Positive Integer Solutions of Some Pell Equations

Refik Keskin and Merve Güney Duman
Communicated by Ayman Badawi

MSC 11B37, 11B39, 11B50, 11B99, 11A55.
Keywords and phrases: Diophantine Equations, Pell Equations, Continued Fraction, Generalized Fibonacci and Lucas numbers

Thanks to The Scientific and Technological Research Council of Turkey (TÜBİTAK) for support and assistance.

Abstract

Let k be a natural number and $d=k^{2} \pm 4$ or $k^{2} \pm 1$. In this paper, by using continued fraction expansion of \sqrt{d}, we find fundamental solution of the equations $x^{2}-d y^{2}= \pm 1$ and we get all positive integer solutions of the equations $x^{2}-d y^{2}= \pm 1$ in terms of generalized Fibonacci and Lucas sequences. Moreover, we find all positive integer solutions of the equations $x^{2}-d y^{2}= \pm 4$ in terms of generalized Fibonacci and Lucas sequences.

1 Introduction

Let d be a positive integer that is not a perfect square. It is well known that the Pell equation $x^{2}-d y^{2}=1$ have always positive integer solutions. When $N \neq 1$, the Pell equation $x^{2}-d y^{2}=$ N may not has any positive integer solution. It can be seen that the equations $x^{2}-3 y^{2}=-1$ and $x^{2}-7 y^{2}=-4$ have no positive integer solutions. Whether or not there exists a positive integer solution to the equation $x^{2}-d y^{2}=-1$ depends on the period length of the continued fraction expansion of \sqrt{d} (See section 2 for more detailed information). When k is a positive integer and $d \in\left\{k^{2} \pm 4, k^{2} \pm 1\right\}$, positive integer solutions of the equations $x^{2}-d y^{2}= \pm 4$ and $x^{2}-d y^{2}= \pm 1$ have been investigated by Jones in [6] and the method used in the proofs of the theorems is the method of descent of Fermat. The same or similar equations are investigated by some other authors in [18], [9], [10], [17], [8], and [16]. Especially, when a solution exists, all positive integer solutions of the equations $x^{2}-d y^{2}= \pm 4$ and $x^{2}-d y^{2}= \pm 1$ are given in terms of the generalized Fibonacci and Lucas sequences. In this paper, if a solution exists, we will use continued fraction expansion of \sqrt{d} in order to get all positive integer solutions of the equations $x^{2}-d y^{2}= \pm 1$ when $d \in\left\{k^{2} \pm 4, k^{2} \pm 1\right\}$. Moreover, we will find all positive integer solutions of the equations $x^{2}-d y^{2}= \pm 4$ when $d \in\left\{k^{2} \pm 4, k^{2} \pm 1\right\}$.

Now we briefly mention the generalized Fibonacci and Lucas sequences $\left(U_{n}(k, s)\right)$ and $\left(V_{n}(k, s)\right)$. Let k and s be two nonzero integers with $k^{2}+4 s>0$. Generalized Fibonacci sequence is defined by

$$
U_{0}(k, s)=0, U_{1}(k, s)=1 \text { and } U_{n+1}(k, s)=k U_{n}(k, s)+s U_{n-1}(k, s)
$$

for $n \geqslant 1$ and generalized Lucas sequence is defined by

$$
V_{0}(k, s)=2, V_{1}(k, s)=k \text { and } V_{n+1}(k, s)=k V_{n}(k, s)+s V_{n-1}(k, s)
$$

for $n \geqslant 1$, respectively. For $k=s=1$, the sequences $\left(U_{n}\right)$ and $\left(V_{n}\right)$ are called Fibonacci and Lucas sequences and they are denoted as $\left(F_{n}\right)$ and $\left(L_{n}\right)$, respectively. For $k=2$ and $s=1$, the sequences $\left(U_{n}\right)$ and $\left(V_{n}\right)$ are called Pell and Pell-Lucas sequences and they are denoted as $\left(P_{n}\right)$ and $\left(Q_{n}\right)$, respectively. It is well known that

$$
U_{n}(k, s)=\frac{\alpha^{n}-\beta^{n}}{\alpha-\beta} \text { and } V_{n}(k, s)=\alpha^{n}+\beta^{n}
$$

where $\alpha=\left(k+\sqrt{k^{2}+4 s}\right) / 2$ and $\beta=\left(k-\sqrt{k^{2}+4 s}\right) / 2$. The above identities are known as Binet's formulae. Clearly, $\alpha+\beta=k, \alpha-\beta=\sqrt{k^{2}+4 s}$, and $\alpha \beta=-s$. Especially, if
$\alpha=\left(k+\sqrt{k^{2}+4}\right) / 2$ and $\beta=\left(k-\sqrt{k^{2}+4}\right) / 2$, then we get

$$
\begin{equation*}
U_{n}(k, 1)=\frac{\alpha^{n}-\beta^{n}}{\alpha-\beta} \text { and } V_{n}(k, 1)=\alpha^{n}+\beta^{n} \tag{1.1}
\end{equation*}
$$

If $\alpha=\left(k+\sqrt{k^{2}-4}\right) / 2$ and $\beta=\left(k-\sqrt{k^{2}-4}\right) / 2$, then we get

$$
\begin{equation*}
U_{n}(k,-1)=\frac{\alpha^{n}-\beta^{n}}{\alpha-\beta} \text { and } V_{n}(k,-1)=\alpha^{n}+\beta^{n} \tag{1.2}
\end{equation*}
$$

Also, if $\alpha=(1+\sqrt{5}) / 2$ and $\beta=(1-\sqrt{5}) / 2$, then we get

$$
\begin{equation*}
F_{n}=\frac{\alpha^{n}-\beta^{n}}{\alpha-\beta} \text { and } L_{n}=\alpha^{n}+\beta^{n} \tag{1.3}
\end{equation*}
$$

Moreover, if k is even, then it can be easily seen that

$$
\begin{align*}
& U_{n}(k, \pm 1) \text { is odd } \Leftrightarrow n \text { is odd, } \\
& U_{n}(k, \pm 1) \text { is even } \Leftrightarrow n \text { is even, } \\
& V_{n}(k, \pm 1) \text { is even for all } n \in \mathbb{N} . \tag{1.4}
\end{align*}
$$

If k is odd, then

$$
2\left|V_{n}(k, \pm 1) \Leftrightarrow 2\right| U_{n}(k, \pm 1) \Leftrightarrow 3 \mid n
$$

For more information about generalized Fibonacci and Lucas sequences, one can consult [14], [7], [13], [9], and [10].

