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Abstract. Let G be a colored graph with n vertices, m edges, chromatic number χ(G) and
di is the degree of vertex vi. In this paper, we show that some basic properties of Randić color
energy and an upper bound and a lower bound for Randić color energy of a graph in terms of
degree of a vertex vi, number of edges, and determinant of the Randić color matrix.

1 Introduction

Let G be a colored graph if coloring the vertices of a graph such that no two adjacent vertices
have the same color. The minimum number of colors assign to vertex of a graph G is called
chromatic number of G and it is denoted by χ(G). The color adjacency matrix [1] AC(G) are as
follows: If c(vi) is the color of vi, then

aij =


1, if vi and vj are adjacent with c(vi) 6= c(vj);
−1, if vi and vj are non-adjacent with c(vi) = c(vj);
0, otherwise.

If λ1, λ2, . . . , λn are eigenvalues of Ac(G) are real number and their sum is equal to zero. Color
energy [1] of a graph is as the sum of the absolute values of the eigenvalues of Ac(G).

i.e. Ec(G) =
∑n

i=1 |λi|.

For more research papers on color energy of a graph and its bounds, we can refer [1, 2, 12, 14,
15, 16].
Randić matrix [5] R(G) = (rij) of G is a square symmetric matrix defined by

rij =


1√
didj

, vi and vj are adjacent;

0, i = j;
0, vi and vj are not adjacent.

Let ρ1, ρ2, . . . , ρn be the eigenvalues of the Randić matrix R(G), these eigenvalues are real
numbers, and their sum is zero, the Randić energy [5] of a graph G as the sum of the
absolute values of the eigenvalues of R(G). Literatures on Randić energy and its bounds and
Randić indices can be found in [3, 4, 5, 7, 8, 9, 10, 11, 12].

1.1 Randić color matrix ARC(G) and Randić color energy ERC(G)

Let G be a simple colored graph with n vertices. The Randić color matrix [13] ARC(G) = (rij)
is a square n× n matrix defined by
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rij =


1√
didj

, if vi and vj are adjacent with c(vi) 6= c(vj);
−1√
didj

, if vi and vj are non-adjacent with c(vi) = c(vj);

0, otherwise.

The characteristic polynomial of ARC(G) is |ρI − ARC(G)|. Let ρ1, ρ2, . . . , ρn be eigenvalues
of Randić color matrix ARC(G). Since ARC(G) is real and symmetric matrix, so its eigenvalues
are real numbers and that their sum is zero. If the eigenvalues of ARC(G) are ρ1, ρ2, . . . , ρn with
their multiplicities are m1,m2, . . . ,mr then spectrum of ARC(G) is denoted by SpecRC(G) =(
ρ1 ρ2 . . . ρn−1 ρn

m1 m2 . . . mr−1 mr

)
. The Randić color energy [13] ERC(G) of a colored graph G is

defined as

ERC(G) =
∑n

i=1 |ρi|.

2 Bounds for Randić Color Energy of a Graph

Lemma 2.1. Let G be a colored graph and let ρ1, ρ2, . . . , ρn be the eigenvalues of Randić color
matrix ARC(G). Then ∑n

i=1 ρi = 0

and ∑n
i=1 ρ

2
i = 2

[
m

(
√

didj)
2 +

(mc)
′

(
√

d′id
′
j)

2

]
,

where m is number of edges in G, m′ is the number of pairs of non-adjacent vertices having the
same color in G, di, dj are degree of adjacent vertices of different color and d′i, d

′
j are degree of

non-adjacent vertices of same color in G.

Proof. The sum of the eigenvalues of ARC(G) is the diagonal elements of ARC(G) is∑n
i=1 ρi =

∑n
i=1 rii = 0

Consider, the sum of squares of the eigenvalues of ARC(G) is trace of [ARC(G)]2,

n∑
i=1

ρ2
i =

n∑
i=1

n∑
j=1

rij rji

=
n∑

i=1

(rii)
2 +

∑
i 6=j

rij rji

=
n∑

i=1

(rii)
2 + 2

∑
i<j

(rij)
2

n∑
i=1

ρ2
i = 2

 m(√
didj

)2 +
(mc)′(√
d′id
′
j

)2

 .
Theorem 2.2. Let G1 and G2 be two colored graphs with n vertices and m1, m2 are
number of edges in G1 and G2 respectively. Let ρ1, ρ2, . . . , ρn are eigenvalues of ARC(G1)
and ρ′1, ρ

′
2, . . . , ρ

′
n are eigenvalues of ARC(G2). Then

∑n
i=1 ρi ρ

′
i ≤ 2

√[
m1

(
√

didj)
2 +

(m1)′c

(
√

d′id
′
j)

2

] [
m2

(
√

didj)
2 +

(m2)′c

(
√

d′id
′
j)

2

]
.

