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Abstract. Let k be a natural number and d = k2 ± 4 or k2 ± 1. In this paper, by using
continued fraction expansion of

√
d,we find fundamental solution of the equations x2−dy2 = ±1

and we get all positive integer solutions of the equations x2 − dy2 = ±1 in terms of generalized
Fibonacci and Lucas sequences. Moreover, we find all positive integer solutions of the equations
x2 − dy2 = ±4 in terms of generalized Fibonacci and Lucas sequences.

1 Introduction

Let d be a positive integer that is not a perfect square. It is well known that the Pell equation
x2− dy2 = 1 have always positive integer solutions. When N 6= 1, the Pell equation x2− dy2 =
N may not has any positive integer solution. It can be seen that the equations x2 − 3y2 = −1
and x2 − 7y2 = −4 have no positive integer solutions. Whether or not there exists a positive
integer solution to the equation x2 − dy2 = −1 depends on the period length of the continued
fraction expansion of

√
d (See section 2 for more detailed information). When k is a positive

integer and d ∈
{
k2 ± 4, k2 ± 1

}
, positive integer solutions of the equations x2−dy2 = ±4 and

x2 − dy2 = ±1 have been investigated by Jones in [6] and the method used in the proofs of the
theorems is the method of descent of Fermat. The same or similar equations are investigated by
some other authors in [18], [9], [10], [17], [8], and [16]. Especially, when a solution exists, all
positive integer solutions of the equations x2 − dy2 = ±4 and x2 − dy2 = ±1 are given in terms
of the generalized Fibonacci and Lucas sequences. In this paper, if a solution exists, we will use
continued fraction expansion of

√
d in order to get all positive integer solutions of the equations

x2−dy2 = ±1 when d ∈
{
k2 ± 4, k2 ± 1

}
. Moreover, we will find all positive integer solutions

of the equations x2 − dy2 = ±4 when d ∈
{
k2 ± 4, k2 ± 1

}
.

Now we briefly mention the generalized Fibonacci and Lucas sequences (Un (k, s)) and
(Vn (k, s)). Let k and s be two nonzero integers with k2 + 4s > 0. Generalized Fibonacci
sequence is defined by

U0 (k, s) = 0, U1 (k, s) = 1 and Un+1 (k, s) = kUn (k, s) + sUn−1 (k, s)

for n > 1 and generalized Lucas sequence is defined by

V0 (k, s) = 2, V1 (k, s) = k and Vn+1 (k, s) = kVn (k, s) + sVn−1 (k, s)

for n > 1, respectively. For k = s = 1, the sequences (Un) and (Vn) are called Fibonacci and
Lucas sequences and they are denoted as (Fn) and (Ln) , respectively. For k = 2 and s = 1, the
sequences (Un) and (Vn) are called Pell and Pell-Lucas sequences and they are denoted as (Pn)
and (Qn) , respectively. It is well known that

Un (k, s) =
αn − βn

α− β
and Vn (k, s) = αn + βn

where α =
(
k +
√
k2 + 4s

)
/2 and β =

(
k −
√
k2 + 4s

)
/2. The above identities are known

as Binet’s formulae. Clearly, α + β = k, α − β =
√
k2 + 4s, and αβ = −s. Especially, if
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α =
(
k +
√
k2 + 4

)
/2 and β =

(
k −
√
k2 + 4

)
/2 , then we get

Un (k, 1) =
αn − βn

α− β
and Vn (k, 1) = αn + βn. (1.1)

If α =
(
k +
√
k2 − 4

)
/2 and β =

(
k −
√
k2 − 4

)
/2 , then we get

Un (k,−1) =
αn − βn

α− β
and Vn (k,−1) = αn + βn. (1.2)

Also, if α =
(

1 +
√

5
)
/2 and β =

(
1−
√

5
)
/2 , then we get

Fn =
αn − βn

α− β
and Ln = αn + βn. (1.3)

Moreover, if k is even, then it can be easily seen that

Un (k,±1) is odd⇔ n is odd,

Un (k,±1) is even⇔ n is even,

Vn (k,±1) is even for all n ∈ N. (1.4)

If k is odd, then
2 | Vn(k,±1)⇔ 2 | Un(k,±1)⇔ 3 | n.

For more information about generalized Fibonacci and Lucas sequences, one can consult [14],
[7], [13], [9], and [10].