2 Preliminaries

Let d be a positive integer which is not a perfect square and N be any nonzero fixed integer. Then the equation $x^{2}-d y^{2}=N$ is known as Pell equation. For $N= \pm 1$, the equations $x^{2}-d y^{2}=1$ and $x^{2}-d y^{2}=-1$ are known as classical Pell equation. If $a^{2}-d b^{2}=N$, we say that (a, b) is a solution to the Pell equation $x^{2}-d y^{2}=N$. We use the notations (a, b) and $a+b \sqrt{d}$ interchangeably to denote solutions of the equation $x^{2}-d y^{2}=N$. Also, if a and b are both positive, we say that $a+b \sqrt{d}$ is positive solution to the equation $x^{2}-d y^{2}=N$. Continued fraction plays an important role in solutions of the Pell equations $x^{2}-d y^{2}=1$ and $x^{2}-d y^{2}=-1$. Let d be a positive integer that is not a perfect square. Then there is a continued fraction expansion of \sqrt{d} such that $\sqrt{d}=\left[a_{0}, \overline{a_{1}, a_{2}, \ldots, a_{l-1}, 2 a_{0}}\right]$, where l is the period length and the a_{j} 's are given by the recursion formula;

$$
\alpha_{0}=\sqrt{d}, a_{k}=\left\lfloor\alpha_{k}\right\rfloor \text { and } \alpha_{k+1}=\frac{1}{\alpha_{k}-a_{k}}, k=0,1,2,3, \ldots
$$

Recall that $a_{l}=2 a_{0}$ and $a_{l+k}=a_{k}$ for $k \geq 1$. The $n^{\text {th }}$ convergent of \sqrt{d} for $n \geq 0$ is given by

$$
\frac{p_{n}}{q_{n}}=\left[a_{0}, a_{1}, \ldots, a_{n}\right]=a_{0}+\frac{1}{a_{1}+\frac{1}{\ddots \cdot \frac{1}{a_{n-1}+\frac{1}{a_{n}}}}}
$$

Let $x_{1}+y_{1} \sqrt{d}$ be a positive solution to the equation $x^{2}-d y^{2}=N$. We say that $x_{1}+y_{1} \sqrt{d}$ is the fundamental solution of the equation $x^{2}-d y^{2}=N$, if $x_{2}+y_{2} \sqrt{d}$ is a different solution to the equation $x^{2}-d y^{2}=N$, then $x_{1}+y_{1} \sqrt{d}<x_{2}+y_{2} \sqrt{d}$. Recall that if $a+b \sqrt{d}$ and $r+s \sqrt{d}$ are two solutions to the equation $x^{2}-d y^{2}=N$, then $a=r$ if and only if $b=s$, and $a+b \sqrt{d}<r+s \sqrt{d}$ if and only if $a<r$ and $b<s$. The following lemmas and theorems can be found many elementary textbooks.

Lemma 2.1. If $x_{1}+y_{1} \sqrt{d}$ is the fundamental solution to the equation $x^{2}-d y^{2}=-1$, then $\left(x_{1}+\right.$ $\left.y_{1} \sqrt{d}\right)^{2}$ is the fundamental solution to the equation $x^{2}-d y^{2}=1$.

If we know fundamental solution of the equations $x^{2}-d y^{2}= \pm 1$ and $x^{2}-d y^{2}= \pm 4$, then we can give all positive integer solutions to these equations. For more information about Pell equation, one can consult [12], [15], and [4]. Now we give the fundamental solution of the equations $x^{2}-d y^{2}= \pm 1$ by means of the period length of the continued fraction expansion of \sqrt{d}.

Lemma 2.2. Let l be the period length of continued fraction expansion of \sqrt{d}. If l is even, then the fundamental solution to the equation $x^{2}-d y^{2}=1$ is given by

$$
x_{1}+y_{1} \sqrt{d}=p_{l-1}+q_{l-1} \sqrt{d}
$$

and the equation $x^{2}-d y^{2}=-1$ has no integer solutions. If l is odd, then the fundamental solution of the equation $x^{2}-d y^{2}=1$ is given by

$$
x_{1}+y_{1} \sqrt{d}=p_{2 l-1}+q_{2 l-1} \sqrt{d} .
$$

and the fundamental solution to the equation $x^{2}-d y^{2}=-1$ is given by

$$
x_{1}+y_{1} \sqrt{d}=p_{l-1}+q_{l-1} \sqrt{d}
$$

Theorem 2.3. Let $x_{1}+y_{1} \sqrt{d}$ be the fundamental solution to the equation $x^{2}-d y^{2}=1$. Then all positive integer solutions to the equation $x^{2}-d y^{2}=1$ are given by

$$
x_{n}+y_{n} \sqrt{d}=\left(x_{1}+y_{1} \sqrt{d}\right)^{n}
$$

with $n \geq 1$.

Theorem 2.4. Let $x_{1}+y_{1} \sqrt{d}$ be the fundamental solution to the equation $x^{2}-d y^{2}=-1$. Then all positive integer solutions to the equation $x^{2}-d y^{2}=-1$ are given by

$$
x_{n}+y_{n} \sqrt{d}=\left(x_{1}+y_{1} \sqrt{d}\right)^{2 n-1}
$$

with $n \geq 1$.
Now we give the following two theorems from [15]. See also [4].
Theorem 2.5. Let $x_{1}+y_{1} \sqrt{d}$ be the fundamental solution to the equation $x^{2}-d y^{2}=4$. Then all positive integer solutions to the equation $x^{2}-d y^{2}=4$ are given by

$$
x_{n}+y_{n} \sqrt{d}=\frac{\left(x_{1}+y_{1} \sqrt{d}\right)^{n}}{2^{n-1}}
$$

with $n \geq 1$.
Theorem 2.6. Let $x_{1}+y_{1} \sqrt{d}$ be the fundamental solution to the equation $x^{2}-d y^{2}=-4$. Then all positive integer solutions to the equation $x^{2}-d y^{2}=-4$ are given by

$$
x_{n}+y_{n} \sqrt{d}=\frac{\left(x_{1}+y_{1} \sqrt{d}\right)^{2 n-1}}{4^{n-1}}
$$

with $n \geq 1$.

From now on, we will assume that k is a natural number. We give continued fraction expansion of \sqrt{d} for $d=k^{2} \pm 4$. The proofs of the following two theorems are easy and they can be found many text books on number theory as an exercise (see, for example [2]).

Theorem 2.7. Let $k>1$. Then

$$
\sqrt{k^{2}+4}=\left\{\begin{array}{c}
{\left[k, \overline{\frac{k}{2}, 2 k}\right], \text { if } k \text { is even }} \\
{\left[k, \frac{k-1}{2}, 1,1, \frac{k-1}{2}, 2 k\right.}
\end{array}, \text { if } k\right. \text { is odd. }
$$

Theorem 2.8. Let $k>3$. Then

$$
\sqrt{k^{2}-4}=\left\{\begin{array}{c}
{\left[k-1, \overline{1, \frac{k-3}{2}, 2, \frac{k-3}{2}, 1,2(k-1)}\right], \text { if } k \text { is odd }} \\
{\left[k-1, \overline{1, \frac{k-4}{2}, 1,2(k-1)}\right], \text { if } k \text { is even and } k \neq 4} \\
{[3, \overline{2,6}], \text { if } k=4}
\end{array}\right.
$$

