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Abstract. Let k be a natural number and d = k* 4+ 4 or k*> £ 1. In this paper, by using
continued fraction expansion of v/d, we find fundamental solution of the equations x> —dy? = +1
and we get all positive integer solutions of the equations 2> — dy*> = +1 in terms of generalized
Fibonacci and Lucas sequences. Moreover, we find all positive integer solutions of the equations
2?2 — dy? = 44 in terms of generalized Fibonacci and Lucas sequences.

1 Introduction

Let d be a positive integer that is not a perfect square. It is well known that the Pell equation
x> — dy? = 1 have always positive integer solutions. When N = 1, the Pell equation 2> — dy? =
N may not has any positive integer solution. It can be seen that the equations 2> — 33> = —1
and 2> — 7y*> = —4 have no positive integer solutions. Whether or not there exists a positive
integer solution to the equation x> — dy> = —1 depends on the period length of the continued
fraction expansion of v/d (See section 2 for more detailed information). When F is a positive
integer and d € {k* =4, k* + 1}, positive integer solutions of the equations z* — dy* = +4 and
22 — dy* = £1 have been investigated by Jones in [6] and the method used in the proofs of the
theorems is the method of descent of Fermat. The same or similar equations are investigated by
some other authors in [18], [9], [10], [17], [8], and [16]. Especially, when a solution exists, all
positive integer solutions of the equations 2> — dy? = +4 and 2> — dy*> = %1 are given in terms
of the generalized Fibonacci and Lucas sequences. In this paper, if a solution exists, we will use
continued fraction expansion of v/d in order to get all positive integer solutions of the equations
2? —dy* = £1 whend € {k* £ 4, k* =1} . Moreover, we will find all positive integer solutions
of the equations 2* — dy> = +4 whend € {k* £4, k> +1}.

Now we briefly mention the generalized Fibonacci and Lucas sequences (U, (k,s)) and
(V. (k,s)). Let k and s be two nonzero integers with k> 4+ 4s > 0. Generalized Fibonacci
sequence is defined by

Uo (k,s) =0,U, (k,s) =1and Uy (k,s) = kU, (k, s) + sU,—1 (k, s)
for n > 1 and generalized Lucas sequence is defined by
Vo (k,s) =2,Vi(k,s) =kand V,41 (k,s) = kV, (k,s) + sV,_1 (k, 5)

for n > 1, respectively. For k = s = 1, the sequences (U,,) and (V},) are called Fibonacci and
Lucas sequences and they are denoted as (F,) and (L,,) , respectively. For k = 2 and s = 1, the
sequences (U,,) and (V},) are called Pell and Pell-Lucas sequences and they are denoted as (P,,)
and (Q,,) , respectively. It is well known that
a” — ﬁn

a—pf

where o = (k FVIE T 43) /2 and § = (k VT 45) /2. The above identities are known
as Binet’s formulae. Clearly, a« + 3 = k, a — 8 = Vk?+4s, and a8 = —s. Especially, if

U, (k,s) = and V,, (k,s) = " 4+ 8"
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a:(k:—i-\/m)ﬂandﬁ:(k—\/m)ﬂ,thenweget

an_ﬂn

a—p
Ifa= (k—!—%ﬂ)/Zandﬁ: (k—m>/2,thenweget

U, (k1) = and V,, (k,1) = o" + B". (1.1)

a” — ﬁ"

U, (k,—1) = and V,, (k, —1) = o” + B". (1.2)

Also, if « = (l + \6) /2 and B = <1 - \6) /2 , then we get

an_ﬁn
Fp=—""—
a—p

Moreover, if k is even, then it can be easily seen that

and L, = a" + 5" (1.3)

U, (k,£1) is odd < n is odd,

Uy, (k,£1) is even < n is even,

Vi (k,£1) is even for all n € N. (1.4)

If £ is odd, then
2| Vilk,£1) © 2| Uy(k,£1) & 3 | n.

For more information about generalized Fibonacci and Lucas sequences, one can consult [14],
[71, [13], [9], and [10].

