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Abstract. In this work, the authors investigated the initial Chebyshev polynomial class of
analytic functions based on quasi-subordination. The coefficient estimates including the relevant
connection to the Fekete-Szegö inequality of functions belonging to the class G(nq, γ, t) were
derived. Also, certain results for the associated classes involving subordination and majorization
were presented.

1 Introduction

Let Γ denote the class of functions of the form

f(z) = z +
∞∑
k=2

akz
k (1.1)

which is analytic in the unit disk E = {z : |z| < 1} and normalized by f(0) = f ′(0)− 1 = 0

Recall that S denotes the class of univalent functions. A function is said to be starlike if
Re
{
zf ′(z)
f(z)

}
> 0 and denoted by S∗, while a function is said to be convex if

Re
{

1 + zf ′′(z)
f ′(z)

}
> 0.

For two analytic functions f and g such that f(0) = g(0), we say that f is subordinate to g
in E and write f(z) ≺ g(z), z ∈ E, if there exists a Schwarz function w(z) with w(0) = 0 and
|w(z)| ≤ |z| such that f(z) = g(w(z)). Furthermore, if the function g is univalent in E, then we
have the following equivalence: f(z) ≺ g(z) ⇔ f(0) = g(0) and f(E) ⊂ g(E). (See details in
[4].

A function f is said to be quasi-subordinate to g in E and written as f(z) ≺q g(z), z ∈ E,
if there exists an analytic function ϕ(z) with |ϕ| ≤ 1, (z ∈ E) such that f(z)

ϕ(z) is analytic in

E and f(z)
ϕ(z) ≺ g(z), (z ∈ E), that is, there exists a Schwarz function w(z) such that f(z) =

ϕ(z)g(w(z)), z ∈ E defined by [6].

It is also seen that if ϕ(z) ≡ 1, (z ∈ E), then the quasi-subordination ≺q becomes the usual
subordination ≺, and for the Schwarz function w(z) = z, (z ∈ E), the quasi-subordination ≺q
becomes the majorization ‘�’. That is, f(z) ≺q g(z) ⇒ f(z) = ϕ(z)g(z) ⇒ f(z) � g(z),
z ∈ E. The concept of majorization was revealed by [3].
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The Sălăgean[8] differential operator is defined as follows: Let Dn : Γ −→ Γ, then

D0f(z) = f(z)

D1f(z) = zf ′(z)

(1.2)
...

Dnf(z) = z(Dn−1f(z))′

Applying (1.2) in (1.1), then we have

Dnf(z) = z
(
Dn−1f(z)

)′
= z +

∞∑
k=2

knakz
k (1.3)

Let γ > 0 (γ is real) such that (1.1) gives

f(z)γ =

(
z +

∞∑
k=2

akz
k

)γ
(1.4)

Thus, (1.4) can be rewritten as

f(z)γ = zγ(1 + a2z + a3z
2 + a4z

3 + ...)γ . (1.5)

then, the binomial expansion of (1.5) yields

f(z)γ = zγ + γa2z
γ+1 +

(
γ(γ − 1)

2
a2

2 + γa3

)
zγ+2 +(

γ(γ − 1)(γ − 2)
6

a3
2 + γ(γ − 1)a2a3 + γa4

)
zγ+3 + ... (1.6)

Finally applying (1.2) in (1.6), we obtain

Dnf(z)γ = zγ + 2nγa2z
γ+1 + 3n

(
γ(γ − 1)

2
a2

2 + γa3

)
zγ+2

+4n
(
γ(γ − 1)(γ − 2)

6
a3

2 + γ(γ − 1)a2a3 + γa4

)
zγ+3 + ... (1.7)

Chebyshev polynomial is a normal function used by numerical analyst and it can be categorized
into four kind. The first and second kind Tn(x) and Un(x) are the most related kind of polyno-
mial found in literature and they have numerous application in different fields.
The usual kind of the Chebyshev polynomials are the first and the second kind. In the case of
real variable x on [−1, 1], the first and second kind are defined by

Tn(x) = cosnθ

and

Un(x) =
sin(n+ 1)θ

sinθ

where the subscript n denotes the polynomial degree and where x = cosθ respectively.
Letting t = cosα, α ∈

(
−π3 ,

π
3

)
, one can obtain

H(z, t) =
1

1− 2tz + z2 = 1+
∞∑
k=1

sin(k + 1)α
sinα

zk = 1+2cosαz+(3cos2α−sin2α)z2+...(z ∈ E)

So, we write
H(z, t) = 1 + U1(t)z + U2(t)z

2 + ....(z ∈ U, t ∈ (−1, 1))
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where Un−1 = sin(k arccost)√
1−t2

for k ∈ N , are the second kind of the Chebyshev polynomials.