Corollary 2.9. Let $k>1$ and $d=k^{2}+4$. If k is odd, then the fundamental solution to the equation $x^{2}-d y^{2}=-1$ is

$$
x_{1}+y_{1} \sqrt{d}=\frac{k^{3}+3 k}{2}+\frac{k^{2}+1}{2} \sqrt{d}
$$

If k is even, the equation $x^{2}-d y^{2}=-1$ has no positive integer solutions.
Proof. Assume that k is odd. Then the period length of the continued fraction expansion of $\sqrt{k^{2}+4}$ is 5 by Theorem 2.7. Therefore the fundamental solution of the equation $x^{2}-d y^{2}=-1$ is $p_{4}+q_{4} \sqrt{d}$ by Lemma 2.2. Since

$$
\frac{p_{4}}{q_{4}}=k+\frac{1}{(k-1) / 2+\frac{1}{1+\frac{1}{1+\frac{1}{(k-1) / 2}}}}=\frac{\frac{k^{3}+3 k}{2}}{\frac{k^{2}+1}{2}}
$$

the proof follows. If k is even, then the period length is even by Theorem 2.7 and therefore $x^{2}-d y^{2}=-1$ has no positive integer solutions by Lemma 2.2.

Corollary 2.10. Let $k>1$ and $d=k^{2}+4$. Then the fundamental solution to the equation $x^{2}-d y^{2}=1$ is

$$
x_{1}+y_{1} \sqrt{d}=\left\{\begin{array}{c}
\frac{k^{2}+2}{2}+\frac{k}{2} \sqrt{d}, \text { if } k \text { is even } \\
\left(\frac{k^{3}+3 k}{2}+\frac{k^{2}+1}{2} \sqrt{d}\right)^{2}, \text { if } k \text { is odd }
\end{array}\right.
$$

Proof. If k is even, then the proof follows from Lemma 2.2 and Theorem 2.7. If k is odd, then the proof follows from Corollary 2.9 and Lemma 2.1.

From Lemma 2.2 and Theorem 2.8, we can give the following corollary.
Corollary 2.11. Let $k>3$ and $d=k^{2}-4$. Then the fundamental solution to the equation $x^{2}-d y^{2}=1$ is given by

$$
x_{1}+y_{1} \sqrt{d}=\left\{\begin{array}{c}
\frac{k^{2}-2}{2}+\frac{k}{2} \sqrt{d}, \text { if } k \text { is even, } \\
\frac{k^{3}-3 k}{2}+\frac{k^{2}-1}{2} \sqrt{d}, \text { if } k \text { is odd. }
\end{array}\right.
$$

Corollary 2.12. Let $k>3$. Then the equation $x^{2}-\left(k^{2}-4\right) y^{2}=-1$ has no integer solutions.
Proof. The period length of continued fraction expansion of $\sqrt{k^{2}-4}$ is always even by Theorem 2.8. Thus by Lemma 2.2, it follows that there is no positive integer solutions of the equation $x^{2}-\left(k^{2}-4\right) y^{2}=-1$.

3 Main Theorems

Theorem 3.1. Let $k>1$ and $d=k^{2}+4$. Then all positive integer solutions of the equation $x^{2}-d y^{2}=1$ are given by

$$
(x, y)= \begin{cases}\left(\frac{V_{2 n}(k, 1)}{2}, \frac{U_{2 n}(k, 1)}{2}\right), & \text { if } k \text { is even }, \\ \left(\frac{V_{6 n}(k, 1)}{2}, \frac{U_{6 n}(k, 1)}{2}\right), & \text { if } k \text { is odd },\end{cases}
$$

with $n \geq 1$.
Proof. Assume that k is even. Thenby Corollary 2.10 and Theorem 2.3, all positive integer solutions of the equation $x^{2}-d y^{2}=1$ are given by

$$
x_{n}+y_{n} \sqrt{d}=\left(\frac{k^{2}+2}{2}+\frac{k}{2} \sqrt{d}\right)^{n}
$$

with $n \geq 1$. Let $\alpha_{1}=\frac{k^{2}+2}{2}+\frac{k}{2} \sqrt{d}$ and $\beta_{1}=\frac{k^{2}+2}{2}-\frac{k}{2} \sqrt{d}$. Then

$$
x_{n}+y_{n} \sqrt{d}=\alpha_{1}^{n} \text { and } x_{n}-y_{n} \sqrt{d}=\beta_{1}^{n} .
$$

Thus it follows that $x_{n}=\frac{\alpha_{1}^{n}+\beta_{1}^{n}}{2}$ and $y_{n}=\frac{\alpha_{1}^{n}-\beta_{1}^{n}}{2 \sqrt{d}}$. Let

$$
\alpha=\frac{k+\sqrt{k^{2}+4}}{2} \text { and } \beta=\frac{k-\sqrt{k^{2}+4}}{2} .
$$

Then it is seen that $\alpha^{2}=\alpha_{1}$ and $\beta^{2}=\beta_{1}$. Thus it follows that

$$
x_{n}=\frac{\alpha^{2 n}+\beta^{2 n}}{2}=\frac{V_{2 n}(k, 1)}{2}
$$

and

$$
y_{n}=\frac{\alpha^{2 n}-\beta^{2 n}}{2 \sqrt{d}}=\frac{\alpha^{2 n}-\beta^{2 n}}{2(\alpha-\beta)}=\frac{U_{2 n}(k, 1)}{2}
$$

by (1.1). Now assume that k is odd. Then by Corollary 2.10 and Theorem 2.3, we get

$$
x_{n}+y_{n} \sqrt{d}=\left(\left(\frac{k^{3}+3 k}{2}+\frac{k^{2}+1}{2} \cdot \sqrt{d}\right)^{2}\right)^{n}
$$

with $n \geq 1$. Let

$$
\alpha_{1}=\left(\frac{k^{3}+3 k}{2}+\frac{k^{2}+1}{2} \sqrt{d}\right)^{2}
$$

and

$$
\beta_{1}=\left(\frac{k^{3}+3 k}{2}-\frac{k^{2}+1}{2} \sqrt{d}\right)^{2}
$$

Then

$$
x_{n}+y_{n} \sqrt{d}=\alpha_{1}^{n} \text { and } x_{n}-y_{n} \sqrt{d}=\beta_{1}^{n} .
$$

Thus it is seen that $x_{n}=\frac{\alpha_{1}^{n}+\beta_{1}^{n}}{2}$ and $y_{n}=\frac{\alpha_{1}^{n}-\beta_{1}^{n}}{2 \sqrt{d}}$. Let

$$
\alpha=\frac{k+\sqrt{k^{2}+4}}{2} \text { and } \beta=\frac{k-\sqrt{k^{2}+4}}{2} .
$$

Since $\alpha_{1}=\left(\frac{k^{3}+3 k}{2}+\frac{k^{2}+1}{2} \sqrt{d}\right)^{2}=\left(\alpha^{3}\right)^{2}=\alpha^{6}$ and thus $\beta_{1}=\beta^{6}$, we get

$$
x_{n}=\frac{\alpha^{6 n}+\beta^{6 n}}{2}=\frac{V_{6 n}(k, 1)}{2}
$$

and

$$
y_{n}=\frac{\alpha^{6 n}-\beta^{6 n}}{2 \sqrt{d}}=\frac{\alpha^{6 n}-\beta^{6 n}}{2(\alpha-\beta)}=\frac{U_{6 n}(k, 1)}{2}
$$

by (1.1).