2 Preliminaries

Let d be a positive integer which is not a perfect square and N be any nonzero fixed integer.
Then the equation 2> — dy> = N is known as Pell equation. For N = =1, the equations
22 —dy?> = 1 and 2> — dy> = —1 are known as classical Pell equation. If a> — db*> = N,
we say that (a, b) is a solution to the Pell equation 2> — dy> = N. We use the notations (a, b)
and a + b\/d interchangeably to denote solutions of the equation 2> — dy> = N. Also, if a and
b are both positive, we say that a + bv/d is positive solution to the equation z> — dy®> = N.
Continued fraction plays an important role in solutions of the Pell equations z> — dy? = 1 and
22 — dy> = —1. Let d be a positive integer that is not a perfect square. Then there is a continued
fraction expansion of V/d such that vd = [ao, 1,02, ..., Q1_1, Zao], where [ is the period length
and the a;’s are given by the recursion formula;

1
O — af

ap = \/ﬁ, ar = I_akJ and A1 = s k IO7 1,2,3,...

Recall that a; = 2ag and a;., = a;, for k > 1. The n'" convergent of Vd forn > 0is given by

P 1
= =ag, ay, ...,an] = ag + —_—
dn a; +

1

1
An—1t g7

Let 2 +y;V/d be a positive solution to the equation z> — dy> = N. We say that x| + y;1/d is the
fundamental solution of the equation 2> — dy?> = N, if 2, + 1,V/d is a different solution to the
equation z2 —dy?> = N, then x|+, Vd < x5 +y2\/ﬁ. Recall that if @+ bv/d and r + sv/d are two
solutions to the equation z2 —dy? = N, then a = r if and only if b = s, and a +bVd < r+sV/d if
and only if @ < 7 and b < s. The following lemmas and theorems can be found many elementary
textbooks.
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Lemma 2.1. If 2| +y;V/d is the fundamental solution to the equation x> — dy* = —1, then (x| +
y1V/d)? is the fundamental solution to the equation z*>—dy* = 1.

If we know fundamental solution of the equations 2> — dy> = +1 and 2> — dy? = +4, then
we can give all positive integer solutions to these equations. For more information about Pell
equation, one can consult [12], [15], and [4]. Now we give the fundamental solution of the
equations 2> — dy> = +1 by means of the period length of the continued fraction expansion of

V.

Lemma 2.2. Let | be the period length of continued fraction expansion of \/d. If | is even, then
the fundamental solution to the equation x> — dy* = 1 is given by

a1+ yVd=p1 +qVd
and the equation x> — dy> = —1 has no integer solutions. If | is odd, then the fundamental
solution of the equation x> — dy*> = 1 is given by

T+ yl\/g =pu-1+ Q2l—1\/g~

and the fundamental solution to the equation x> — dy* = —1 is given by

z1 +yivVd=pi + g1V

Theorem 2.3. Let z:+y1V/d be the fundamental solution to the equation x> — dy* = 1. Then all
positive integer solutions to the equation x* — dy* = 1 are given by
o+ ynVd = (z1 + 11 Vd)"

withn > 1.

Theorem 2.4. Let x+y;V/d be the fundamental solution to the equation x> — dy* = —1. Then

all positive integer solutions to the equation x> — dy*> = —1 are given by
Tn 4 yuVd = (z1 + y1Vd)> !
withn > 1.
Now we give the following two theorems from [15]. See also [4].

Theorem 2.5. Let z:+y; v/ d be the fundamental solution to the equation x> — dy* = 4. Then all

positive integer solutions to the equation x> — dy* = 4 are given by

(z1 + yVd)"

:En +yn\/g: 2n71

withn > 1.

Theorem 2.6. Let x1+y,\/d be the fundamental solution to the equation x> — dy* = —4. Then

all positive integer solutions to the equation x> — dy*> = —4 are given by
(21 +yvVd)*!
xn + yn\/g = 4”—]

withn > 1.
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From now on, we will assume that k is a natural number. We give continued fraction expan-
sion of v/d for d = k* + 4. The proofs of the following two theorems are easy and they can be
found many text books on number theory as an exercise (see, for example [2]).

Theorem 2.7. Let k > 1. Then

k, %,2/{} . ifkis even,

N
VE2 4= [k7%71717%72k}, if k is odd.

Theorem 2.8. Let k > 3. Then

[kf 1,1, 553 2 B3 1 (k- 1)} if ks odd,
Vi —4= [k— 1,1, 521 2k — 1)] L ifkisevenand k # 4

[3,2,6], ifk=4

Corollary 2.9. Let k > 1 and d = k> + 4. If k is odd, then the fundamental solution to the
equation x* — dy> = —1 is

B +3k kK41
z1+y1\/3= ; + ;\/E

If k is even, the equation x> — dy> = —1 has no positive integer solutions.