2 Preliminaries

Let d be a positive integer which is not a perfect square and N be any nonzero fixed integer.
Then the equation x2 − dy2 = N is known as Pell equation. For N = ±1, the equations
x2 − dy2 = 1 and x2 − dy2 = −1 are known as classical Pell equation. If a2 − db2 = N ,
we say that (a, b) is a solution to the Pell equation x2 − dy2 = N . We use the notations (a, b)
and a + b

√
d interchangeably to denote solutions of the equation x2 − dy2 = N. Also, if a and

b are both positive, we say that a + b
√
d is positive solution to the equation x2 − dy2 = N.

Continued fraction plays an important role in solutions of the Pell equations x2 − dy2 = 1 and
x2 − dy2 = −1. Let d be a positive integer that is not a perfect square. Then there is a continued
fraction expansion of

√
d such that

√
d =

[
a0, a1, a2, ..., al−1, 2a0

]
, where l is the period length

and the aj’s are given by the recursion formula;

α0 =
√
d, ak = bαkc and αk+1 =

1
αk − ak

, k = 0, 1, 2, 3, ...

Recall that al = 2a0 and al+k = ak for k ≥ 1. The nth convergent of
√
d for n ≥ 0 is given by

pn
qn

= [a0, a1, ..., an] = a0 +
1

a1 +
1

. . . 1
an−1+

1
an

.

Let x1 + y1
√
d be a positive solution to the equation x2− dy2 = N . We say that x1 + y1

√
d is the

fundamental solution of the equation x2 − dy2 = N, if x2 + y2
√
d is a different solution to the

equation x2−dy2 = N , then x1+y1
√
d < x2+y2

√
d. Recall that if a+b

√
d and r+s

√
d are two

solutions to the equation x2−dy2 = N , then a = r if and only if b = s, and a+b
√
d < r+s

√
d if

and only if a < r and b < s. The following lemmas and theorems can be found many elementary
textbooks.
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Lemma 2.1. If x1 +y1
√
d is the fundamental solution to the equation x2−dy2 = −1, then (x1 +

y1
√
d)2 is the fundamental solution to the equation x2−dy2 = 1.

If we know fundamental solution of the equations x2 − dy2 = ±1 and x2 − dy2 = ±4, then
we can give all positive integer solutions to these equations. For more information about Pell
equation, one can consult [12], [15], and [4]. Now we give the fundamental solution of the
equations x2 − dy2 = ±1 by means of the period length of the continued fraction expansion of√
d.

Lemma 2.2. Let l be the period length of continued fraction expansion of
√
d. If l is even, then

the fundamental solution to the equation x2 − dy2 = 1 is given by

x1 + y1
√
d = pl−1 + ql−1

√
d

and the equation x2 − dy2 = −1 has no integer solutions. If l is odd, then the fundamental
solution of the equation x2 − dy2 = 1 is given by

x1 + y1
√
d = p2l−1 + q2l−1

√
d.

and the fundamental solution to the equation x2 − dy2 = −1 is given by

x1 + y1
√
d = pl−1 + ql−1

√
d.

Theorem 2.3. Let x1+y1
√
d be the fundamental solution to the equation x2 − dy2 = 1. Then all

positive integer solutions to the equation x2 − dy2 = 1 are given by

xn + yn
√
d = (x1 + y1

√
d)n

with n ≥ 1.

Theorem 2.4. Let x1+y1
√
d be the fundamental solution to the equation x2 − dy2 = −1. Then

all positive integer solutions to the equation x2 − dy2 = −1 are given by

xn + yn
√
d = (x1 + y1

√
d)2n−1

with n ≥ 1.

Now we give the following two theorems from [15]. See also [4].

Theorem 2.5. Let x1+y1
√
d be the fundamental solution to the equation x2 − dy2 = 4. Then all

positive integer solutions to the equation x2 − dy2 = 4 are given by

xn + yn
√
d =

(x1 + y1
√
d)n

2n−1

with n ≥ 1.

Theorem 2.6. Let x1+y1
√
d be the fundamental solution to the equation x2 − dy2 = −4. Then

all positive integer solutions to the equation x2 − dy2 = −4 are given by

xn + yn
√
d =

(x1 + y1
√
d)2n−1

4n−1

with n ≥ 1.
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From now on, we will assume that k is a natural number. We give continued fraction expan-
sion of

√
d for d = k2 ± 4. The proofs of the following two theorems are easy and they can be

found many text books on number theory as an exercise (see, for example [2]).