Theorem 3.2. Let $k>1$ be an odd integer and $d=k^{2}+4$. Then all positive integer solutions of the equation $x^{2}-d y^{2}=-1$ are given by

$$
(x, y)=\left(\frac{V_{6 n-3}(k, 1)}{2}, \frac{U_{6 n-3}(k, 1)}{2}\right)
$$

with $n \geq 1$.
Proof. Assume that $k>1$ be an odd integer. Then by Corollary 2.9 and Theorem 2.4, all positive integer solutions of the equation $x^{2}-d y^{2}=-1$ are given by

$$
x_{n}+y_{n} \sqrt{d}=\left(\frac{k^{3}+3 k}{2}+\frac{k^{2}+1}{2} \sqrt{d}\right)^{2 n-1}
$$

with $n \geq 1$. Let $\alpha_{1}=\frac{k^{3}+3 k}{2}+\frac{k^{2}+1}{2} \sqrt{d}$ and $\beta_{1}=\frac{k^{3}+3 k}{2}-\frac{k^{2}+1}{2} \sqrt{d}$. Then it follows that

$$
x_{n}+y_{n} \sqrt{d}=\alpha_{1}^{2 n-1} \text { and } x_{n}-y_{n} \sqrt{d}=\beta_{1}^{2 n-1}
$$

and therefore $x_{n}=\frac{\alpha_{1}^{2 n-1}+\beta_{1}^{2 n-1}}{2}$ and $y_{n}=\frac{\alpha_{1}^{2 n-1}-\beta_{1}^{2 n-1}}{2 \sqrt{d}}$. Let

$$
\alpha=\frac{k+\sqrt{k^{2}+4}}{2} \text { and } \beta=\frac{k-\sqrt{k^{2}+4}}{2} .
$$

Then it is seen that

$$
\alpha^{3}=\left(\frac{k+\sqrt{k^{2}+4}}{2}\right)^{3}=\frac{k^{3}+3 k}{2}+\frac{k^{2}+1}{2} \sqrt{d}=\alpha_{1}
$$

and

$$
\beta^{3}=\left(\frac{k-\sqrt{k^{2}+4}}{2}\right)^{3}=\frac{k^{3}+3 k}{2}-\frac{k^{2}+1}{2} \sqrt{d}=\beta_{1} .
$$

Thus it follows that

$$
x_{n}=\frac{\left(\alpha^{3}\right)^{2 n-1}+\left(\beta^{3}\right)^{2 n-1}}{2}=\frac{\alpha^{6 n-3}+\beta^{6 n-3}}{2}=\frac{V_{6 n-3}(k, 1)}{2}
$$

and

$$
y_{n}=\frac{\left(\alpha^{3}\right)^{2 n-1}-\left(\beta^{3}\right)^{2 n-1}}{2 \sqrt{d}}=\frac{\alpha^{6 n-3}-\beta^{6 n-3}}{2(\alpha-\beta)}=\frac{U_{6 n-3}(k, 1)}{2}
$$

by (1.1).
Theorem 3.3. Let $k>3$ and $d=k^{2}-4$. Then all positive integer solutions of the equation $x^{2}-d y^{2}=1$ are given by

$$
(x, y)=\left\{\begin{array}{l}
\left(\frac{V_{2 n}(k,-1)}{2}, \frac{U_{2 n}(k,-1)}{2}\right), \text { if } k \text { is even } \\
\left(\frac{V_{3 n}(k,-1)}{2}, \frac{U_{3 n}(k,-1)}{2}\right), \text { if } k \text { is odd }
\end{array}\right.
$$

with $n \geq 1$.
Proof. Assume that k is even. By Corollary 2.11 and Theorem 2.3, all positive integer solutions of the equation $x^{2}-d y^{2}=1$ are given by

$$
x_{n}+y_{n} \sqrt{d}=\left(\frac{k^{2}-2}{2}+\frac{k}{2} \sqrt{d}\right)^{n}
$$

Let $\alpha_{1}=\frac{k^{2}-2}{2}+\frac{k}{2} \sqrt{d}$ and $\beta_{1}=\frac{k^{2}-2}{2}-\frac{k}{2} \sqrt{d}$. Then it follows that

$$
x_{n}+y_{n} \sqrt{d}=\alpha_{1}^{n} \text { and } x_{n}-y_{n} \sqrt{d}=\beta_{1}^{n}
$$

and therefore $x_{n}=\frac{\alpha_{1}^{n}+\beta_{1}^{n}}{2}$ and $y_{n}=\frac{\alpha_{1}^{n}-\beta_{1}^{n}}{2 \sqrt{d}}$. Let

$$
\alpha=\frac{k+\sqrt{k^{2}-4}}{2} \text { and } \beta=\frac{k-\sqrt{k^{2}-4}}{2} .
$$

Then it is seen that $\alpha^{2}=\alpha_{1}$ and $\beta^{2}=\beta_{1}$. Thus it follows that

$$
x_{n}=\frac{\alpha^{2 n}+\beta^{2 n}}{2}=\frac{V_{2 n}(k,-1)}{2}
$$

and

$$
y_{n}=\frac{\alpha^{2 n}-\beta^{2 n}}{2 \sqrt{d}}=\frac{\alpha^{2 n}-\beta^{2 n}}{2(\alpha-\beta)}=\frac{U_{2 n}(k,-1)}{2}
$$

by (1.2). Now assume that k is odd. Then by Corollary 2.11 and Theorem 2.3, we get

$$
x_{n}+y_{n} \sqrt{d}=\left(\frac{k^{3}-3 k}{2}+\frac{k^{2}-1}{2} \sqrt{d}\right)^{n}
$$