Proof. Assume that k is odd. Then the period length of the continued fraction expansion of
V'k? + 4 is 5 by Theorem 2.7. Therefore the fundamental solution of the equation 2 —dy?> = —1
is p4 + quv/d by Lemma 2.2. Since

,
p_ | :lc-&2-3k
94 (k—l)/2+l+j @7

the proof follows. If k is even, then the period length is even by Theorem 2.7 and therefore
2?2 — dy* = —1 has no positive integer solutions by Lemma 2.2. O

Corollary 2.10. Let k > 1 and d = k*> + 4. Then the fundamental solution to the equation
22 —dy?> =1is
k22+2 + 5Vd, ifkis even,

2
(@+@\/¢§) . ifkis odd.

z +y1Vd =

Proof. If k is even, then the proof follows from Lemma 2.2 and Theorem 2.7. If k is odd, then

the proof follows from Corollary 2.9 and Lemma 2.1. O
From Lemma 2.2 and Theorem 2.8, we can give the following corollary.

Corollary 2.11. Let k > 3 and d = k* — 4. Then the fundamental solution to the equation
22 — dy? = 1 is given by

=2 | k A
+ ,\/37 if k is even,
1+ yVd = Fok L Kol f- -
5 —I—T\/E, if k is odd.

Corollary 2.12. Let k > 3. Then the equation z* — (k* — 4)y*> = —1 has no integer solutions.
Proof. The period length of continued fraction expansion of v/k% — 4 is always even by Theorem

2.8. Thus by Lemma 2.2, it follows that there is no positive integer solutions of the equation
22— (k? —4)y* = —1. u
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3 Main Theorems

Theorem 3.1. Let k > 1 and d = k*> + 4. Then all positive integer solutions of the equation
x> — dy?> = 1 are given by

(z,y) = Pt Uzngfk’l)) , if k is even,
Y (Vénng)’ U(,ngﬁl)) , l‘fk is Odd,

withn > 1.

Proof. Assume that k is even. Thenby Corollary 2.10 and Theorem 2.3, all positive integer
solutions of the equation 2> — dy?> = 1 are given by

xn+yn¢a:<’“ r2.t f)

withn > 1. Let g = k+2+kfandﬁl—k—+2—k d. Then

Tn + yn\/g = arll and z,, — yn\/g = ﬁ?

Thus it follows that z,, = % and y,, = O‘g\_/’g’n. Let
B k+\/k2+4 and g B VEEA

2
Then it is seen that o> = o and 8% = $3;. Thus it follows that

a2n_._ﬂ2n _ ‘/ZTL(kyl)

S )
and
_ a2n _ an 6271 UZn(k 1)
n 2Vd 2(@ - B) 2

by (1.1). Now assume that £ is odd. Then by Corollary 2.10 and Theorem 2.3, we get

B3k 4+1 A\
xn+ym:<( Pk, ;@)

withn > 1. Let

B3k K41\
alz( + + +\/&>

2 2
and 5
B+3k E+1
= - /d
= (555
Then
T, + yn\/g =aof and z,, — yn\/g = Ar.
Thus it is seen that z,, = M and y,, = alz;gr_ Let
k+VE2+4 k—Vk2+4
S e R

i 2
Since a; = ("SJFT% + %\/ﬁ) = (a?)? = af and thus ;) = 3%, we get

. a6n+66n _ %n(k71)
" 2 N 2

and
B _Bén B aén _B(m B U6n(k'71)
T T 2emp) T2
by (1.1). o
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Theorem 3.2. Let k > 1 be an odd integer and d = k* + 4. Then all positive integer solutions of
the equation x> — dy> = —1 are given by

o ‘/6n—3(k7 1) U6n—3(k7 1)
(@y) = ( 2 T 2
withn > 1.

Proof. Assume that k£ > 1 be an odd integer. Then by Corollary 2.9 and Theorem 2.4, all positive
integer solutions of the equation 2> — dy*> = —1 are given by

B3k k1 o\
xn+yn\/E:( * + * \/E)

2 2
withn > 1. Let ay = ¥43k 1 K+l /g and 8, = K43k _ K’+1. /7 Then it follows that
2 2 2 2
Ty +ynVd =" and z, — y,Vd = g3

2n—1 2n—1 2n—1 2n—1
1 5 1 1 1 I et

and therefore z,, = and y,, = 574

k+Vk?+4 k—Vk*+4
azfandﬁ:f.

