+1}=\frac{1}{2 B_{n}} B_{2 k+n m+1} B_{m n+n}-\frac{1}{2}(m+1)$
(d) $\sum_{i=0}^{m}(-1)^{i} B_{k+n i} C_{k+n i+1}=\frac{1}{4 C_{n}}\left[(-1)^{m} B_{2 k+n(2 m+1)+1}+B_{2 k-n+1}-C_{n}\left(1+(-1)^{m}\right)\right]$
(e) $\sum_{i=0}^{m} B_{k+i} C_{k+i+n}=\frac{1}{2} B_{2 k+m+1} B_{m+1}-\frac{1}{2}(m+1) B_{n}$
(f) $\sum_{i=0}^{m}(-1)^{i} B_{k+i} C_{k+i+n}=\frac{1}{12}\left[(-1)^{m} B_{2 k+2 m+n+1}+B_{2 k+n-1}-B_{2 n}\left(1+(-1)^{m}\right)\right]$

Proof. The proof of (a) is based on induction on m. For $m=1$,

$$
\sum_{i=0}^{1} B_{k+n i} C_{k+n i}=B_{k} C_{k}+B_{k+n} C_{k+n}=B_{2 k+n} C_{n}=\frac{1}{2 B_{n}} B_{2 k+n} B_{2 n}
$$

and hence the statement is true for $m=1$. Let us assume that the statement be true for $m=l$. Consider, $m=l+1$,

$$
\begin{aligned}
\sum_{i=0}^{l+1} B_{k+n i} C_{k+n i} & =\frac{1}{2 B_{n}} B_{2 k+n l} B_{(l+1) n}+B_{k+n(l+1)} C_{k+n(l+1)} \\
& =\frac{1}{2 B_{n}} B_{2 k+n l} B_{(l+1) n}+\frac{1}{2} B_{2 k+2 n(l+1)} \\
& =\frac{1}{2 B_{n}}\left[B_{2 k+n l} B_{(l+1) n}-B_{2 k+2 n(l+1)} B_{-n}\right] \\
& =\frac{1}{2 B_{n}} B_{2 k+n(l+1)} B_{(l+2) n},
\end{aligned}
$$

the statement is true for $m=l+1$, hence the proof of (c) follows, the proof of (f) follows from,

$$
\begin{aligned}
\sum_{i=0}^{m}(-1)^{i} B_{k+i} C_{k+i+n} & =\sum_{i=0}^{m} \frac{(-1)^{i}}{8 \sqrt{2}}\left[\alpha^{4 k+4 i+2 n}-\beta^{4 k+4 i+2 n}-\alpha^{2 n}+\beta^{2 n}\right] \\
& =\frac{1}{2} \sum_{i=0}^{m}(-1)^{i} B_{2 k+2 i+n}+\frac{1}{2} \sum_{i=0}^{m}(-1)^{i} B_{n}
\end{aligned}
$$

(from Throem 2.1 (d) of [8])

$$
=\frac{1}{12}\left[(-1)^{m} B_{2 k+2 m+n+1}+B_{2 k+n-1}-B_{n}\left(1+(-1)^{m}\right)\right]
$$

In the following theorem, we obtain a higher order recurrence relation for Lucas-balancing numbers and a sum formula involving weighted sum of consecutive Lucas-balancing numbers.

Theorem 2.4. For $n \in \mathbb{N}$

(a) $C_{n+2}=5 C_{n+1}+4 \sum_{k=1}^{n} C_{i}+2$
(b) $n C_{1}+(n-1) C_{2}+\cdots+2 C_{n-1}+C_{n}=\frac{1}{4}\left[C_{n+1}-(2 n+3)\right]$

Proof. The proof of (a) follows from the recurrence relation for Lucas-balancing numbers. We use induction to prove (b). Let us define an integer sequence $\left\{Z_{n}\right\}$ as

$$
Z_{n}=n C_{1}+(n-1) C_{2}+\cdots+2 C_{n-1}+C_{n}
$$

We will prove that $Z_{n}=\frac{1}{4}\left[C_{n+1}-(2 n+3)\right]$. It is easy to see that the assertion is true for $n=1$. Assume that the assertion is true for $n=k$. To complete the proof, we need to show that the assertion is true for $n=k+1$.