Let $\alpha_{1}=\frac{k^{3}-3 k}{2}+\frac{k^{2}-1}{2} \sqrt{d}$ and $\beta_{1}=\frac{k^{3}-3 k}{2}-\frac{k^{2}-1}{2} \sqrt{d}$. Then $x_{n}+y_{n} \sqrt{d}=\alpha_{1}^{n}$ and $x_{n}-y_{n} \sqrt{d}=$ β_{1}^{n}. Thus it follows that $x_{n}=\frac{\alpha_{1}^{n}+\beta_{1}^{n}}{2}$ and $y_{n}=\frac{\alpha_{1}^{n}-\beta_{1}^{n}}{2 \sqrt{d}}$. Let $\alpha=\frac{k+\sqrt{k^{2}-4}}{2}$ and $\beta=\frac{k-\sqrt{k^{2}-4}}{2}$. Since

$$
\alpha^{3}=\left(\frac{k+\sqrt{k^{2}-4}}{2}\right)^{3}=\frac{k^{3}-3 k}{2}+\frac{k^{2}-1}{2} \sqrt{d}=\alpha_{1}
$$

and

$$
\beta^{3}=\left(\frac{k-\sqrt{k^{2}-4}}{2}\right)^{3}=\frac{k^{3}-3 k}{2}-\frac{k^{2}-1}{2} \sqrt{d}=\beta_{1}
$$

we get

$$
x_{n}=\frac{\alpha^{3 n}+\beta^{3 n}}{2}=\frac{V_{3 n}(k,-1)}{2}
$$

and

$$
y_{n}=\frac{\alpha^{3 n}-\beta^{3 n}}{2 \sqrt{d}}=\frac{\alpha^{3 n}-\beta^{3 n}}{2(\alpha-\beta)}=\frac{U_{3 n}(k,-1)}{2}
$$

by (1.2).
Now we give all positive integer solutions of the equations $x^{2}-\left(k^{2}+4\right) y^{2}= \pm 4$ and $x^{2}-\left(k^{2}-\right.$ 4) $y^{2}= \pm 4$. Before giving all positive integer solutions of the equations $x^{2}-\left(k^{2}+4\right) y^{2}= \pm 4$, we give the following lemma which will be useful for finding the solutions.

Lemma 3.4. Let $a+b \sqrt{d}$ be a positive integer solution to the equation $x^{2}-d y^{2}=4$. If $a>b^{2}-2$, then $a+b \sqrt{d}$ is the fundamental solution to the equation $x^{2}-d y^{2}=4$.

Proof. If $b=1$, then the proof is trivial. Assume that $b>1$. Suppose that $x_{1}+y_{1} \sqrt{d}$ is a positive solution to the equation $x^{2}-d y^{2}=4$ such that $1 \leq y_{1}<b$. Then it follows that $a^{2}-d b^{2}=4=x_{1}^{2}-d y_{1}^{2}$ and thus $d=\left(x_{1}^{2}-4\right) / y_{1}^{2}=\left(a^{2}-4\right) / b^{2}$. This shows that $x_{1}^{2} b^{2}-y_{1}^{2} a^{2}=$ $4 b^{2}-4 y_{1}^{2}=4\left(b^{2}-y_{1}^{2}\right)>0$. Thus

$$
\left[\left(x_{1} b+y_{1} a\right) / 2\right]\left[\left(x_{1} b-y_{1} a\right) / 2\right]=b^{2}-y_{1}^{2}>1
$$

It can be seen that $x_{1} b+y_{1} a$ and $x_{1} b-y_{1} a$ are even integers. Let $k_{1}=\left(x_{1} b+y_{1} a\right) / 2$ and $k_{2}=\left(x_{1} b-y_{1} a\right) / 2$. Then $k_{1} k_{2}=b^{2}-y_{1}^{2}$ and $a=\left(k_{1}-k_{2}\right) / y_{1}$. Thus

$$
a=\frac{k_{1}-k_{2}}{y_{1}} \leq \frac{k_{1} k_{2}-1}{y_{1}}=\frac{b^{2}-y_{1}^{2}-1}{y_{1}} \leq b^{2}-y_{1}^{2}-1 \leq b^{2}-2
$$

which is a contradiction since $a>b^{2}-2$.

Theorem 3.5. Let $k>1$. Then all positive integer solutions of the equation $x^{2}-\left(k^{2}+4\right) y^{2}=4$ are given by

$$
(x, y)=\left(V_{2 n}(k, 1), U_{2 n}(k, 1)\right)
$$

with $n \geq 1$.

Proof. Let $a=k^{2}+2$ and $b=k$. Then $a+b \sqrt{k^{2}+4}$ is a positive integer solution of the equation $x^{2}-\left(k^{2}+4\right) y^{2}=4$. Since $a=k^{2}+2>k^{2}-2=b^{2}-2$, it follows that $k^{2}+2+k \sqrt{k^{2}+4}$ is the fundamental solution of the equation $x^{2}-\left(k^{2}+4\right) y^{2}=4$, by Lemma 3.4. Thus by Theorem 2.5 , all positive integer solutions of the equation $x^{2}-d y^{2}=4$ are given by

$$
x_{n}+y_{n} \sqrt{d}=\frac{\left(k^{2}+2+k \sqrt{k^{2}+4}\right)^{n}}{2^{n-1}}=2\left(\frac{k^{2}+2+k \sqrt{k^{2}+4}}{2}\right)^{n}
$$

Let $\alpha_{1}=\frac{k^{2}+2+k \sqrt{k^{2}+4}}{2}$ and $\beta_{1}=\frac{k^{2}+2-k \sqrt{k^{2}+4}}{2}$. Then it is seen that

$$
x_{n}+y_{n} \sqrt{d}=2 \alpha_{1}^{n} \text { and } x_{n}-y_{n} \sqrt{d}=2 \beta_{1}^{n} .
$$

Thus it follows that $x_{n}=\alpha_{1}^{n}+\beta_{1}^{n}$ and $y_{n}=\frac{\alpha_{1}^{n}-\beta_{1}^{n}}{\sqrt{d}}$. Let

$$
\alpha=\frac{k+\sqrt{k^{2}+4}}{2} \text { and } \beta=\frac{k-\sqrt{k^{2}+4}}{2} .
$$

Then

$$
\alpha^{2}=\left(\frac{k+\sqrt{k^{2}+4}}{2}\right)^{2}=\frac{k^{2}+2+k \sqrt{k^{2}+4}}{2}=\alpha_{1}
$$

and

$$
\beta^{2}=\left(\frac{k-\sqrt{k^{2}+4}}{2}\right)^{2}=\beta_{1}
$$

Therefore we get

$$
x_{n}=\alpha^{2 n}+\beta^{2 n}=V_{2 n}(k, 1) \text { and } y_{n}=\frac{\alpha^{2 n}-\beta^{2 n}}{\sqrt{d}}=\frac{\alpha^{2 n}-\beta^{2 n}}{\alpha-\beta}=U_{2 n}(k, 1)
$$

by (1.1).
Theorem 3.6. Let $k>1$. Then all positive integer solutions of the equation $x^{2}-\left(k^{2}+4\right) y^{2}=-4$ are given by

$$
(x, y)=\left(V_{2 n-1}(k, 1), U_{2 n-1}(k, 1)\right)
$$

with $n \geq 1$.
Proof. Since $k^{2}-\left(k^{2}+4\right)=-4$, it follows that $k+\sqrt{k^{2}+4}$ is the fundamental solution of the equation $x^{2}-\left(k^{2}+4\right) y^{2}=-4$. Thus by Theorem 2.6 , all positive integer solutions of the equation $x^{2}-d y^{2}=-4$ are given by

$$
x_{n}+y_{n} \sqrt{d}=\frac{\left(k+\sqrt{k^{2}+4}\right)^{2 n-1}}{4^{n-1}}=2\left(\frac{k+\sqrt{k^{2}+4}}{2}\right)^{2 n-1}
$$

Let $\alpha=\frac{k+\sqrt{k^{2}+4}}{2}$ and $\beta=\frac{k-\sqrt{k^{2}+4}}{2}$. Then it follows that

$$
x_{n}+y_{n} \sqrt{d}=2 \alpha^{2 n-1} \text { and } x_{n}-y_{n} \sqrt{d}=2 \beta^{2 n-1}
$$

Therefore

$$
x_{n}=\alpha^{2 n-1}+\beta^{2 n-1}=V_{2 n-1}(k, 1)
$$

and

$$
y_{n}=\frac{\alpha^{2 n-1}-\beta^{2 n-1}}{\sqrt{d}}=\frac{\alpha^{2 n-1}-\beta^{2 n-1}}{\alpha-\beta}=U_{2 n-1}(k, 1)
$$

by (1.1).