Then it is seen that

3
2 4 3 2 1
a3:<k+\/2k + ) _k 42r3k+k;— Viea

and

3
k- Vi +4 K +3k B+1

Thus it follows that

(a3)2n71 + (63)27171 _ a6n73 +ﬁ6n73 _ ‘/’()7173(]67 1)

n = 2 - 2 2
and
= (a3)2n—l _ (ﬁ3)2n—1 _ a6n—3 _ 56n—3 _ U6n73(ka 1)
" 2Vd 2(a = B) 2
by (1.1). o

Theorem 3.3. Let k > 3 and d = k* — 4. Then all positive integer solutions of the equation

2? — dy? = 1 are given by

Voo (k,—1) Usn(k,—1 . .
27;(27 >’ 2n(27 )) , lf‘k is even,

r,Y)=
( ) (Vm(’;ﬁl)’ U}n(fszl)) . ifk is odd,

withn > 1.

Proof. Assume that k is even. By Corollary 2.11 and Theorem 2.3, all positive integer solutions
of the equation 2> — dy> = 1 are given by

-2 k ~\"

Let a; = # + 4&y/dand g = # — £V/d. Then it follows that

Tp + yn\/;i = O‘? and =, — yn\/;i = /Bln
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and therefore z,, = M and y,, = 2 f . Let
k+VEk*—4 k—Vk>—4
Zfandﬁzf

Then it is seen that o> = o and 3> = 3,. Thus it follows that

Otzn + an _ ‘/Zn(kv *1)
2 N 2

Tp =
and
B _ﬁZn B aZn _6271 B Uzn(]{i,—l)
T Tava T 2a=B) 2
by (1.2). Now assume that & is odd. Then by Corollary 2.11 and Theorem 2.3, we get

K -3k K2-1 "
o:n—i-yn\/g ( 3 + 2 \/&)

Let Q) = Mﬁ%"‘%\/& and ﬁ] = kzgi% - kz*l\/g Then In‘l‘@/nﬁ* OZ] and Ty — yrb\/a =

By, Thus it follows that a, = “L7%C and y, = S5 Leta = BV ang g = AV

Since

3
2_4 3 _ 2_1
a3:<’”vk ) R N A

2 2 2
and \
k—Vk:—4 B -3k k-1
3 —_ — — =
B = < 5 ) = 3 Vd = B,
we get
I Oé3n+ﬂ3" B Vv3n(k37_1)
" 2 - 2
and
_ _6371 _ a3n _5371 _ U3n(k,—l)
TTvd T 2(a—p) 2
by (1.2). o

Now we give all positive integer solutions of the equations x> — (k:2+4)y = 44 and 2> — (k*—
4)y* = +4. Before giving all positive integer solutions of the equations z% — (k? + 4)y* = +4,
we give the following lemma which will be useful for finding the solutions.

Lemma 3.4. Let a+b\/d be a positive integer solution to the equatlon 22 —dy? =4 Ifa > b*—2
, then a + b\/d is the fundamental solution to the equation x> — dy* =

Proof. If b = 1, then the proof is triVial. Assume that b > 1. Suppose that z; + y;1/d is a
positive solution to the equation x> — dy*> = 4 such that 1 < y; < b. Then it follows that
a?—db* =4 =27~ dy1 and thus d = (2% — )/y1 = (a® —4)/b%. This shows that 226> — y?a* =
4? — 4yt = 4(b* — y?) > 0. Thus

(216 +310) /2][(21b — 1) /2] = b* — i > 1.

It can be seen that x1b + y1a and z1b — y1a are even integers. Let k; = (21b + y1a)/2 and
ky = (z1b — y1a)/2. Then kiky, = b*> — y? and a = (ky — k2)/y1. Thus

:kl—k2<k1k2—1:b2—yl—1

Y1 Y1 Y1

<P -y —1<b -2,

which is a contradiction since a > b* — 2. O



220 Refik Keskin and Merve Giiney Duman

Theorem 3.5. Let k > 1. Then all positive integer solutions of the equation 2> — (k> +4)y* = 4
are given by

(@,y) = (Van(k, 1), Uan(k, 1))
withn > 1.