For each natural number $n, Z_{n+1}-Z_{n}=\sum_{i=1}^{n+1} C_{i}$. Hence,

$$
\begin{aligned}
Z_{k+1} & =Z_{k}+\sum_{i=1}^{k+1} C_{i} \\
& =\frac{1}{4}\left[C_{k+1}-(2 k+3)\right]+\frac{1}{4}\left[C_{k+3}-5 C_{k+2}-2\right] \\
& =\frac{1}{4}\left[C_{k+3}-5 C_{k+2}+C_{k+1}-(2 k+5)\right] \\
& =\frac{1}{4}\left[C_{k+2}-(2 k+5)\right]
\end{aligned}
$$

Thus, the assertion is true for $n=k+1$.

The following theorem provides a binomial sum involving Lucas-balancing numbers.
Theorem 2.5. For $n, r \in \mathbb{N}, \sum_{k=0}^{n}\binom{n}{k}(-6)^{k} C_{k+r}=(-1)^{n} C_{2 n+r}$.
Proof. To prove this assertion we use the Binet formula of Lucas-balancing numbers.

$$
\begin{aligned}
\sum_{k=0}^{n}\binom{n}{k}(-6)^{k} C_{k+r} & =\sum_{k=0}^{n}\binom{n}{k}(-6)^{k}\left[\frac{\alpha^{2 k+2 r}+\beta^{2 k+2 r}}{2}\right] \\
& =\frac{\alpha^{2 r}}{2} \sum_{k=0}^{n}\binom{n}{k}\left(-6 \alpha^{2}\right)^{k}+\frac{\beta^{2 r}}{2} \sum_{k=0}^{n}\binom{n}{k}\left(-6 \beta^{2}\right)^{k} \\
& =\frac{\alpha^{2 r}}{2}\left[1-6 \alpha^{2}\right]^{n}+\frac{\beta^{2 r}}{2}\left[1-6 \beta^{2}\right]^{n} \\
& =\frac{\alpha^{2 r}}{2}\left[-\alpha^{4}\right]^{n}+\frac{\beta^{2 r}}{2}\left[-\beta^{4}\right]^{n} \\
& =(-1)^{n}\left[\frac{\alpha^{4 n+2 r}+\beta^{4 n+2 r}}{2}\right] \\
& =(-1)^{n} C_{2 n+r} .
\end{aligned}
$$

3 Formulas involving ratio of linear combinations

In this section, we present some quotients involving sum or differences of Lucas-balancing numbers that simplify to linear expressions of balancing numbers or Lucas-balancing numbers. In some cases, the subscripts of Lucas-balancing numbers involved in the ratio are in arithmetic progression.

The following index reduction formulas for sequences B_{n} and C_{n} will play a crucial role in the balancing and Lucas-balancing numbers, were developed by Ray [11].

Theorem 3.1. (Index reduction formulas): If x, y, z, w and r are integers and $x+y=z+w$ then
(a) $B_{x+r} C_{y+r}-B_{z+r} C_{w+r}=B_{x} C_{y}-B_{z} C_{w}$
(b) $C_{x+r} C_{y+r}-C_{z+r} C_{w+r}=C_{x} C_{y}-C_{z} C_{w}$.
(c) $B_{x+r} B_{y+r}-B_{z+r} B_{w+r}=B_{x} B_{y}-B_{z} B_{w}$.

Theorem 3.2. If m and n are natural numbers then each of $\frac{C_{m+2 n+1} \pm C_{m}}{C_{m+n+1} \pm C_{m+n}}$ and $\frac{C_{m+3 n} \pm C_{m}}{C_{m+2 n} \pm C_{m+n}}$ are independent of m. Also the following identities hold.
(i) $\frac{C_{m+2 n+1}-C_{m}}{C_{m+n+1}-C_{m+n}}=B_{n+1}+B_{n}$,
(iii) $\frac{C_{m+3 n}-C_{m}}{C_{m+2 n}-C_{m+n}}=2 C_{n}+1$,
(ii) $\frac{C_{m+2 n+1}+C_{m}}{C_{m+n+1}+H_{m+n}}=B_{n+1}-B_{n}$,
(iv) $\frac{C_{m+3 n}+C_{m}}{C_{m+2 n}+C_{m+n}}=2 C_{n}-1$.

