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Abstract. Akyol and Sahin recently [1], defined conformal anti-invariant submersions from
almost Hermitian manifolds and studied the case when ambient manifold is Kähler. In this
paper, we discuss conformal anti-invariant submersions from a nearly Kähler manifold onto a
Riemannian manifold and derive some results in this respect. We extend the notion of confor-
mal anti-invariant and conformal Lagrangian Riemannian submersion to the case when ambient
manifold is nearly Kähler. We also give necessary and sufficient conditions for a conformal anti-
invariant submersion to be totally geodesic. Further, we find some decomposition theorems for
the total manifold of the submersion and some equivalence conditions.

1 Introduction

The study of Riemannian submersion between Riemannian manifolds was initiated by O’Neill
[15] and then Gray [10]. Later such submersions were considered between differentiable mani-
folds. In 1976, Watson [19] introduced almost Hermitian submersions between almost Hermi-
tian manifolds and showed that in most cases the base manifold and each fibre have the same
kind of structure as the total space. We note that almost Hermitian submersions have been ex-
tended to the almost contact metric submersions [5], locally conformal Kähler submersions [14],
semi-Riemannian submersions and Lorentzian submersions [6], anti-invariant Riemannian sub-
mersions from almost Hermitian manifolds onto Riemannian manifolds [17]. As we know that
Riemannian submersions are related with physics and have their applications in the Yang-Mills
theory [18],Kaluza-Klein theory ([4], [11]), supergravity and superstring theories ([12], [13]) etc.
Conformal anti-invariant submersions from almost Hermitian manifolds onto Riemannian man-
ifolds were introduced by Akyol and Sahin [1] and they mainly study conformal anti-invariant
submersions from Kähler manifolds onto Riemannian manifolds.

In this paper, we study conformal anti-invariant submersions from nearly Kähler manifolds
onto Riemannian manifolds. The paper is organised as follows. The first section is introductory.
In the second section, we collect main notions and formulae for other sections.

In section 3, the conformal anti-invariant submersions from nearly Kähler manifolds onto
Riemannian manifolds have been studied and the geometry of leaves has been investigated. We
also give necessary and sufficient conditions for a conformal anti-invariant submersion to be
totally geodesic. Further, in this section we have obtained some equivalence conditions. In
section 4, we study certain product structures on the total space of a conformal anti-invariant
submersions.

2 Preliminaries

Let M be an even-dimensional differentiable manifold. Let J be a (1, 1) tensor field on M such
that J2 = −I. Then J is called almost complex structure on M . The manifold M with almost
complex structure J is called almost complex manifold. It is well known that almost complex
manifold is necessarily orientable. Nijenhuis tensor N of an almost complex structure is defined
as:

N(X,Y ) = [JX, JY ]− [X,Y ]− J [JX, Y ]− J [X,JY ], for all X,Y ∈ ΓTM.
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If Nijenhuis tensor field N on an almost complex manifold M is zero, then almost complex
manifold M is called complex manifold.

Let gM be a Riemannian metric on M such that

gM (JX, JY ) = gM (X,Y ), for all X,Y ∈ ΓTM. (2.1)

Then gM is called an almost Hermitian metric on M and manifold M with Hermitian metric
gM is called almost Hermitian manifold. The Riemannian connection∇ of the almost Hermitian
manifold M can be extend to the whole tensor algebra on M , and in this way we obtain tensor
fields like (∇XJ)Y and that

(∇XJ)Y = ∇XJY − J∇XY, (2.2)

for all X,Y ∈ Γ(TM).
An almost Hermitian manifold (M, gM , J) is called Kähler manifold if

(∇XJ)Y = 0, (2.3)

for all X,Y ∈ Γ(TM).
An also almost Hermitian manifold (M, gM , J) is called nearly Kähler manifold [9] if