Theorem 2.7. Let k > 1. Then

√
k2 + 4 =


[
k, k2 , 2k

]
, if k is even,[

k, k−1
2 , 1, 1, k−1

2 , 2k
]
, if k is odd.

Theorem 2.8. Let k > 3. Then

√
k2 − 4 =


[
k − 1, 1, k−3

2 , 2, k−3
2 , 1, 2(k − 1)

]
, if k is odd,[

k − 1, 1, k−4
2 , 1, 2(k − 1)

]
, if k is even and k 6= 4

[3, 2, 6], if k = 4

Corollary 2.9. Let k > 1 and d = k2 + 4. If k is odd, then the fundamental solution to the
equation x2 − dy2 = −1 is

x1 + y1
√
d =

k3 + 3k
2

+
k2 + 1

2

√
d.

If k is even, the equation x2 − dy2 = −1 has no positive integer solutions.

Proof. Assume that k is odd. Then the period length of the continued fraction expansion of√
k2 + 4 is 5 by Theorem 2.7. Therefore the fundamental solution of the equation x2−dy2 = −1

is p4 + q4
√
d by Lemma 2.2. Since

p4

q4
= k +

1
(k − 1) /2 + 1

1+ 1
1+ 1

(k−1)/2

=
k3+3k

2
k2+1

2

,

the proof follows. If k is even, then the period length is even by Theorem 2.7 and therefore
x2 − dy2 = −1 has no positive integer solutions by Lemma 2.2.

Corollary 2.10. Let k > 1 and d = k2 + 4. Then the fundamental solution to the equation
x2 − dy2 = 1 is

x1 + y1
√
d =


k2+2

2 + k
2

√
d, if k is even,(

k3+3k
2 + k2+1

2
.
√
d
)2
, if k is odd.

Proof. If k is even, then the proof follows from Lemma 2.2 and Theorem 2.7. If k is odd, then
the proof follows from Corollary 2.9 and Lemma 2.1.

From Lemma 2.2 and Theorem 2.8, we can give the following corollary.

Corollary 2.11. Let k > 3 and d = k2 − 4. Then the fundamental solution to the equation
x2 − dy2 = 1 is given by

x1 + y1
√
d =

{
k2−2

2 + k
2

√
d, if k is even,

k3−3k
2 + k2−1

2

√
d, if k is odd.

Corollary 2.12. Let k > 3. Then the equation x2 − (k2 − 4)y2 = −1 has no integer solutions.

Proof. The period length of continued fraction expansion of
√
k2 − 4 is always even by Theorem

2.8. Thus by Lemma 2.2, it follows that there is no positive integer solutions of the equation
x2 − (k2 − 4)y2 = −1.
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3 Main Theorems

Theorem 3.1. Let k > 1 and d = k2 + 4. Then all positive integer solutions of the equation
x2 − dy2 = 1 are given by

(x, y) =


(
V2n(k,1)

2 , U2n(k,1)
2

)
, if k is even,(

V6n(k,1)
2 , U6n(k,1)

2

)
, if k is odd,

with n ≥ 1.

Proof. Assume that k is even. Thenby Corollary 2.10 and Theorem 2.3, all positive integer
solutions of the equation x2 − dy2 = 1 are given by

xn + yn
√
d =

(
k2 + 2

2
+
k

2

√
d

)n
with n ≥ 1. Let α1 =

k2+2
2 + k

2

√
d and β1 =

k2+2
2 − k

2

√
d. Then

xn + yn
√
d = αn1 and xn − yn

√
d = βn1 .

Thus it follows that xn = αn
1 +βn

1
2 and yn = αn

1 −β
n
1

2
√
d

. Let

α =
k +
√
k2 + 4
2

and β =
k −
√
k2 + 4
2

.

Then it is seen that α2 = α1 and β2 = β1. Thus it follows that

xn =
α2n + β2n

2
=
V2n(k, 1)

2
and

yn =
α2n − β2n

2
√
d

=
α2n − β2n

2(α− β)
=
U2n(k, 1)

2
by (1.1). Now assume that k is odd. Then by Corollary 2.10 and Theorem 2.3, we get

xn + yn
√
d =

((
k3 + 3k

2
+
k2 + 1

2
.
√
d

)2)n
with n ≥ 1. Let

α1 =

(
k3 + 3k

2
+
k2 + 1

2
.
√
d

)2

and

β1 =

(
k3 + 3k

2
− k2 + 1

2
.
√
d

)2

.