Proof. Using Theorem 3.1 (a), we have

$$
\begin{aligned}
& \left(C_{m+n+1}-C_{m+n}\right)\left(B_{n+1}+B_{n}\right) \\
& =\left(C_{m+n+1} B_{n+1}-C_{m+n} B_{n}\right)+\left(B_{n} C_{m+n+1}-B_{n+1} C_{m+n}\right) \\
& =C_{m+2 n+1}-C_{m}
\end{aligned}
$$

from which (i) follows. Further (iv) follows from

$$
\begin{aligned}
& \left(C_{m+2 n}+C_{m+n}\right)\left(2 C_{n}-1\right) \\
& =2 C_{m+2 n} C_{n}+2 C_{m+n} C_{n}-C_{m+2 n}-C_{m+n} \\
& =2 C_{m+2 n} C_{n}+C_{m+n} C_{n}-8 B_{n} B_{m+n}-C_{m+n} \\
& =2 C_{m+2 n} C_{n}+C_{m}-C_{m+n} \\
& =C_{m+3 n}+C_{m} .
\end{aligned}
$$

Theorem 3.3. For natural numbers m, n and k,

$$
\frac{C_{m+2 n+2 k}-C_{m}}{C_{m+n+2 k}-C_{m+n}}=\frac{B_{n+k}}{B_{k}}=\frac{B_{m+2 n+2 k}-B_{m}}{B_{m+n+2 k}-B_{m+n}} .
$$

Proof. From Theorem 3.1 (a), we have

$$
B_{n+k} C_{n+m}-B_{k} C_{m}=B_{n} C_{n+m+k}=B_{n+k} C_{n+m+2 k}-B_{k} C_{n+2 m+2 k},
$$

rearrangement gives

$$
\frac{C_{m+2 n+2 k}-C_{m}}{C_{m+n+2 k}-C_{m+n}}=\frac{B_{n+k}}{B_{k}} .
$$

The proof of

$$
\frac{B_{n+k}}{B_{k}}=\frac{B_{m+2 n+2 k}-B_{m}}{B_{m+n+2 k}-B_{m+n}}
$$

is from Theorem 3.2 [7].

References

[1] A. Behera and G. K. Panda, On the square roots of triangular numbers, Fib. Quart., 37(2), 98-105 (1999).
[2] Z. Cerin, Properties of odd and even terms of the Fibonacci sequence, Demonstr. Math., 39(1), 55-60 (2000).
[3] Z. Cerin, Some alternating sums of Lucas numbers, Cent. Eur. J. Math., 3(1), 1-13 (2005).
[4] Z. Cerin and G. M. Gianella, On sums of squares of Pell-Lucas numbers, Integers, 6, A 15 (2006).
[5] Z. Cerin and G. M. Gianella, Formulas for sums of squares and products of Pell numbers, Acc. Sc. TorinoAtti Sc. Fis., 140, 113-122 (2006).
[6] Z. Cerin and G. M. Gianella, on sums of Pell numbers, Acc. Sc. Torino-Atti Sci. Fis., 141, 23-31 (2007).
[7] R. K. Davala, On convolution and binomial sums of balancing and Lucas-balancing numbers, International J. of Math. Sci. \& Engg. Appls., 8(5), 77-83 (2015),
[8] R. K. Davala and G. K. Panda , On sum and ratio formulas for balancing numbers, J. Indian Math. Soc., 82(2), 23-32 (2015).
[9] G. K. Panda, Some fascinating properties of balancing numbers, In Proc. of Eleventh Internat. Conference on Fibonacci Numbers and Their Applications, Cong. Numerantium, 194, 185-189 (2009).
[10] P. K. Ray, Balancing and cobalancing numbers, Ph.D. Thesis, National Institute of Technology, Rourkela, (2009).
[11] P. K. Ray, Certain Matrices Associated with Balancing and Lucas-balancing Numbers, Mathematika 28(1), 15-22 (2012).
[12] P. K. Ray and J. Sahu, Generating functions for certain balancing and Lucas-balancing numbers, Palest. J. Math., 5(2), 122-129 (2016).

Author information

Ravi Kumar Davala and G.K. Panda, Department of Mathematics, National Institute of Technology, Rourkela 769008, India.
E-mail: davalaravikumar@gmail.com and gkpanda_nit@rediffmail.com
Received: July 15, 2016.
Accepted: April 10, 2017.