(∇XJ)Y + (∇Y J)X = 0, (2.4)

for all X,Y ∈ Γ(TM).
Suppose M and N are differentiable manifolds with Riemannian metrics gM and gN respec-

tively. Let dimM = m and dimN = n, where m > n. Let f : (M, gM )→ (N, gN ) be a smooth
map between Riemannian manifolds. We denote the kernel space of f∗p by ker f∗p and consider
the orthogonal complementary space (ker f∗p)⊥ to ker f∗p in TpM. Then the tangent bundle of
M has the following decomposition

TpM = (ker f∗p)⊕ (ker f∗p)⊥. (2.5)

We also denote the range of f∗f(p) by rangef∗f(p) and consider the orthogonal complemen-
tary space (rangef∗f(p))

⊥ to rangef∗f(p) in the tangent bundle Tf(p)N of N. Thus the tangent
bundle Tf(p)N of N has the following decomposition

TN = (rangef∗f(p))⊕ (rangef∗f(p))
⊥. (2.6)

As a generalization of Riemannian submersions, horizontally conformal submersions are
defined as follows [2]. Let f : (M, gM )→ (N, gN ) be a differentiable map between Riemannian
manifolds, then f is called a horizontally conformal submersion, if there is a positive function λ
such that

gM (X,Y ) =
1
λ2 gN (f∗X, f∗Y ), (2.7)

for every X,Y ∈ Γ(ker f∗p)⊥.
It is obvious that every Riemannian submersion is a particular horizontally conformal sub-

mersion with λ = 1. Suppose that f is a differentiable map between Riemannian manifolds
and point p ∈ M . Then, f is called horizontally weakly conformal map at a point p if either
(i) f∗p = 0 or (ii) f∗p maps the horizontal space (ker f∗)⊥ conformally onto Tf(p)N, i.e., f∗p is
surjective and f∗p satisfies the equation (2.7) forX,Y vectors tangent to (ker f∗)⊥. If a point p is
of type (i) then it is called critical point of f . A point p of type (ii) is called regular. The number
∧(p) is called the square dilation, it is necessarily non-negative. Its square root λ(p) =

√
∧(p) is

called the dilation. A horizontally weakly conformal map f : M → N is said to be horizontally
homothetic if the gradient of its dilation λ is vertical, i.e., H (gradλ) = 0 at regular points.
If a horizontally weakly conformal map f has no critical points, then it is called horizontally
conformal submersion [2]. Thus, it follows that a Riemannian submersion is a horizontally con-
formal submersion with dilation identically one. We note that horizontal conformal maps were
introduced independently by Fuglede [7] and Ishihara [13].
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Definition 2.1. ([2]) Let M and N are two Riemannian manifolds with Riemannian metrics gM
and gN respectively. If f is a differentiable map from (M, gM ) to (N, gN ), then f is called
horizontally weakly conformal or semi-conformal at p if either

(i) dfp = 0, or
(ii) dfp maps the horizontal space Hp = (ker(dfp))⊥ conformally onto Tf(p)N i.e., dfp is

surjective and there exists a number Λ(p) 6= 0 such that

gN (f∗U, f∗V ) = Λ(p)gM (U, V ), for U, V ∈ Γ(ker f∗)⊥, (2.8)

where p ∈M.
Watson introduced the fundamental tensors of a submersion in [15]. It is known that the

fundamental tensor play similar role to that of the second fundamental form of an immersion.
Define tensors T and A, for vector fields E,F on M by

AEF = V∇HEHF +H∇HEVF, (2.9)

TEF = H∇VEVF + V∇VEHF, (2.10)

where V andH are the vertical and horizontal projections [6], and∇ is a Riemannian connection
on M . On the other hand, from equations (2.9) and (2.10), we have

∇XY = TXY + ∇̂XY, (2.11)

∇XU = H∇XU + TXU, (2.12)

∇UX = AUX + V∇UX, (2.13)

∇UV = H∇UV +AUV, (2.14)

for X,Y ∈ Γ(ker f∗) and U, V ∈ Γ(ker f∗)⊥, where V∇XY = ∇̂XY. If U is basic, then AXU =
H∇XU.