Then
xn + yn

√
d = αn1 and xn − yn

√
d = βn1 .

Thus it is seen that xn = αn
1 +βn

1
2 and yn = αn

1 −β
n
1

2
√
d

. Let

α =
k +
√
k2 + 4
2

and β =
k −
√
k2 + 4
2

.

Since α1 =
(
k3+3k

2 + k2+1
2

.
√
d
)2

= (α3)2 = α6 and thus β1 = β6, we get

xn =
α6n + β6n

2
=
V6n(k, 1)

2
and

yn =
α6n − β6n

2
√
d

=
α6n − β6n

2(α− β)
=
U6n(k, 1)

2
by (1.1).
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Theorem 3.2. Let k > 1 be an odd integer and d = k2 + 4. Then all positive integer solutions of
the equation x2 − dy2 = −1 are given by

(x, y) =

(
V6n−3(k, 1)

2
,
U6n−3(k, 1)

2

)
with n ≥ 1.

Proof. Assume that k > 1 be an odd integer. Then by Corollary 2.9 and Theorem 2.4, all positive
integer solutions of the equation x2 − dy2 = −1 are given by

xn + yn
√
d =

(
k3 + 3k

2
+
k2 + 1

2

√
d

)2n−1

with n ≥ 1. Let α1 =
k3+3k

2 + k2+1
2

√
d and β1 =

k3+3k
2 − k2+1

2

√
d. Then it follows that

xn + yn
√
d = α2n−1

1 and xn − yn
√
d = β2n−1

1

and therefore xn =
α2n−1

1 +β2n−1
1

2 and yn =
α2n−1

1 −β2n−1
1

2
√
d

. Let

α =
k +
√
k2 + 4
2

and β =
k −
√
k2 + 4
2

.

Then it is seen that

α3 =

(
k +
√
k2 + 4
2

)3

=
k3 + 3k

2
+
k2 + 1

2

√
d = α1

and

β3 =

(
k −
√
k2 + 4
2

)3

=
k3 + 3k

2
− k2 + 1

2

√
d = β1.

Thus it follows that

xn =
(α3)2n−1 + (β3)2n−1

2
=
α6n−3 + β6n−3

2
=
V6n−3(k, 1)

2
and

yn =
(α3)2n−1 − (β3)2n−1

2
√
d

=
α6n−3 − β6n−3

2(α− β)
=
U6n−3(k, 1)

2

by (1.1).

Theorem 3.3. Let k > 3 and d = k2 − 4. Then all positive integer solutions of the equation
x2 − dy2 = 1 are given by

(x, y) =


(
V2n(k,−1)

2 , U2n(k,−1)
2

)
, if k is even,(

V3n(k,−1)
2 , U3n(k,−1)

2

)
, if k is odd,

with n ≥ 1.

Proof. Assume that k is even. By Corollary 2.11 and Theorem 2.3, all positive integer solutions
of the equation x2 − dy2 = 1 are given by

xn + yn
√
d =

(
k2 − 2

2
+
k

2

√
d

)n
.

Let α1 =
k2−2

2 + k
2

√
d and β1 =

k2−2
2 − k

2

√
d. Then it follows that

xn + yn
√
d = αn1 and xn − yn

√
d = βn1
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and therefore xn = αn
1 +βn

1
2 and yn = αn

1 −β
n
1

2
√
d

. Let

α =
k +
√
k2 − 4
2

and β =
k −
√
k2 − 4
2

.

Then it is seen that α2 = α1 and β2 = β1. Thus it follows that

xn =
α2n + β2n

2
=
V2n(k,−1)

2

and

yn =
α2n − β2n

2
√
d

=
α2n − β2n

2(α− β)
=
U2n(k,−1)

2

by (1.2). Now assume that k is odd. Then by Corollary 2.11 and Theorem 2.3, we get

xn + yn
√
d =

(
k3 − 3k

2
+
k2 − 1

2

√
d

)n
.