More so, we know that
Un(t) = 2tUn−1(t)− Un−2(t) (1.8)

and
U1(t) = 2t;U2(t) = 4t2 − 1;U3(t) = 8t3 − 4t;U4(t) = 16t4 − 12t2 + 1, .... (1.9)

The Chebyshev polynomials Tn(t); t ∈ [−1, 1] of the first kind have generating function of the
form

∞∑
n=0

Tn(t)z
n =

1− tz
1− 2tz + z2 . z ∈ E (1.10)

All the same, there is the following relationship between the Chebyshev polynomial of the first
kind Tn(x) and the second kind Un(t)

dTn(t)

dt
= nUn−1(t)Tn(t) = Un(t)− tUn−1(t)2Tn(t) = Un(t)− Un−2(t).

See details in [1].
In this present work, we focus mainly on determining the coefficient estimates including a
Fekete-Szegö inequality [2], [5], [7], [9] of functions belonging to the classes G(nq, γ, t), Gn(γ, t)
and the class involving majorization. In order to obtain our results, the following lemmas and
definitions shall be required.

Lemma 1.1. [10] If a function p ∈ P is given by

p(z) = 1 + p1z + p2z
2 + ... (z ∈ E), (1.11)

then |pk| ≤ 2, (k ∈ N), where P is the family of all functions analytic in E for which p(0) = 1
and Re p(z) > 0, (z ∈ E).

Lemma 1.2. [11] Let the Schwarz function w(z) be given by

w(z) = w1z + w2z
2 + w3z

3 + ..., (z ∈ E) (1.12)

then
|w1| ≤ 1, |w2 − tw2

1| ≤ 1 + (|t| − 1)|w1|2 ≤ max{1, |t|}, (1.13)

where t ∈ C.

Definition 1.3. Let H(z, t) ∈ P be univalent and H(z, t)(U) symmetrical about the real axis
(H(z, t))′(0) > 0. For t(−1, 1), γ > 0, n ∈ N and , a function f ∈ Γ is said to be in the class
G∗n(q, γ, t) if (

Dn+1f(z)γ

Dnf(z)γ
− 1
)
≺q (H(z, t)− 1), z ∈ E. (1.14)

and ϕ(z) which is analytic in E is of the form

ϕ(z) = d0 + d1z + d2z
2 + ... (1.15)

2 Main Results

Theorem 2.1. Let f(z)γ ∈ Γ of the form (1.4) belong to the class G∗n(q, γ, t), then

|a2| ≤
2t

|γ(2n+1 − 2n)|
(2.1)

and for some µ ∈ C,

|a3−ca2
2| ≤

2t
|γ(3n+1 − 3n)|

max

{
1,

∣∣∣∣∣4t2 − 1
2t

−
t
[
(3n+1 − 3n)(γ(γ − 1) + 2c)− 2γ2(22n+1 − 22n)

]
γ2(2n+1 − 2n)2

∣∣∣∣∣
}

(2.2)
where γ > 0, (γ is real),t ∈ (−1, 1) and n ∈ N . The result is sharp.
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Proof. Let f ∈ Γ, then for a Schwarz function ω(z) given by (1.12) and for an analytic function
ϕ(z) given by (1.15), we have(

Dn+1f(z)γ

Dnf(z)γ
− 1
)
= ϕ(H(ω(z), t)− 1), z ∈ E. (2.3)

In view of (2.3) we obtain

ϕ(H(ω(z), t)− 1) =
(
d0 + d1z + d2z

2 + ....
) (
U1(t)ω1z + (U2(t)ω

2
1 + U1(t)ω2)z

2 + ...
)

= d0U1(t)ω1z +
{
d0(U2(t)ω

2
1 + U1(t)ω2) + d1U1(t)ω1

}
z2 + ... (2.4)

Using the series expansion for (
Dn+1f(z)γ

Dnf(z)γ
− 1
)

gives

(
2n+1 − 2n

)
γa2z +

[(
22n − 22n+1) γ2a2

2 +
(
3n+1 − 3n

)(γ(γ − 1)
2

a2
2 + a3γ

)]
z2 + ... (2.5)