It is seen that for p ∈M, X ∈ Vp and U ∈ Hp the linear operators

TX ,AU : TpM → TpM,

are skew-symmetric, that is

gM (AUE,F ) = −gM (E,AUF ) and gM (TXE,F ) = −gM (E, TXF ) , (2.15)

for eachE,F ∈ TpM.We have also defined the restriction of T to the vertical distribution T |V×V
is precisely the second fundamental form of the fibres of f . Since TV is skew-symmetric we get:
f has totally geodesic fibres if and only if T ≡ 0. For the special case when f is horizontally
conformal we have the following:

Proposition 2.2. ([10](2.1.2)) Let f : (M, gM ) → (N, gN ) be a horizontal conformal submer-
sion between Riemannian manifolds with dilation λ and U, V be horizontal vectors. Then

AUV =
1
2
{V[U, V ]− λ2gM (U, V )gradV(

1
λ2 )}. (2.16)

We know that the skew-symmetric part of A|H×H measures the obstruction integrability of
the horizontal distribution H.

We also recall the concept of harmonic maps between Riemannian manifolds. Let f :
(M, gM ) → (N, gN ) is a differentiable map between Riemannian manifolds. Then the differen-
tial of f∗ of f can be observed a section of the bundle Hom(TM, f−1TN)→M, where f−1TN
is the pullback bundle which has fibres (f−1TN)p = Tf(p)N has a connection ∇ induced from
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the Riemannian connection ∇M and the pullback connection. Then the second fundamental
form of f is given by

(∇f∗)(U, V ) = ∇fUf∗(V )− f∗(∇
M
U V ). (2.17)

Again, we find necessary and sufficient condition for conformal anti-invariant submersion to
be totally geodesic. We recollection that a differentiable map f between Riemannian manifolds
is called totally geodesic if

(∇f∗)(V,W ) = 0, for all V,W ∈ Γ(TM). (2.18)

A geometric clarification of a totally geodesic map is that it maps every geodesic in the total
space into a geodesic in the base space in proportion to arc lengths.

Now, we explain a decomposition theorem related to the concept of twisted product manifold.
However, we first define the adjoint map of a map. Let f : (M, gM )→ (N, gN ) be a map between
Riemannian manifolds (M, gM ) and (N, gN ). Then the adjoint map ∗f∗ of f∗ is characterized
gM (X,∗ f∗pY ) = gN (f∗pX,Y ) by X ∈ TpM, Y ∈ Tf(p)N and p ∈ M. Considering fh∗ at each
p ∈M as a linear transformation

fh∗p : ((ker f∗)⊥(p), gM(p)((ker f∗)⊥p ))→ (rangef∗(q), gN(q)(rangef∗)(q)),

we will denote the adjoint fh∗(p) by ∗fh∗(p). Let fh∗(p) be the adjoint of fh∗(p) : (TpM, gM(p)) →
(T(q)N, gN(q)). The linear transformation (∗f∗p)h : (rangef∗(p))→ (ker f∗)⊥(p) defined (∗f∗(p))

hY =∗

fh∗(p)Y , where Y ∈ (ranrgef∗(p)), q = f(p), is an isomorphism and (fh∗(p))
−1 = (∗f∗p)h =∗

fh∗(p).

Lastly, we recollection the subsequent lemma from [2].

Lemma 2.3. Let (M, gM ) and (N, gN ) are two Riemannian manifolds. If f : M → N horizon-
tally conformal submersion between Riemannian manifolds, then for any horizontal vector fields
U, V and vertical vector fields X,Y we have

(i)∇df(U, V ) = U(lnλ)df(V ) + V (lnλ)df(U)− gM (U, V )df(Hgradlnλ);
(ii)∇df(X,Y ) = −df(AVXY );
(iii)∇df(U,X) = −df(∇MU X) = −df((AH)∗UX).

where (AH)∗X is the adjoint of (AH
X
) characterized by

〈(AH)∗UE,F 〉 = 〈E,AHU F 〉 (for E, F ∈ Γ(TM)).