Let α1 =
k3−3k

2 + k2−1
2

√
d and β1 =

k3−3k
2 − k2−1

2

√
d. Then xn+ yn

√
d = αn1 and xn− yn

√
d =

βn1 . Thus it follows that xn = αn
1 +βn

1
2 and yn = αn

1 −β
n
1

2
√
d

. Let α =
k+
√
k2−4

2 and β =
k−
√
k2−4

2 .

Since

α3 =

(
k +
√
k2 − 4
2

)3

=
k3 − 3k

2
+
k2 − 1

2

√
d = α1

and

β3 =

(
k −
√
k2 − 4
2

)3

=
k3 − 3k

2
− k2 − 1

2

√
d = β1,

we get

xn =
α3n + β3n

2
=
V3n(k,−1)

2
and

yn =
α3n − β3n

2
√
d

=
α3n − β3n

2(α− β)
=
U3n(k,−1)

2

by (1.2).

Now we give all positive integer solutions of the equations x2−(k2+4)y2 = ±4 and x2−(k2−
4)y2 = ±4. Before giving all positive integer solutions of the equations x2 − (k2 + 4)y2 = ±4,
we give the following lemma which will be useful for finding the solutions.

Lemma 3.4. Let a+b
√
d be a positive integer solution to the equation x2−dy2 = 4. If a > b2−2

, then a+ b
√
d is the fundamental solution to the equation x2 − dy2 = 4.

Proof. If b = 1, then the proof is trivial. Assume that b > 1. Suppose that x1 + y1
√
d is a

positive solution to the equation x2 − dy2 = 4 such that 1 ≤ y1 < b. Then it follows that
a2−db2 = 4 = x2

1−dy2
1 and thus d = (x2

1−4)/y2
1 = (a2−4)/b2. This shows that x2

1b
2−y2

1a
2 =

4b2 − 4y2
1 = 4(b2 − y2

1) > 0. Thus

[(x1b+ y1a) /2][(x1b− y1a) /2] = b2 − y2
1 > 1.

It can be seen that x1b + y1a and x1b − y1a are even integers. Let k1 = (x1b + y1a)/2 and
k2 = (x1b− y1a)/2. Then k1k2 = b2 − y2

1 and a = (k1 − k2)/y1. Thus

a =
k1 − k2

y1
≤ k1k2 − 1

y1
=
b2 − y2

1 − 1
y1

≤ b2 − y2
1 − 1 ≤ b2 − 2,

which is a contradiction since a > b2 − 2.
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Theorem 3.5. Let k > 1. Then all positive integer solutions of the equation x2− (k2 + 4)y2 = 4
are given by

(x, y) = (V2n(k, 1), U2n(k, 1))

with n ≥ 1.

Proof. Let a = k2+2 and b = k. Then a+b
√
k2 + 4 is a positive integer solution of the equation

x2 − (k2 + 4)y2 = 4. Since a = k2 + 2 > k2 − 2 = b2 − 2, it follows that k2 + 2 + k
√
k2 + 4 is

the fundamental solution of the equation x2− (k2 + 4)y2 = 4, by Lemma 3.4. Thus by Theorem
2.5, all positive integer solutions of the equation x2 − dy2 = 4 are given by

xn + yn
√
d =

(k2 + 2 + k
√
k2 + 4)n

2n−1 = 2

(
k2 + 2 + k

√
k2 + 4

2

)n
.

Let α1 =
k2+2+k

√
k2+4

2 and β1 =
k2+2−k

√
k2+4

2 . Then it is seen that

xn + yn
√
d = 2αn1 and xn − yn

√
d = 2βn1 .

Thus it follows that xn = αn1 + βn1 and yn = αn
1 −β

n
1√

d
. Let

α =
k +
√
k2 + 4
2

and β =
k −
√
k2 + 4
2

.

Then

α2 =

(
k +
√
k2 + 4
2

)2

=
k2 + 2 + k

√
k2 + 4

2
= α1

and

β2 =

(
k −
√
k2 + 4
2

)2

= β1.

Therefore we get

xn = α2n + β2n = V2n(k, 1) and yn =
α2n − β2n
√
d

=
α2n − β2n

α− β
= U2n(k, 1)

by (1.1).

Theorem 3.6. Let k > 1. Then all positive integer solutions of the equation x2−(k2+4)y2 = −4
are given by

(x, y) = (V2n−1(k, 1), U2n−1(k, 1))

with n ≥ 1.