Proof. By the Cauchy-Schwartz inequality [17], we have

(
∑n

i=1 aibi)
2 ≤

(∑n
i=1 a

2
i

) (∑n
i=1 b

2
i

)
, for any real numbers ai, bi.
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If ai = ρi, bi = ρ′i we get(
n∑

i=1

ρiρ
′
i

)2

≤

(
n∑

i=1

ρ2
i

)(
n∑

i=1

(ρ′i)
2

)
(

n∑
i=1

ρiρ
′
i

)2

≤ 4

 m1(√
didj

)2 +
(m1)′c(√
d′id
′
j

)2


 m2(√

didj
)2 +

(m2)′c(√
d′id
′
j

)2

 [by Lemma 2.1]

⇒
n∑

i=1

ρiρ
′
i ≤ 2

√√√√√√
 m1(√

didj
)2 +

(m1)′c(√
d′id
′
j

)2


 m2(√

didj
)2 +

(m2)′c(√
d′id
′
j

)2

.

3 Bounds for Randić color energy

McClelland [11] gave upper and lower bounds for ordinary energy of a graph. Similar bounds
for Randić color energy ERC(G) are given in the following theorem.

Theorem 3.1. (Upper Bound) Let G be a graph with n vertices and m edges. Then

ERC(G) ≤

√
2n
[

m

(
√

didj)
2 +

(mc)′

(
√

d′id
′
j)

2

]
.

Proof. Cauchy-Schwartz inequality, we have

(
∑n

i=1 aibi)
2 ≤

(∑n
i=1 a

2
i

) (∑n
i=1 b

2
i

)
.

If ai = 1 and bi = |ρi|, then

(
∑n

i=1 |ρi|)
2 ≤

(∑n
i=1 12

) (∑n
i=1 |ρi|2

)
[ERC(G)]2 ≤ n 2

[
m

(
√

didj)
2 +

(mc)
′

(
√

d′id
′
j)

2

]

ERC(G) ≤

√
2n
[

m

(
√

didj)
2 +

(mc)′

(
√

d′id
′
j)

2

]
.

Theorem 3.2. (Lower Bound) Let G be a graph with n vertices and m edges. Then

ERC(G) ≥

√
2
[

m

(
√

didj)
2 +

(mc)′

(
√

d′id
′
j)

2

]
+ n(n− 1)D 2

n , where D = |
∏n

i=1 ρi| .

Proof. Consider

[ERC(G)]
2 =

[
n∑

i=1

|ρi|

]2

=
n∑

i=1

|ρi|2 +
∑
i 6=j

|ρi| |ρj | (3.1)

By arithmetic mean and geometric mean inequality, we have

1
n(n− 1)

∑
i6=j

|ρi| |ρj | ≥

∏
i 6=j

|ρi| |ρj |

 1
n(n−1)

∑
i6=j

|ρi| |ρj | ≥ n(n− 1)

(
n∏

i=1

|ρi|2(n−1)

) 1
n(n−1)
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∑
i 6=j

|ρi| |ρj | ≥ n(n− 1)

(
n∏

i=1

|ρi|

)2/n

. (3.2)

Using (3.2) in (3.1), we have

[ERC(G)]2 ≥
∑n

i=1 |ρi|2 + n(n− 1) |
∏n

i=1 |ρi||
2/n

[ERC(G)]2 ≥ 2
[

m

(
√

didj)
2 +

(mc)
′

(
√

d′id
′
j)

2

]
+ n(n− 1)D

2
n

ERC(G)] ≥

√
2
[

m

(
√

didj)
2 +

(mc)′

(
√

d′id
′
j)

2

]
+ n(n− 1)D 2

n .

4 Bounds for Randić color spectral radius and Randić color energy

The graph G eigenvalues are labeled in a non-increasing manner, i.e., ρ1 ≥ ρ2 ≥ · · · ≥ ρn. If G
connected, ρ1 ≥ |ρi|, i = 2, 3, . . . , n, then eigenvalue ρ1 is called spectral radius [17] of G.

Proposition 4.1. Let G be a (n,m) colored graph and ρ1(G) = max1≤i≤n{|ρi|} be the Randić
color spectral radius of G. Then√

2
n

[
m

(
√

didj)
2 +

(mc)′

(
√

d′id
′
j)

2

]
≤ ρ1(G) ≤

√
2
[

m

(
√

didj)
2 +

(mc)′

(
√

d′id
′
j)

2

]
.