3 Conformal anti-invariant submersions

Definition 3.1. Let (M, gM , J) be a nearly Kähler manifold and (N, gN ) be a Riemannian man-
ifold. A horizontal conformal submersion f : (M, gM , J) → (N, gN ) with dilation λ is called
anti-invariant submersion if the distribution ker f∗ is anti-invariant submersion with respect to J,
i.e., J(ker f∗) ⊆ (ker f∗)⊥.

Let f be a conformal anti-invariant submersion from a nearly Kähler manifold (M, gM , J)

onto a Riemannian manifold (N, gN ). From above definition we have J(ker f∗)
⊥ ∩ (ker f∗) 6=

{0} and denote the complementary orthogonal distribution to J(ker f∗) in (ker f∗)⊥ by µ. Then

(ker f∗)⊥ = J(ker f∗)⊕ µ. (3.1)

It is clear to see that µ is invariant distribution of (ker f∗)⊥, under the complex structure J. Thus,
for X ∈ Γ(ker f∗)⊥, we have

JX = BX + CX, (3.2)

where BX ∈ Γ(ker f∗) and CX ∈ Γ(µ).
Further, since f∗((ker∗)⊥) = TN and f is a Riemannian submersion, using equation (3.2) it

can be shown that 1
λ2 gN (f∗JV, f∗CX) = 0, for any X ∈ Γ(ker f∗)⊥ and V ∈ Γ(ker f∗) which

implies that TN = f∗(J(ker f∗))⊕ f∗(µ). Now, we prove following.



238 Rajendra Prasad and Sushil Kumar

Lemma 3.2. Let f be a conformal anti-invariant submersion from a nearly Kähler manifold
(M, gM , J) to a Riemannian manifold (N, gN ). Then

gM (CY, JV ) = 0, (3.3)

and

gM (∇XCY, JV ) = −2gM (CY, JAXV ) + gM (CY, TVBX) + gM (CY,ACXV ), (3.4)

for X,Y ∈ Γ(ker f∗)⊥ and V ∈ Γ(ker f∗).

Proof. For X,Y ∈ Γ(ker f∗)⊥ and V ∈ Γ(ker f∗), since BY ∈ Γ(ker f∗), CX ∈ Γ(µ) and
φV ∈ Γ(ker f∗)⊥. Using equations (2.1) and (3.2), we have

gM (CY, JV ) = 0.

Again, using equations (2.4), (3.3), (2.12) and (2.13), we have

gM (∇XCY, JV ) = −2gM (CY, JAXV ) + gM (CY, TVBX) + gM (CY,ACXV ),

which completes the proof.

Note: Whenever it is need we have assumed the horizontal vector field to be basic.
For any arbitrary tangent vector fields Z and W on M , we get

(∇ZJ)W = QZW + PZW, (3.5)

where QZW and PZW denote the vertical and horizontal part of (∇ZJ)W, respectively.
For a Kähler manifold M, we have

P = Q = 0,∀Z,W ∈ Γ(TM). (3.6)

If M is a nearly Kähler manifold, then it can be easily seen that both Q and P are anti-
symmetric in Z and W i.e.,

QZW = −QWZ, PZW = −PWZ. (3.7)

Lemma 3.3. Let f be a conformal anti-invariant submersion from a nearly Kähler manifold
(M, gM , J) onto a Riemannian manifold (N, gN ). Then

gM (∇XCY, JV ) = −gM (CY, JAXV )− gM (CY, PXV ), (3.8)

for X,Y ∈ Γ(ker f∗)⊥ and V ∈ Γ(ker f∗).