Proof. Since k2 − (k2 + 4) = −4, it follows that k +
√
k2 + 4 is the fundamental solution of

the equation x2 − (k2 + 4)y2 = −4. Thus by Theorem 2.6, all positive integer solutions of the
equation x2 − dy2 = −4 are given by

xn + yn
√
d =

(k +
√
k2 + 4)2n−1

4n−1 = 2

(
k +
√
k2 + 4
2

)2n−1

.

Let α = k+
√
k2+4
2 and β = k−

√
k2+4

2 . Then it follows that

xn + yn
√
d = 2α2n−1 and xn − yn

√
d = 2β2n−1.

Therefore
xn = α2n−1 + β2n−1 = V2n−1(k, 1)

and

yn =
α2n−1 − β2n−1

√
d

=
α2n−1 − β2n−1

α− β
= U2n−1(k, 1)

by (1.1).
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Theorem 3.7. Let k > 3. Then all positive integer solutions of the equation x2 − (k2 − 4)y2 = 4
are given by

(x, y) = (Vn(k,−1), Un(k,−1))

with n ≥ 1.

Proof. Since k2 − (k2 − 4) = 4, it is seen that k +
√
k2 − 4 is the fundamental solution of the

equation x2−(k2−4)y2 = 4. Let d = k2−4. Then by Theorem 2.5, all positive integer solutions
of the equation x2 − dy2 = 4 are given by

xn + yn
√
d =

(k +
√
k2 − 4)n

2n−1 = 2

(
k +
√
k2 − 4
2

)n
.

Let α =
k+
√
k2−4

2 and β =
k−
√
k2−4

2 . Then it follows that xn + yn
√
d = 2αn and xn − yn

√
d =

2βn. Thus we get

xn = αn + βn = Vn(k,−1) and yn =
αn − βn√

d
=
αn − βn

α− β
= Un(k,−1)

by (1.2).

The following theorem is given in [5].

Theorem 3.8. Let d be an odd positive integer. If the equation x2 − dy2 = −4 has a positive
integer solution, then the equation x2 − dy2 = −1 has positive integer solutions.

Now we give the continued fraction expansions of
√
k2 + 1 and

√
k2 − 1. Since the continued

fraction expansions of them are given in [3], we omit their proofs.

Theorem 3.9. If k ≥ 1, then
√
k2 + 1 =

[
k, 2k

]
. If k > 1, then

√
k2 − 1 =

[
k − 1, 1, 2(k − 1)

]
.

The proofs of the following corollaries follow from Lemma 2.2 and Theorem 3.9 and there-
fore we omit their proofs.

Corollary 3.10. Let k ≥ 1 and d = k2 + 1. Then the fundamental solution of the equation
x2 − dy2 = 1 is

x1 + y1
√
d = 2k2 + 1 + 2k

√
d.

Corollary 3.11. Let k ≥ 1 and d = k2 + 1. Then the fundamental solution of the equation
x2 − dy2 = −1 is

x1 + y1
√
d = k +

√
d.

Corollary 3.12. Let k > 1 and d = k2 − 1. Then the fundamental solution of the equation
x2 − dy2 = 1 is

x1 + y1
√
d = k +

√
d.

Theorem 3.13. Let k ≥ 1. Then all positive integer solutions of the equation x2−(k2+1)y2 = 1
are given by

(x, y) =

(
V2n(2k, 1)

2
, U2n(2k, 1)

)
with n ≥ 1.

Proof. By Corollary 3.10 and Lemma 2.2, it follows that all positive integer solutions of the
equation x2 − (k2 + 1)y2 = 1 are given by

xn + yn
√
k2 + 1 =

(
2k2 + 1 + 2k

√
k2 + 1

)n
=

(
2k2 + 1 + k

√
(2k)2 + 4

)n
.

Let α =
2k+
√

(2k)2+4
2 and β =

2k−
√

(2k)2+4
2 . Then

α2 =

(
2k +

√
(2k)2 + 4
2

)2

= 2k2 + 1 + k
√
(2k)2 + 4
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and

β2 =

(
2k −

√
(2k)2 + 4
2

)2

= 2k2 + 1− k
√
(2k)2 + 4.

Thus it follows that

xn + yn
√
k2 + 1 = xn +

yn
2

√
(2k)2 + 4 = α2n

and
xn − yn

√
k2 + 1 = xn −

yn
2

√
(2k)2 + 4 = β2n.