Theorem 3.7. Let $k>3$. Then all positive integer solutions of the equation $x^{2}-\left(k^{2}-4\right) y^{2}=4$ are given by

$$
(x, y)=\left(V_{n}(k,-1), U_{n}(k,-1)\right)
$$

with $n \geq 1$.
Proof. Since $k^{2}-\left(k^{2}-4\right)=4$, it is seen that $k+\sqrt{k^{2}-4}$ is the fundamental solution of the equation $x^{2}-\left(k^{2}-4\right) y^{2}=4$. Let $d=k^{2}-4$. Then by Theorem 2.5 , all positive integer solutions of the equation $x^{2}-d y^{2}=4$ are given by

$$
x_{n}+y_{n} \sqrt{d}=\frac{\left(k+\sqrt{k^{2}-4}\right)^{n}}{2^{n-1}}=2\left(\frac{k+\sqrt{k^{2}-4}}{2}\right)^{n}
$$

Let $\alpha=\frac{k+\sqrt{k^{2}-4}}{2}$ and $\beta=\frac{k-\sqrt{k^{2}-4}}{2}$. Then it follows that $x_{n}+y_{n} \sqrt{d}=2 \alpha^{n}$ and $x_{n}-y_{n} \sqrt{d}=$ $2 \beta^{n}$. Thus we get

$$
x_{n}=\alpha^{n}+\beta^{n}=V_{n}(k,-1) \text { and } y_{n}=\frac{\alpha^{n}-\beta^{n}}{\sqrt{d}}=\frac{\alpha^{n}-\beta^{n}}{\alpha-\beta}=U_{n}(k,-1)
$$

by (1.2).
The following theorem is given in [5].
Theorem 3.8. Let d be an odd positive integer. If the equation $x^{2}-d y^{2}=-4$ has a positive integer solution, then the equation $x^{2}-d y^{2}=-1$ has positive integer solutions.

Now we give the continued fraction expansions of $\sqrt{k^{2}+1}$ and $\sqrt{k^{2}-1}$. Since the continued fraction expansions of them are given in [3], we omit their proofs.
Theorem 3.9. If $k \geq 1$, then $\sqrt{k^{2}+1}=[k, \overline{2 k}]$. If $k>1$, then $\sqrt{k^{2}-1}=[k-1, \overline{1,2(k-1)}]$.
The proofs of the following corollaries follow from Lemma 2.2 and Theorem 3.9 and therefore we omit their proofs.

Corollary 3.10. Let $k \geq 1$ and $d=k^{2}+1$. Then the fundamental solution of the equation $x^{2}-d y^{2}=1$ is

$$
x_{1}+y_{1} \sqrt{d}=2 k^{2}+1+2 k \sqrt{d}
$$

Corollary 3.11. Let $k \geq 1$ and $d=k^{2}+1$. Then the fundamental solution of the equation $x^{2}-d y^{2}=-1$ is

$$
x_{1}+y_{1} \sqrt{d}=k+\sqrt{d}
$$

Corollary 3.12. Let $k>1$ and $d=k^{2}-1$. Then the fundamental solution of the equation $x^{2}-d y^{2}=1$ is

$$
x_{1}+y_{1} \sqrt{d}=k+\sqrt{d}
$$

Theorem 3.13. Let $k \geq 1$. Then all positive integer solutions of the equation $x^{2}-\left(k^{2}+1\right) y^{2}=1$ are given by

$$
(x, y)=\left(\frac{V_{2 n}(2 k, 1)}{2}, U_{2 n}(2 k, 1)\right)
$$

with $n \geq 1$.
Proof. By Corollary 3.10 and Lemma 2.2, it follows that all positive integer solutions of the equation $x^{2}-\left(k^{2}+1\right) y^{2}=1$ are given by

$$
x_{n}+y_{n} \sqrt{k^{2}+1}=\left(2 k^{2}+1+2 k \sqrt{k^{2}+1}\right)^{n}=\left(2 k^{2}+1+k \sqrt{(2 k)^{2}+4}\right)^{n}
$$

Let $\alpha=\frac{2 k+\sqrt{(2 k)^{2}+4}}{2}$ and $\beta=\frac{2 k-\sqrt{(2 k)^{2}+4}}{2}$. Then

$$
\alpha^{2}=\left(\frac{2 k+\sqrt{(2 k)^{2}+4}}{2}\right)^{2}=2 k^{2}+1+k \sqrt{(2 k)^{2}+4}
$$

and

$$
\beta^{2}=\left(\frac{2 k-\sqrt{(2 k)^{2}+4}}{2}\right)^{2}=2 k^{2}+1-k \sqrt{(2 k)^{2}+4} .
$$

Thus it follows that

$$
x_{n}+y_{n} \sqrt{k^{2}+1}=x_{n}+\frac{y_{n}}{2} \sqrt{(2 k)^{2}+4}=\alpha^{2 n}
$$

and

$$
x_{n}-y_{n} \sqrt{k^{2}+1}=x_{n}-\frac{y_{n}}{2} \sqrt{(2 k)^{2}+4}=\beta^{2 n} .
$$

Then it is seen that

$$
x_{n}=\frac{\alpha^{2 n}+\beta^{2 n}}{2}=\frac{V_{2 n}(2 k, 1)}{2}
$$

and

$$
y_{n}=\frac{\alpha^{2 n}-\beta^{2 n}}{\sqrt{(2 k)^{2}+4}}=\frac{\alpha^{2 n}-\beta^{2 n}}{\alpha-\beta}=U_{2 n}(2 k, 1)
$$

by (1.1).
Since the proof of the following theorems are similar to that of the above theorems, we omit them.

Theorem 3.14. Let $k \geq 1$. Then all positive integer solutions of the equation $x^{2}-\left(k^{2}+1\right) y^{2}=$ -1 are given by

$$
(x, y)=\left(\frac{V_{2 n-1}(2 k, 1)}{2}, U_{2 n-1}(2 k, 1)\right)
$$

with $n \geq 1$.
Theorem 3.15. Let $k>1$. Then all positive integer solutions of the equation $x^{2}-\left(k^{2}-1\right) y^{2}=1$ are given by

$$
(x, y)=\left(\frac{V_{n}(2 k,-1)}{2}, U_{n}(2 k,-1)\right)
$$

with $n \geq 1$.
Corollary 3.16. Let $k>1$. Then the equation $x^{2}-\left(k^{2}-1\right) y^{2}=-1$ has no positive integer solutions.