Proof. For X,Y ∈ Γ(ker f∗)⊥ and V ∈ Γ(ker f∗), using equations (3.3), (2.4), (2.13) and (3.5),
we have

gM (∇XCY, JV ) = −gM (CY,∇XJV ),
= −gM (CY, J∇XV )− gM (CY, PXV ).

From Lemmas 3.2 and 3.3, we have the following result.

Lemma 3.4. Let f be a conformal anti-invariant submersion from a nearly Kähler manifold
(M, gM , J) to a Riemannian manifold (N, gN ). Then

gM (∇XCY, JV ) (3.9)

= gM (CY, JAXV )− gM (CY, J∇XV )− gM (CY, TVBX)− gM (CY,ACXV ),

for X,Y ∈ Γ(ker f∗)⊥ and V ∈ Γ(ker f∗).
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Theorem 3.5. Let f be a conformal anti-invariant submersion from a nearly Kähler manifold
(M, gM , J) to a Riemannian manifold (N, gN ). Then the following assertions are equivalent to
each other

(i) (ker f∗)⊥ is integrable,
(ii) 1

λ2 gN (∇fY f∗CX −∇
f
Xf∗CY, f∗JV )

= gM (AXBY −AYBX, JV )− gM (Hgradlnλ,CY )gM (X, JV )
+gM (Hgradlnλ,CX)gM (Y, JV )− 2gM (Hgradlnλ, JV )gM (CX, Y )− 2gM (PXY, JV ),
for X,Y ∈ Γ(ker f∗)⊥ and V ∈ Γ(ker f∗).

Proof. ForX,Y ∈ Γ(ker f∗)⊥ and V ∈ Γ(ker f∗), since JV ∈ Γ(ker f∗)⊥ and JY ∈ ΓJ(ker f∗)⊕
µ. Using equations (2.1) and (2.4), we get

gM ([X,Y ], V ) = gM (∇XJY, JV )− gM (∇Y JX, JV )− 2gM ((∇XJ)Y, JV ).

Again, using equations (3.2), (2.13), (2.14) and (3.5), we get

gM ([X,Y ], V ) = gM (AXBY −AYBX, JV ) + gM (∇XCY, JV )
−gM (∇Y CX, JV )− 2gM (PXY, JV ).

Since f is conformal submersion, using Lemma 2.3(i) and equation (3.3) we have

gM ([X,Y ], V ) = gM (AXBY −AYBX, JV )−
1
λ2 gN (∇

f
Y f∗CX −∇

f
Xf∗CY, f∗JV )

−gM (Hgradlnλ,CY )gM (X, JV ) + gM (Hgradlnλ,CX)gM (Y, JV )

−2gM (Hgradlnλ, JV )gM (CX, Y )− 2gM (PXY, JV ),

which proves (i)⇔ (ii).

Theorem 3.6. Let f be a conformal anti-invariant submersion from a nearly Kähler manifold
(M, gM , J) onto a Riemannian manifold (N, gN ). Then any two conditions below given imply
the third:

(i) (ker f∗)⊥ is integrable,
(ii) f is horizontally homothetic,
(iii) 1

λ2 gN (∇fY f∗CX −∇
f
Xf∗CY, f∗JV ) = gM (AXBY −AYBX, JV )− 2gM (PXY, JV ),

for X,Y ∈ Γ(ker f∗)⊥ and V ∈ Γ(ker f∗).

Proof. For X,Y ∈ Γ(ker f∗)⊥ and V ∈ Γ(ker f∗), from Theorem (3.5), we have

gM ([X,Y ], V ) = gM (AXBY −AYBX, JV )−
1
λ2 gN (∇

f
Y f∗CX −∇

f
Xf∗CY, f∗JV )

−gM (Hgradlnλ,CY )gM (X, JV ) + gM (Hgradlnλ,CX)gM (Y, JV )

−2gM (Hgradlnλ, JV )gM (CX, Y )− 2gM (PXY, JV ),

Now, if using (i) and (ii), we have

1
λ2 gN (∇

f
Y f∗CX −∇

f
Xf∗CY, f∗JV ) = gM (AXBY −AYBX, JV )− 2gM (PXY, JV ).