From the expansion (2.4) and (2.5) ,on equating the coefficients of z and z2 in (2.3) find that(
2n+1 − 2n

)
γa2 = d0U1(t)ω1 (2.6)

(
22n − 22n+1) γ2a2

2 +
(
3n+1 − 3n

)(γ(γ − 1)
2

a2
2 + a3γ

)
= d0(U2(t)ω

2
1 +U1(t)ω2)+d1U1(t)ω1

(2.7)
Now (2.6) gives

a2 =
d0U1(t)ω1

(2n+1 − 2n) γ
(2.8)

which in view of (2.7) yields that

γ
(
3n+1 − 3n

)
a3 =

(
2
(
22n+1 − 22n

)
γ −

(
3n+1 − 3n

)
(γ − 1)

)
d2

0U
2
1 (t)ω

2
1

2γ (2n+1 − 2n)2 +

d0(U2(t)ω
2
1 + U1(t)ω2) + d1U1(t)ω1 (2.9)

and therefore

a3 =
U1(t)

γ (3n+1 − 3n)[
d1ω1 + d0

{
ω2 +

((
2
(
22n+1 − 22n

)
γ −

(
3n+1 − 3n

)
(γ − 1)

)
d0U1(t)

2γ (2n+1 − 2n)2

)
+
U2(t)

U1(t)

}
ω2

1

]
(2.10)

For some c ∈ C, we obtain from (2.8) and (2.10)

a3 − ca2
2 =

U1(t)

γ (3n+1 − 3n)[
d1ω1 + d0

(
ω2 +

U2(t)

U1(t)
ω2

1

)
+

((
2γ2

(
22n+1 − 22n

)
−
(
3n+1 − 3n

)
(γ(γ − 1) + 2c)

)
d2

0U
2
1 (t)ω

2
1

2γ2 (2n+1 − 2n)2

)]
.(2.11)

Since ϕ(z) given by (1.15) is analytic and bounded in U , therefore on using [4],[p.172], we have
for some y(|y| ≤ 1);

|d0| ≤ 1 and d1 = (1− d2
0)y (2.12)
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On putting the value of d1 from (2.12) into (2.11), we get

a3 − ca2
2 =

U1(t)

γ (3n+1 − 3n)[
yω1 + d0

(
ω2 +

U2(t)

U1(t)
ω2

1

)
−

(((
3n+1 − 3n

)
(γ(γ − 1) + 2c)− 2γ2

(
22n+1 − 22n

))
U1(t)ω2

1

2γ2 (2n+1 − 2n)2 + yω1

)
d2

0

]
.(2.13)

If d0 = 0 in (2.13) then, ∣∣a3 − ca2
2

∣∣ ≤ U1(t)

|γ (3n+1 − 3n)|
. (2.14)

But if d0 6= 0, let us then suppose that

F (d0) = yω1 + d0

(
ω2 +

U2(t)

U1(t)
ω2

1

)
−(((

3n+1 − 3n
)
(γ(γ − 1) + 2c)− 2γ2

(
22n+1 − 22n

))
U1(t)ω2

1

2γ2 (2n+1 − 2n)2 + yω1

)
d2

0, (2.15)

which is a polynomial in d0 and have analytic in |d0| ≤ 1, and maximum of |F (d0)| is attained
at d0 = eiθ(0 ≤ θ < 2π). We find that max0≤θ<2π|F (eiθ)| = |F (1)| and

∣∣a3 − ca2
2

∣∣ ≤ U1(t)

γ (3n+1 − 3n)∣∣∣∣∣ω2 −

(((
3n+1 − 3n

)
(γ(γ − 1) + 2c)− 2γ2

(
22n+1 − 22n

))
2γ2 (2n+1 − 2n)2 U1(t)−

U2(t)

U1(t)

)
ω2

1

∣∣∣∣∣ . (2.16)

Using lemma 1.2 gives ∣∣a3 − ca2
2

∣∣
≤ U1(t)

|γ (3n+1 − 3n)|
max

{
1,

∣∣∣∣∣
((

3n+1 − 3n
)
(γ(γ − 1) + 2c)− 2γ2

(
22n+1 − 22n

))
2γ2 (2n+1 − 2n)2 U1(t)−

U2(t)