Proof. The period length of continued fraction expansion of $\sqrt{k^{2}-1}$ is always even by Theorem 3.9. Thus by Lemma 2.2, it follows that there is no positive integer solutions of the equation $x^{2}-\left(k^{2}-1\right) y^{2}=-1$.

Theorem 3.17. Let $k>3$. Then the equation $x^{2}-\left(k^{2}-4\right) y^{2}=-4$ has no positive integer solutions.

Proof. Assume that k is odd. Then $k^{2}-4$ is odd and thus the proof follows from Theorem 3.8 and Corollary 2.12. Now assume that k is even. If (a, b) is a solution to the equation $x^{2}-\left(k^{2}-4\right) y^{2}=$ -4 , then a is even. Thus we get

$$
(a / 2)^{2}-\left((k / 2)^{2}-1\right) b^{2}=-1,
$$

which is impossible by Corollary 3.16.
Now we give all positive integer solutions of the equations $x^{2}-\left(k^{2}+1\right) y^{2}= \pm 4$ and $x^{2}-\left(k^{2}-1\right) y^{2}= \pm 4$.

Theorem 3.18. Let $k \geq 1$ and $k \neq 2$. Then all positive integer solutions of the equation $x^{2}-$ $\left(k^{2}+1\right) y^{2}=-4$ are given by

$$
(x, y)=\left(V_{2 n-1}(2 k, 1), 2 U_{2 n-1}(2 k, 1)\right)
$$

with $n \geq 1$.
Proof. Since $k \geq 1$ and $k \neq 2$, it can be shown that $2 k+2 \sqrt{k^{2}+1}$ is the fundamental solution to the equation $x^{2}-\left(k^{2}+1\right) y^{2}=-4$. Then by Theorem 2.6, all positive integer solutions of the equation $x^{2}-\left(k^{2}+1\right) y^{2}=-4$ are given by

$$
x_{n}+y_{n} \sqrt{k^{2}+1}=2\left(\frac{2 k+2 \sqrt{k^{2}+1}}{2}\right)^{2 n-1}=2\left(\frac{2 k+\sqrt{(2 k)^{2}+4}}{2}\right)^{2 n-1} .
$$

Let $\alpha=\frac{2 k+\sqrt{(2 k)^{2}+4}}{2}$ and $\beta=\frac{2 k-\sqrt{(2 k)^{2}+4}}{2}$. Then we get

$$
x_{n}+y_{n} \sqrt{k^{2}+1}=x_{n}+\frac{y_{n}}{2} \sqrt{(2 k)^{2}+4}=2 \alpha^{2 n-1}
$$

and

$$
x_{n}-y_{n} \sqrt{k^{2}+1}=x_{n}-\frac{y_{n}}{2} \sqrt{(2 k)^{2}+4}=2 \beta^{2 n-1} .
$$

Thus it follows that

$$
x_{n}=\alpha^{2 n-1}+\beta^{2 n-1}=V_{2 n-1}(2 k, 1)
$$

and

$$
y_{n}=2 \frac{\alpha^{2 n-1}-\beta^{2 n-1}}{\sqrt{(2 k)^{2}+4}}=2 \frac{\alpha^{2 n-1}-\beta^{2 n-1}}{\alpha-\beta}=2 U_{2 n-1}(2 k, 1)
$$

by (1.1).
Now we can give the following corollary from Theorem 3.18 and identity (1.4).
Corollary 3.19. If (a, b) is a positive integer solution of the equation $x^{2}-\left(k^{2}+1\right) y^{2}=-4$, then a and b are even.

Since the proof of the following theorem is similar to that of Theorem 3.18, we omit it.
Theorem 3.20. Let $k>1$. Then all positive integer solutions of the equation $x^{2}-\left(k^{2}-1\right) y^{2}=4$ are given by

$$
(x, y)=\left(V_{n}(2 k,-1), 2 U_{n}(2 k,-1)\right)
$$

with $n \geq 1$.
Theorem 3.21. Let $k \geq 1$ and $k \neq 2$. Then all positive integer solutions of the equation $x^{2}-$ $\left(k^{2}+1\right) y^{2}=4$ are given by

$$
(x, y)=\left(V_{2 n}(2 k, 1), 2 U_{2 n}(2 k, 1)\right)
$$

with $n \geq 1$.
Proof. Firstly, we show that if (a, b) is a solution to the equation $x^{2}-\left(k^{2}+1\right) y^{2}=4$, then a and b are even. Assume that k is odd. Then $k^{2}+1=2 t$ for some odd integer t. Since $a^{2}-2 t b^{2}=4$, it follows that a is even and therefore b is even. Now assume that k is even. Let $d=k^{2}+1$. Then d is odd. Assume that a and b are odd integers. Let $x_{1}=|d b-k a|, y_{1}=|a-k b|$. Then x_{1} and y_{1} are odd integers. Moreover,

$$
\begin{aligned}
x_{1}^{2}-d y_{1}^{2} & =(d b-k a)^{2}-d(a-k b)^{2}=b^{2} d\left(d-k^{2}\right)+a^{2}\left(k^{2}-d\right)=b^{2} d-a^{2} \\
& =-\left(a^{2}-d b^{2}\right)=-4 .
\end{aligned}
$$

Thus $x_{1}+y_{1} \sqrt{d}$ is a positive solution of the equation $x^{2}-\left(k^{2}+1\right) y^{2}=-4$, which is impossible by Corollary 3.19. Therefore if $a+b \sqrt{d}$ is any solutions of the equation $x^{2}-d y^{2}=4$, then a and b
are even integers and thus $\frac{a}{2}+\frac{b}{2} \sqrt{d}$ is a solution to the equation $x^{2}-d y^{2}=1$. Then it follows that the fundamental solution of the equation $x^{2}-d y^{2}=4$ is $4 k^{2}+2+4 k \sqrt{d}$ by Corollary 3.10. Thus by Theorem 2.5, it follows that all positive integer solutions of the equation $x^{2}-\left(k^{2}+1\right) y^{2}=4$ are given by

$$
x_{n}+y_{n} \sqrt{k^{2}+1}=2\left(\frac{4 k^{2}+2+4 k \sqrt{k^{2}+1}}{2}\right)^{n}=2\left(\frac{4 k^{2}+2+2 k \sqrt{(2 k)^{2}+4}}{2}\right)^{n}
$$

Let $\alpha=\frac{2 k+\sqrt{(2 k)^{2}+4}}{2}$ and $\beta=\frac{2 k-\sqrt{(2 k)^{2}+4}}{2}$. Then

$$
\alpha^{2}=\left(\frac{2 k+\sqrt{(2 k)^{2}+4}}{2}\right)^{2}=\frac{4 k^{2}+2+2 k \sqrt{(2 k)^{2}+4}}{2}
$$

and

$$
\beta^{2}=\left(\frac{2 k-\sqrt{(2 k)^{2}+4}}{2}\right)^{2}=\frac{4 k^{2}+2-2 k \sqrt{(2 k)^{2}+4}}{2}
$$