Proof. Consider,

ρ2
1(G) = max1≤i≤n {|ρi|} ≤

n∑
i=1

|ρi|2 = 2

 m(√
didj

)2 +
(mc)′(√
d′id
′
j

)2



ρ1(G) ≤

√√√√√√2

 m(√
didj

)2 +
(mc)′(√
d′id
′
j

)2


Next,

n ρ2
1(G) ≥

n∑
i=1

ρi = 2

 m(√
didj

)2 +
(mc)′(√
d′id
′
j

)2



ρ2
1(G) ≥ 2

n

 m(√
didj

)2 +
(mc)′(√
d′id
′
j

)2



ρ1(G) ≥

√√√√√√ 2
n

 m(√
didj

)2 +
(mc)′(√
d′id
′
j

)2



∴

√
2
n

[
m

(
√

didj)
2 +

(mc)′

(
√

d′id
′
j)

2

]
≤ ρ1(G) ≤

√
2
[

m

(
√

didj)
2 +

(mc)′

(
√

d′id
′
j)

2

]
.

Proposition 4.2. Let G be a (n,m)-colored graph and ρ1, ρ2, . . . , ρn be the Randić color

eigenvalues of G. If n ≤ 2
[

m

(
√

didj)
2 +

(mc)
′

(
√

d′id
′
j)

2

]
and ρ1 ≥ 2

n

[
m

(
√

didj)
2 +

(mc)
′

(
√

d′id
′
j)

2

]
, then
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ERC(G) ≤ 2
n

[
m

(
√

didj)
2 +

(mc)
′

(
√

d′id
′
j)

2

]
+√√√√(n− 1)

{
2
[

m

(
√

didj)
2 +

(mc)′

(
√

d′id
′
j)

2

]
−
(

2
n

[
m

(
√

didj)
2 +

(mc)′

(
√

d′id
′
j)

2

])2
}

.

Proof. We know that,

n∑
i=1

ρ2
i = 2

 m(√
didj

)2 +
(mc)′(√
d′id
′
j

)2



n∑
i=2

ρ2
i = 2

 m(√
didj

)2 +
(mc)′(√
d′id
′
j

)2

− ρ2
1 (4.1)

By Cauchy-Schwarz inequality, we have(
n∑

i=1

|ρi|

)2

≤ n

n∑
i=1

|ρi|2

(
n∑

i=2

|ρi|

)2

≤ (n− 1)
n∑

i=2

|ρi|2

and hence

n∑
i=2

|ρi| ≤

√√√√(n− 1)
n∑

i=2

|ρi|2 (4.2)

using (4.1) in (4.2), we get

ERC(G)− ρ1 ≤

√√√√√√(n− 1)

2

 m(√
didj

)2 +
(mc)′(√
d′id
′
j

)2

− ρ2
1


ERC(G) ≤ ρ1 +

√√√√√√(n− 1)

2

 m(√
didj

)2 +
(mc)′(√
d′id
′
j

)2

− ρ2
1


Consider the function,

F (x) = x+

√
(n− 1)

{
2
[

m

(
√

didj)
2 +

(mc)′

(
√

d′id
′
j)

2

]
− x2

}
Then,

F ′(x) = 1− x
√

(n−1)√√√√√2

 m

(
√

didj)
2 +

(mc)′

(
√

d′
i
d′
j)

2

−x2

F (x) is decreasing in(√
2
n

[
m

(
√

didj)
2 +

(mc)′

(
√

d′id
′
j)

2

]
,

√
2
[

m

(
√

didj)
2 +

(mc)′

(
√

d′id
′
j)

2

])
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we have,√
2
n

[
m

(
√

didj)
2 +

(mc)′

(
√

d′id
′
j)

2

]
< 2

n

[
m

(
√

didj)
2 +

(mc)
′

(
√

d′id
′
j)

2

]
≤ ρ1 ≤

√
2
[

m

(
√

didj)
2 +

(mc)′

(
√

d′id
′
j)

2

]
by Proposition 4.1, we obtain

ERC(G) ≤ 2
n

[
m

(
√

didj)
2 +

(mc)
′

(
√

d′id
′
j)

2

]
+√√√√(n− 1)

{
2
[

m

(
√

didj)
2 +

(mc)′

(
√

d′id
′
j)

2

]
−
(

2
n

[
m

(
√

didj)
2 +

(mc)′

(
√

d′id
′
j)

2

])2
}

.
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