Proof. Leta = k*+2and b = k. Then a+bv/k? + 4 is a positive integer solution of the equation
22 — (k> +4)y*> = 4. Since a = k*> + 2 > k? — 2 = b — 2, it follows that k*> + 2 + kv/k? + 4 is
the fundamental solution of the equation 2> — (k* +4)y*> = 4, by Lemma 3.4. Thus by Theorem
2.5, all positive integer solutions of the equation 2> — dy*> = 4 are given by

(R 42+ bV A" (kz +2 4 kVEZ +4>"
on-1 - 2 '

2 2 2 _ 2 o, .
Let o = EAZEEVIEH gpd 8 = E42=kVEH Then it is seen that

T, + yn\/a = 2af and z,, — yn\/g =267

Thus it follows that ,, = af + }" and y,, = %. Let

k+Vk2+4 k—Vk*+4
a=—""" T gndpg="—""T7
2 2
Then )
) k+VEk2+4 E+2+kVEk2+4
o = = = Q]
2 2
and

2
)
B = (k 2k +4> = pi.

Therefore we get

o — G g2 _ gon
Vi a-p

by (1.1). |

Tn =" + 7" =V, (k,1) and y,, = = Usn(k, 1)

Theorem 3.6. Let k > 1. Then all positive integer solutions of the equation x* — (k*+4)y* = —4
are given by
(z,y) = Van—1(k, 1), Uzn—1(k, 1))
withn > 1.
Proof. Since k* — (k* +4) = —4, it follows that k + v/k2 + 4 is the fundamental solution of

the equation 2> — (k* + 4)y> = —4. Thus by Theorem 2.6, all positive integer solutions of the
equation 2> — dy> = —4 are given by

2n—1
(k+ VR4 (k—i— ViZ +4>

xn +yﬂ\/g: 471—1 2

Let o = krvii+d Vzkz*"‘ and g = E=vi44 Vzkz“. Then it follows that

Tn + yn\/& = 202" and T, — yn\/g _ 26271_1'

Therefore
ZCn:Oézn_l _l_BZn—l :‘/Z’rtfl(kal)
and 2 1 2 1 2 1 2 1
ao2n—1 — n— a2l n—
Yn = ﬁ = B = UZn—l(k; 1)
Vd a—p

by (1.1). O
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Theorem 3.7. Let k > 3. Then all positive integer solutions of the equation x> — (k* — 4)y* = 4
are given by

(z,y) = (Va(k, =1), Un(k, 1))
withn > 1.

Proof. Since k*> — (k* — 4) = 4, it is seen that k + v/k? — 4 is the fundamental solution of the
equation 2> — (k> —4)y? = 4. Letd = k> —4. Then by Theorem 2.5, all positive integer solutions
of the equation 2> — dy> = 4 are given by

(k+ VEZ —4) 2<k+\/m>"
=2 (YR

xn+yn\/g:T

Let q = V=4 V2k2_4 and 8 = L Ve V2k2_4. Then it follows that z,, + y,v/d = 2a" and z,, — y,Vd =

25™. Thus we get
an_ﬁn B an_Bn B

Tp=0a" 4+ 0" =V, (k,—1)and y, = i a3 Un(k,—1)
by (1.2). O
The following theorem is given in [5].
Theorem 3.8. Let d be an odd positive integer. If the equation x> — dy*> = —4 has a positive
integer solution, then the equation x> — dy*> = —1 has positive integer solutions.

Now we give the continued fraction expansions of v/k2 + 1 and v/k2 — 1. Since the continued
fraction expansions of them are given in [3], we omit their proofs.

Theorem 3.9. If k > 1, then VK> + 1 = [k, 2k]. If k > 1, then VEZ — 1 = [k— 1,1,2(k — 1)]

The proofs of the following corollaries follow from Lemma 2.2 and Theorem 3.9 and there-
fore we omit their proofs.

Corollary 3.10. Let k > 1 and d = k*> + 1. Then the fundamental solution of the equation
2?2 —dy?> =1is
o1 +y1Vd =2k + 1+ 2kVd.

Corollary 3.11. Let k > 1 and d = k*> + 1. Then the fundamental solution of the equation
2?2 —dy?> = —1is
1 +yVd=k+Vd

Corollary 3.12. Let k > 1 and d = k* — 1. Then the fundamental solution of the equation
22 —dy?> =1is
T+ Uy Vd=k+Vd.