Then it is seen that

xn =
α2n + β2n

2
=
V2n(2k, 1)

2
and

yn =
α2n − β2n√
(2k)2 + 4

=
α2n − β2n

α− β
= U2n(2k, 1)

by (1.1).

Since the proof of the following theorems are similar to that of the above theorems, we omit
them.

Theorem 3.14. Let k ≥ 1. Then all positive integer solutions of the equation x2 − (k2 + 1)y2 =
−1 are given by

(x, y) =

(
V2n−1(2k, 1)

2
, U2n−1(2k, 1)

)
with n ≥ 1.

Theorem 3.15. Let k > 1. Then all positive integer solutions of the equation x2−(k2−1)y2 = 1
are given by

(x, y) =

(
Vn(2k,−1)

2
, Un(2k,−1)

)
with n ≥ 1.

Corollary 3.16. Let k > 1. Then the equation x2 − (k2 − 1)y2 = −1 has no positive integer
solutions.

Proof. The period length of continued fraction expansion of
√
k2 − 1 is always even by Theorem

3.9. Thus by Lemma 2.2, it follows that there is no positive integer solutions of the equation
x2 − (k2 − 1)y2 = −1.

Theorem 3.17. Let k > 3. Then the equation x2 − (k2 − 4)y2 = −4 has no positive integer
solutions.

Proof. Assume that k is odd. Then k2−4 is odd and thus the proof follows from Theorem 3.8 and
Corollary 2.12. Now assume that k is even. If (a, b) is a solution to the equation x2−(k2−4)y2 =
−4, then a is even. Thus we get

(a/2)2 − ((k/2)2 − 1)b2 = −1,

which is impossible by Corollary 3.16.

Now we give all positive integer solutions of the equations x2 − (k2 + 1)y2 = ±4 and
x2 − (k2 − 1)y2 = ±4.
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Theorem 3.18. Let k ≥ 1 and k 6= 2. Then all positive integer solutions of the equation x2 −
(k2 + 1)y2 = −4 are given by

(x, y) = (V2n−1(2k, 1), 2U2n−1(2k, 1))

with n ≥ 1.

Proof. Since k ≥ 1 and k 6= 2, it can be shown that 2k + 2
√
k2 + 1 is the fundamental solution

to the equation x2− (k2 + 1)y2 = −4. Then by Theorem 2.6, all positive integer solutions of the
equation x2 − (k2 + 1)y2 = −4 are given by

xn + yn
√
k2 + 1 = 2

(
2k + 2

√
k2 + 1

2

)2n−1

= 2

(
2k +

√
(2k)2 + 4
2

)2n−1

.

Let α =
2k+
√

(2k)2+4
2 and β =

2k−
√

(2k)2+4
2 . Then we get

xn + yn
√
k2 + 1 = xn +

yn
2

√
(2k)2 + 4 = 2α2n−1

and
xn − yn

√
k2 + 1 = xn −

yn
2

√
(2k)2 + 4 = 2β2n−1.

Thus it follows that
xn = α2n−1 + β2n−1 = V2n−1(2k, 1)

and

yn = 2
α2n−1 − β2n−1√

(2k)2 + 4
= 2

α2n−1 − β2n−1

α− β
= 2U2n−1(2k, 1)

by (1.1).

Now we can give the following corollary from Theorem 3.18 and identity (1.4).

Corollary 3.19. If (a, b) is a positive integer solution of the equation x2− (k2 +1)y2 = −4, then
a and b are even.

Since the proof of the following theorem is similar to that of Theorem 3.18 , we omit it.

Theorem 3.20. Let k > 1. Then all positive integer solutions of the equation x2−(k2−1)y2 = 4
are given by

(x, y) = (Vn(2k,−1), 2Un(2k,−1))

with n ≥ 1.

Theorem 3.21. Let k ≥ 1 and k 6= 2. Then all positive integer solutions of the equation x2 −
(k2 + 1)y2 = 4 are given by

(x, y) = (V2n(2k, 1), 2U2n(2k, 1))

with n ≥ 1.