Thus it follows that $x_{n}+y_{n} \sqrt{k^{2}+1}=x_{n}+\frac{y_{n}}{2} \sqrt{(2 k)^{2}+4}=2 \alpha^{2 n}$ and $x_{n}-\frac{y_{n}}{2} \sqrt{(2 k)^{2}+4}=$ $2 \beta^{2 n}$. Then it is seen that

$$
x_{n}=\alpha^{2 n}+\beta^{2 n}=V_{2 n}(2 k, 1)
$$

and

$$
y_{n}=2 \frac{\alpha^{2 n}-\beta^{2 n}}{\sqrt{(2 k)^{2}+4}}=2 \frac{\alpha^{2 n}-\beta^{2 n}}{\alpha-\beta}=2 U_{2 n}(2 k, 1)
$$

by (1.1).
It can be shown that if $k>2$, then the continued fraction expansion of $\sqrt{k^{2}-k}$ is $[k-$ $1, \overline{1,2(k-1)}$] (see [2], page 234). Therefore we can give the following corollary easily.

Corollary 3.22. Let $k>2$. Then the equation $x^{2}-\left(k^{2}-k\right) y^{2}=-1$ has no positive integer solutions.

Corollary 3.23. Let $k \geq 2$ and $k \neq 3$. Then the equation $x^{2}-\left(k^{2}-1\right) y^{2}=-4$ has no positive integer solutions.

Proof. Assume that k is even. Then $k^{2}-1$ is odd and the proof follows from Theorem 3.8 and Corollary 3.16.

Assume that k is odd. Then $k^{2}-1$ is even. Now assume that $a^{2}-\left(k^{2}-1\right) b^{2}=-4$ for some positive integers a and b. Then a is even and this implies that

$$
(a / 2)^{2}-\left[\left(k^{2}-1\right) / 4\right] b^{2}=-1
$$

This is impossible by Corollary 3.22, since

$$
\left(k^{2}-1\right) / 4=((k+1) / 2)^{2}-(k+1) / 2
$$

Continued fraction expansion of $\sqrt{5}$ is $[2,4]$. Then the period length of the continued fraction expansion of $\sqrt{5}$ is 1 . Therefore the fundamental solution to the equation $x^{2}-5 y^{2}=1$ is $9+4 \sqrt{5}$ and the fundamental solution to the equation $x^{2}-5 y^{2}=-1$ is $2+\sqrt{5}$ by Lemma 2.2. Therefore, by using (1.3), we can give the following corollaries easily.
Corollary 3.24. All positive integer solutions of the equation $x^{2}-5 y^{2}=1$ are given by

$$
(x, y)=\left(\frac{L_{6 n}}{2}, \frac{F_{6 n}}{2}\right)
$$

with $n \geq 1$.
Corollary 3.25. All positive integer solutions of the equation $x^{2}-5 y^{2}=-1$ are given by

$$
(x, y)=\left(\frac{L_{6 n-3}}{2}, \frac{F_{6 n-3}}{2}\right)
$$

with $n \geq 1$.
It can be seen that fundamental solutions of the equations $x^{2}-5 y^{2}=-4$ and $x^{2}-5 y^{2}=4$ are $1+\sqrt{5}$ and $3+\sqrt{5}$, respectively. Thus we can give following corollaries.

Corollary 3.26. All positive integer solutions of the equation $x^{2}-5 y^{2}=4$ are given by

$$
(x, y)=\left(L_{2 n}, F_{2 n}\right)
$$

with $n \geq 1$.
Corollary 3.27. All positive integer solutions of the equation $x^{2}-5 y^{2}=-4$ are given by

$$
(x, y)=\left(L_{2 n-1}, F_{2 n-1}\right)
$$

with $n \geq 1$.

References

[1] Adler, A. and Coury, J. E., The Theory of Numbers: A Text and Source Book of Problems, Jones and Bartlett Publishers, Boston, MA (1995).
[2] Don Redmond, Number Theory: An Introduction, Markel Dekker, Inc (1996).
[3] Jean-Marie De Koninck and Armel Mercier, 1001 Problems in Classical Number Theory, American Mathematical Society (2007).
[4] John P. Robertson, Solving the generalized Pell equation $x^{2}-D y^{2}=N$. http://hometown.aol.com/jpr2718/pell.pdf, (May 2003). (Description of LMM Algorithm for solving Pell's equation).
[5] John P. Robetson, On D so that $x^{2}-D y^{2}$ represents m and $-m$ and not -1 , Acta Mathematica Academia Paedogogocae Nyiregyhaziensis, 25, 155-164 (2009).
[6] J. P. Jones, Representation of Solutions of Pell Equations Using Lucas Sequences, Acta Academia Pead. Agr., Sectio Mathematicae 30, 75-86 (2003).
[7] D. Kalman, R. Mena, The Fibonacci Numbers exposed, Mathematics Magazine 76, 167-181 (2003).
[8] R. Keskin, Solutions of some quadratic Diophantine equations, Computers and Mathematics with Applications, 60, 2225-2230 (2010).
[9] W. L. McDaniel, Diophantine Representation of Lucas Sequences, The Fibonacci Quarterly 33, 58-63 (1995).
[10] R. Melham, Conics Which Characterize Certain Lucas Sequences, The Fibonacci Quarterly 35, 248-251 (1997).
[11] Michael J. Jacobson, Hugh C. Williams, Solving the Pell Equation, Springer, (2006).
[12] T. Nagell, Introduction to Number Theory, Chelsea Publishing Company, New York (1981).
[13] P. Ribenboim, My Numbers, My Friends, Springer-Verlag New York, Inc. (2000).
[14] S. Robinowitz, Algorithmic Manipulation of Fibonacci Identities, in: Application of Fibonacci Numbers, Vol. 6, Kluwer Academic Pub., Dordrect, The Netherlands, 389-408 (1996).
[15] J. Leveque, W., Topics in Number Theory, Volume 1 and 2, Dover Publications (2002).
[16] M. E. H. Ismail, One Parameter Generalizations of the Fibonacci and Lucas Numbers, The Fibonacci Quarterly 46-47, 167-180 (2009).
[17] Zhiwei, S., Singlefold Diophantine Representation of the Sequence $u_{0}=0, u_{1}=1$ and $u_{n+2}=m u_{n+1}+$ u_{n}, Pure and Applied Logic, Beijing Univ. Press, Beijing, 97-101 (1992).
[18] D. H. Lehmer, On the Multiple Solutions of the Pell Equation, Ann. of Math. (2) 30, no. 1-4, 66-72 (1928/29).

Author information

Refik Keskin and Merve Güney Duman, Department of Mathematics, Sakarya University, Sakarya 54050, TURKEY.
E-mail: rkeskin@sakarya.edu.tr, merveguneyduman@gmail.com
Received: July 21, 2017.
Accepted: January 19, 2018.