Theorem 3.13. Let k > 1. Then all positive integer solutions of the equation x> — (k> +1)y* = 1

are given by
Von (2K, 1
(xvy) = (2(2)7 U2n(2k7 1))

withn > 1.

Proof. By Corollary 3.10 and Lemma 2.2, it follows that all positive integer solutions of the
equation 22 — (k% 4+ 1)y> = 1 are given by

xn+yn\/ﬁ=(2k2+l+2k\/m>"= <2k2+1+k (2k)2+4> .

Let o = 2V (kI v (2k) 4 and g = E VA i V(ZZIC)ZM. Then

2
2
2
2 <2k+V(22k) +4> =22+ 1+ kyJ(2k)2 + 4

o =
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and

2
52:<2k— /(22k)2+4> =2k +1—k (2k)2 + 4.

Thus it follows that

Tn +ynVEE+1 =2, + %" (2k)2 +4 =™

Tn —YnVEE+1 =2, — \/Zk 24 =pm,

. a2n+52n B ‘/'2"(2]{71)
" 2 N 2

and

Then it is seen that

and
ﬁZn 2n _ 6271
(2k:) T4 a-p

by (1.1). O

= Unn (2K, 1)

Yn =

Since the proof of the following theorems are similar to that of the above theorems, we omit
them.
Theorem 3.14. Let k > 1. Then all positive integer solutions of the equation z* — (k* + 1)y* =
—1 are given by

() = (Lot

, Uzp—1 (2K, 1))
withn > 1.

Theorem 3.15. Let k > 1. Then all positive integer solutions of the equation x> — (k* —1)y? = 1

are given by
w2k, —1
(f,y) = <‘/Ha Un(2k7 1))

2
withn > 1.
Corollary 3.16. Let k > 1. Then the equation x> — (k* — 1)y*> = —1 has no positive integer
solutions.

Proof. The period length of continued fraction expansion of v/k2 — 1 is always even by Theorem
3.9. Thus by Lemma 2.2, it follows that there is no positive integer solutions of the equation

22— (k- 1)y* = —1. o
Theorem 3.17. Let k > 3. Then the equation x> — (k* — 4)y*> = —4 has no positive integer
solutions.

Proof. Assume that k is odd. Then k%> —4 is odd and thus the proof follows from Theorem 3.8 and
Corollary 2.12. Now assume that k is even. If (a, b) is a solution to the equation 22 — (k> —4)y* =
—4, then a is even. Thus we get

(a/2) = ((k/2)* = 1)b* = —1,
which is impossible by Corollary 3.16. O

Now we give all positive integer solutions of the equations 2> — (k? + 1)y> = 44 and
22— (K = 1)y* = +4.
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Theorem 3.18. Let k > 1 and k # 2. Then all positive integer solutions of the equation x* —
(k* + 1)y> = —4 are given by

(l‘,y) = (‘/2"_]<2k, 1)5 2U2n—1(2k7 1))
withn > 1.

Proof. Since k 2 1 and k # 2, it can be shown that 2k + 2v/k2? + 1 is the fundamental solution
to the equation 2?2 — (k* + 1)y* = —4. Then by Theorem 2.6, all positive integer solutions of the
equation 22 — (k? 4+ 1)y? = —4 are given by

2n—1 2n—
2 2vkr 4+ 1 2k 4+ +/(2k)2+ 4
Tn + Yn VK> + :2(k+2k+> :2< * (Zk) + )

Let o = 2V 2R Zk 4 and =" Zk * Then we get

l‘n+ynm:$n+% (2k)2+4:2a2n—1

and
Tpn —YnVEE+1 =12, — \/2k 244 =2p""1
Thus it follows that
Tn = a2n71 + /82”71 = V2n—1(2k7 1)

and 1 2 1 2 1 2 1
Yy =2 - _ @ -8
(2k)2 +4 a—p

by (1.1). O

= 2Us,_1 (2K, 1)

Now we can give the following corollary from Theorem 3.18 and identity (1.4).

Corollary 3.19. If (a, b) is a positive integer solution of the equation x* — (k> + 1)y*> = —4, then
a and b are even.

Since the proof of the following theorem is similar to that of Theorem 3.18 , we omit it.
Theorem 3.20. Let k > 1. Then all positive integer solutions of the equation x> — (k* —1)y* = 4
are given by

(x,y) = (Vo (2k, —1),2U0,(2k, —1))
withn > 1.