Proof. Firstly, we show that if (a, b) is a solution to the equation x2− (k2 +1)y2 = 4, then a and
b are even. Assume that k is odd. Then k2 + 1 = 2t for some odd integer t. Since a2 − 2tb2 = 4,
it follows that a is even and therefore b is even. Now assume that k is even. Let d = k2 +1. Then
d is odd. Assume that a and b are odd integers. Let x1 = |db− ka| , y1 = |a− kb| . Then x1 and
y1 are odd integers. Moreover,

x2
1 − dy2

1 = (db− ka)2 − d(a− kb)2 = b2d(d− k2) + a2(k2 − d) = b2d− a2

= −(a2 − db2) = −4.

Thus x1 +y1
√
d is a positive solution of the equation x2− (k2 +1)y2 = −4, which is impossible

by Corollary 3.19. Therefore if a+b
√
d is any solutions of the equation x2−dy2 = 4, then a and b
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are even integers and thus a
2 +

b
2

√
d is a solution to the equation x2−dy2 = 1. Then it follows that

the fundamental solution of the equation x2−dy2 = 4 is 4k2+2+4k
√
d by Corollary 3.10. Thus

by Theorem 2.5, it follows that all positive integer solutions of the equation x2− (k2 + 1)y2 = 4
are given by

xn + yn
√
k2 + 1 = 2

(
4k2 + 2 + 4k

√
k2 + 1

2

)n
= 2

(
4k2 + 2 + 2k

√
(2k)2 + 4

2

)n
.

Let α =
2k+
√

(2k)2+4
2 and β =

2k−
√

(2k)2+4
2 . Then

α2 =

(
2k +

√
(2k)2 + 4
2

)2

=
4k2 + 2 + 2k

√
(2k)2 + 4

2

and

β2 =

(
2k −

√
(2k)2 + 4
2

)2

=
4k2 + 2− 2k

√
(2k)2 + 4

2
.

Thus it follows that xn+ yn
√
k2 + 1 = xn+

yn
2

√
(2k)2 + 4 = 2α2n and xn− yn

2

√
(2k)2 + 4 =

2β2n. Then it is seen that
xn = α2n + β2n = V2n(2k, 1)

and

yn = 2
α2n − β2n√
(2k)2 + 4

= 2
α2n − β2n

α− β
= 2U2n(2k, 1),

by (1.1).

It can be shown that if k > 2, then the continued fraction expansion of
√
k2 − k is [k −

1, 1, 2(k − 1)] (see [2], page 234). Therefore we can give the following corollary easily.

Corollary 3.22. Let k > 2. Then the equation x2 − (k2 − k)y2 = −1 has no positive integer
solutions.

Corollary 3.23. Let k ≥ 2 and k 6= 3. Then the equation x2 − (k2 − 1)y2 = −4 has no positive
integer solutions.

Proof. Assume that k is even. Then k2 − 1 is odd and the proof follows from Theorem 3.8 and
Corollary 3.16.

Assume that k is odd. Then k2 − 1 is even. Now assume that a2 − (k2 − 1)b2 = −4 for some
positive integers a and b. Then a is even and this implies that

(a/2)2 − [
(
k2 − 1

)
/4]b2 = −1.

This is impossible by Corollary 3.22, since(
k2 − 1

)
/4 = ((k + 1)/2)2 − (k + 1)/2.

Continued fraction expansion of
√

5 is
[
2, 4
]
. Then the period length of the continued fraction

expansion of
√

5 is 1. Therefore the fundamental solution to the equation x2−5y2 = 1 is 9+4
√

5
and the fundamental solution to the equation x2−5y2 = −1 is 2+

√
5 by Lemma 2.2. Therefore,

by using (1.3), we can give the following corollaries easily.

Corollary 3.24. All positive integer solutions of the equation x2 − 5y2 = 1 are given by

(x, y) =

(
L6n

2
,
F6n

2

)
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with n ≥ 1.

Corollary 3.25. All positive integer solutions of the equation x2 − 5y2 = −1 are given by

(x, y) =

(
L6n−3

2
,
F6n−3

2

)

with n ≥ 1.
It can be seen that fundamental solutions of the equations x2 − 5y2 = −4 and x2 − 5y2 = 4

are 1 +
√

5 and 3 +
√

5, respectively. Thus we can give following corollaries.

Corollary 3.26. All positive integer solutions of the equation x2 − 5y2 = 4 are given by

(x, y) = (L2n, F2n)

with n ≥ 1.

Corollary 3.27. All positive integer solutions of the equation x2 − 5y2 = −4 are given by

(x, y) = (L2n−1, F2n−1)

with n ≥ 1.
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