Similarly, one can obtain the other assertions.

We say that a conformal anti-invariant submersion is a conformal Lagrangian submersion if
J(Γ ker f∗) = Γ(ker f∗)⊥.

Corollary 3.7. Let f be a conformal Lagrangian submersion from a nearly Kähler manifold
(M, gM , J) onto a Riemannian manifold (N, gN ). Then the following assertions are equivalent
to each other:



240 Rajendra Prasad and Sushil Kumar

(i) (ker f∗)⊥ is integrable,
(ii) AXJY = AY JX + 2PXY,
(iii) (∇f∗)(Y, JX) = (∇f∗)(X, JY ) + 2PXY, for X,Y ∈ Γ(ker f∗)⊥.

Proof. For X,Y ∈ Γ(ker f∗)⊥ and V ∈ Γ(ker f∗). Since JV ∈ Γ(ker f∗)⊥ and JY ∈ Γ(ker f∗),
from Theorem (3.5), we have

gM ([X,Y ], V ) = gM (AXBY −AYBX, JV )−
1
λ2 gN (∇

f
Y f∗CX −∇

f
Xf∗CY, f∗JV )

−gM (Hgradlnλ,CY )gM (X, JV ) + gM (Hgradlnλ,CX)gM (Y, JV )

−2gM (Hgradlnλ, JV )gM (CX, Y )− 2gM (PXY, JV ).

Since f is a conformal Lagrangian submersion, we have

gM ([X,Y ], V ) = gM (AXBY −AYBX, JV )− 2gM (PXY, JV ),

which proves (i)⇔ (ii). On the other hand, we have

gM (AXBY −AYBX, JV )− 2gM (PXY, JV )

=
1
λ2 gN (f∗AXBY − f∗AYBX, f∗JV )− 2gM (PXY, JV ).

Now, using equations (2.13) and (2.17), we have

gM (AXBY −AYBX, JV )− 2gM (PXY, JV )

=
1
λ2 gN ((∇f∗)(Y,BX)− (∇f∗)(X,BY ), f∗JV )− 2gM (PXY, JV ),

which proves (ii)⇔ (iii).

Theorem 3.8. Let f be a conformal anti-invariant submersion from a nearly Kähler manifold
(M, gM , J) onto a Riemannian manifold (N, gN ). Then the following assertions are equivalent
to each other:

(i) (ker f∗)⊥ defines a totally geodesic foliation on M ,
(ii)− 1

λ2 gN (∇fXf∗CY, f∗JV ) = gM (AXBY, JV ) + gM (Hgradlnλ,CY )gM (X, JV )

−gM (Hgradlnλ, JV )gM (X,CY )−gM (PXY, JV ), forX,Y ∈ Γ(ker f∗)⊥ and V ∈ Γ(ker f∗).

Proof. For X,Y ∈ Γ(ker f∗)⊥ and V ∈ Γ(ker f∗). Using equations (2.1), (3.2) and (3.5), we
get

gM (∇XY, V ) = gM (∇XBY, JV ) + gM (∇XCY, JV )− gM (PXY, JV ).

Since f is conformal anti-invariant submersion, using equations (2.17), (3.3) and Lemma 2.3(i),
we get

gM (∇XY, V )
= gM (AXBY, JV )− gM (Hgradlnλ,CY )gM (X, JV )

+gM (Hgradlnλ, JV )gM (X,CY ) +
1
λ2 gN (∇

f
Xf∗CY, f∗JV )− gM (PXY, JV ),

which proves (i)⇔ (ii).