Theorem 3.21. Let k > 1 and k # 2. Then all positive integer solutions of the equation x> —
(k? + 1)y* = 4 are given by

(z,y) = (Van(2k, 1), 20U, (2k, 1))
withn > 1.

Proof. Firstly, we show that if (a, b) is a solution to the equation 2> — (k* + 1)y = 4, then a and
b are even. Assume that k is odd. Then k2 + 1 = 2¢ for some odd integer t. Since a? — 2th? = 4,
it follows that a is even and therefore b is even. Now assume that k is even. Let d = k%> + 1. Then
d is odd. Assume that a and b are odd integers. Let 1 = |db — ka|, y; = |a — kb|. Then x; and
y) are odd integers. Moreover,

—dy? = (db—ka)* — d(a— kb)? = bd(d — k?) + a?(k? — d) = b*d — o
= —(a®—db*) = —

Thus z, + y;V/d is a positive solution of the equation 2 — (k> + 1)y> = —4, which is impossible
by Corollary 3.19. Therefore if a+b+/d is any solutions of the equation 2> —dy”> = 4, then a and b
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are even integers and thus 5+ % V/d is a solution to the equation 2> —dy® = 1. Then it follows that

the fundamental solution of the equation 2> — dy? = 4 is 4k> +2+4k+/d by Corollary 3.10. Thus
by Theorem 2.5, it follows that all positive integer solutions of the equation 2> — (k? + 1)y = 4
are given by

2 N ! 4R 24+ 2k /2R 14\
JETT 2(41: +2+24k k+1> :2<k+ +I;\/(k)+ )

Tn + Yn 24+ 1=
Let q = 2V (kI V(sz)ZH and 8 = R VA e W Then

2
e <2k+\/(2k)2+4> _ 442+ 2k 2R+ 4
2 2

and

P <2k—\/m>2_4k2+2—2k\/m
N 2 N 2 ’

Thus it follows that @, + yn, Vk*> + 1 =z, + % /(2k)> + 4 = 20*" and z,, — %=/ (2k)*> + 4 =
23", Then it is seen that
Tn = a2n + 5271 = ‘/Zn(Zka 1)

and
a2n - 6271 _ a2n o B2n

@ id o a-8
by (1.1). o

Yn =2 = 20U, (2k, 1),

It can be shown that if £ > 2, then the continued fraction expansion of vk* — k is [k —
1,1,2(k — 1)] (see [2], page 234). Therefore we can give the following corollary easily.

Corollary 3.22. Let k > 2. Then the equation x> — (k* — k)y*> = —1 has no positive integer
solutions.

Corollary 3.23. Let k > 2 and k # 3. Then the equation z*> — (k* — 1)y?> = —4 has no positive
integer solutions.

Proof. Assume that k is even. Then k? — 1 is odd and the proof follows from Theorem 3.8 and
Corollary 3.16.

Assume that k is odd. Then k* — 1 is even. Now assume that a> — (k*> — 1)b*> = —4 for some
positive integers a and b. Then a is even and this implies that
(a/2)> = [(K* = 1) /4> = 1.
This is impossible by Corollary 3.22, since
(K> =1) /A= ((k+1)/2)* = (k+1)/2.
|

Continued fraction expansion of v/5 is [2, Z] . Then the period length of the continued fraction

expansion of v/5 is 1. Therefore the fundamental solution to the equation 22 — 53> = 1is 9+4v/5
and the fundamental solution to the equation z> — 5y*> = —1 is 2++/5 by Lemma 2.2. Therefore,
by using (1.3), we can give the following corollaries easily.

Corollary 3.24. All positive integer solutions of the equation x* — 5y*> = 1 are given by

_ L6n F6n
(%y)—( 2 9 2 )
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withn > 1.

2 2

Corollary 3.25. All positive integer solutions of the equation x* — Sy* = —1 are given by

(1) = Len—3 Fen—3
7y 2 b 2

withn > 1.
It can be seen that fundamental solutions of the equations 2> — 5y> = —4 and 2> — 5y> = 4
are 1 4+ /5 and 3 + /5, respectively. Thus we can give following corollaries.

Corollary 3.26. All positive integer solutions of the equation x> — 5y*> = 4 are given by

(Z’y) = (LZm FZn)

withn > 1.

2 2

Corollary 3.27. All positive integer solutions of the equation x= — Sy* = —4 are given by

(,y) = (Lan—1, Frn—1)

withn > 1.
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