U1(t)

∣∣∣∣∣
}
.(2.17)

and the above inequality together with (2.14) establishes the result in (2.2).
2

Theorem 2.2. Let f(z)γ ∈ Γ of the form (1.4) belong to the class G∗n(q, γ, t), then

|a2| ≤
2t

|γ(2n+1 − 2n)|

and for some µ ∈ C,

|a3−ca2
2| ≤

2t
|γ(3n+1 − 3n)|

max

{
1,

∣∣∣∣∣4t2 − 1
2t

−
t
[
(3n+1 − 3n)(γ(γ − 1) + 2c)− 2γ2(22n+1 − 22n)

]
γ2(2n+1 − 2n)2

∣∣∣∣∣
}

where γ > 0, (γ is real),t ∈ (−1, 1) and n ∈ N . The result is sharp.

Proof. Let f ∈ G(nq, γ, t). Similar to the proof of Theorem 1. If ϕ(z) ≡ 1, then (1.15) evidently
implies that d0 = 1 and dn = 0, n ∈ N , hence, in view of (2.8) and (2.10) and Lemma 1.2, we
obtain the desired result of Theorem 2.2. 2
Here, the majorization and the result pertaining to it is contained in the following:

Theorem 2.3. If a function f ∈ Γ of the form (1.4) satisfies

Dn+1f(z)γ

Dnf(z)γ
− 1 << (H(z, t)− 1), z ∈ E. (2.18)
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then

|a2| ≤
2t

|γ(2n+1 − 2n)|
(2.19)

and for some µ ∈ C,

|a3 − ca2
2| ≤

2t
|γ(3n+1 − 3n)|

max

{
1,

∣∣∣∣∣4t2 − 1
2t

−
t
[
(3n+1 − 3n)(γ(γ − 1) + 2c)− 2γ2(22n+1 − 22n)

]
γ2(2n+1 − 2n)2

∣∣∣∣∣
}
(2.20)

where γ > 0, t ∈ (−1, 1),(γ is real) and n ∈ N . The result is sharp.

Proof. Following the proof of Theorem 2.1, if ω(z) ≡ z in (1.13), so that ω1 = 1 and ωn =
0, n = 2, 3, 4, 5, ... then in view of (2.8) and (2.10), we get

|a2| ≤
U1(t)

|γ(2n+1 − 2n)|
(2.21)

and

a3 − ca2
2 =

U1(t)

γ (3n+1 − 3n)[
d1 + d0

U2(t)

U1(t)
−

((
3n+1 − 3n

)
(γ(γ − 1) + 2c)− 2γ2

(
22n+1 − 22n

)
2γ2 (2n+1 − 2n)2

)
d2

0U1(t)

]
. (2.22)

On putting the value of d1 from (2.12) in (2.22), we get

a3 − ca2
2 =

U1(t)

γ (3n+1 − 3n)[
y + d0

U2(t)

U1(t)
−

([(
3n+1 − 3n

)
(γ(γ − 1) + 2c)− 2γ2

(
22n+1 − 22n

)]
U1(t)

2γ2 (2n+1 − 2n)2 + y

)
d2

0

]
.(2.23)

If d0 = 0, we get ∣∣a3 − ca2
2

∣∣ ≤ U1(t)

|γ (3n+1 − 3n)|
. (2.24)

and if d0 6= 0, let

G(d0) := y + d0
U2(t)

U1(t)
−([(

3n+1 − 3n
)
(γ(γ − 1) + 2c)− 2γ2

(
22n+1 − 22n

)]
U1(t)

2γ2 (2n+1 − 2n)2 + y

)
d2

0 (2.25)

which being a polynomial in d0 is analytic in |d0| ≤ 1, and maximum of |G(d0)| is attained at
d0 = eiθ(0 ≤ θ < 2π). We thus find max0≤θ<2π|G(eiθ)| = |G(1)| and consequently

∣∣a3 − ca2
2

∣∣ ≤ U1(t)

|γ (3n+1 − 3n)|∣∣∣∣∣
[(

3n+1 − 3n
)
(γ(γ − 1) + 2c)− 2γ2

(
22n+1 − 22n

)]
U1(t)

2γ2 (2n+1 − 2n)2 − U2(t)

U1(t)

∣∣∣∣∣ . (2.26)

This completes the proof. 2
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