Theorem 3.9. Let f be a conformal anti-invariant submersion from a nearly Kähler manifold
(M, gM , J) onto a Riemannian manifold (N, gN ). Then any two conditions below imply the
third:

(i) (ker f∗)⊥ defines a totally geodesic foliation on M ,
(ii) f is horizontally homothetic,
(iii) 1

λ2 gN (∇fXf∗CY, f∗JV ) − gM (PXY, JV ) = gM (AXBY, JV ), for X,Y ∈ Γ(ker f∗)⊥
and V ∈ Γ(ker f∗).
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Proof. For X,Y ∈ Γ(ker f∗)⊥ and V ∈ Γ(ker f∗), from above Theorem (3.8), we get

gM (∇XY, V )
= gM (AXBY, JV )− gM (Hgradlnλ,CY )gM (X, JV )

+gM (Hgradlnλ, JV )gM (X,CY ) +
1
λ2 gN (∇

f
Xf∗CY, f∗JV )− gM (PXY, JV ).

Now, if we using (i) and (ii), then we obtain:

1
λ2 gN (∇

f
Xf∗CY, f∗JV )− gM (PXY, JV ) = gM (AXBY, JV ).

Similarly, one can obtain the other assertions.

Corollary 3.10. Let f be a conformal Lagrangian submersion from a nearly Kähler manifold
(M, gM , J) onto a Riemannian manifold (N, gN ). Then the following assertions are equivalent
to each other:

(i) (ker f∗)⊥ defines a totally geodesic foliation on M,
(ii) AXJY = PXY,
(iii) (∇f∗)(X, JY ) = −f∗(PXY ), for X,Y ∈ Γ(ker f∗)⊥.

Proof. ForX,Y ∈ Γ(ker f∗)⊥ and V ∈ Γ(ker f∗), since JV ∈ Γ(ker f∗)⊥ and JY ∈ ΓJ(ker f∗).
From Theorem (3.8), we have

gM (∇XY, V )
= gM (AXBY, JV )− gM (Hgradlnλ,CY )gM (X, JV )

+gM (Hgradlnλ, JV )gM (X,CY ) +
1
λ2 gN (∇

f
Xf∗CY, f∗JV )− gM (PXY, JV ),

Since f is conformal Lagrangian submersion, we have

gM (∇XY, V ) = gM (AXBY, JV )− gM (PXY, JV )

which shows (i)⇔ (ii). On the other hand, since f is conformal submersion and using equations
(2.13) and (2.17), we have

(∇f∗)(X,BY ) = −f∗(PXY ),

which tells that (ii)⇔ (iii).

Theorem 3.11. Let f be a conformal anti-invariant submersion from a nearly Kähler manifold
(M, gM , J) onto a Riemannian manifold (N, gN ). Then the following assertions to each other:

(i) (ker f∗) defines a totally geodesic foliation on M,
(ii)− 1

λ2 gN (∇f∗JW f∗JV, f∗JCX) = gM (TV JW,BX)+gM (Hgradlnλ, JCX)gM (JW, JV )
+gM (PV JW, JCX)+ gM (QV JW, JCX)− gM (PVW,CX)− gM (QVW,BX), for V,W ∈

Γ(ker f∗) and X ∈ Γ(ker f∗)⊥.

Proof. For V,W ∈ Γ(ker f∗) and X ∈ Γ(ker f∗)⊥, using equations (2.1) and (2.12), we have

gM (∇VW,X) = gM (TV JW,BX) + gM (H∇V JW,CX)− gM ((∇V J)W,JX),

= gM (TV JW,BX) + gM ([V, JW ] +∇JWV,CX)− gM ((∇V J)W,JX).

Since ∇ is torsion free and [V, JW ] ∈ Γ(ker f∗), we obtain

gM (∇VW,X) = gM (TV JW,BX) + gM (∇JWV,CX)− gM ((∇V J)W,JX),

gM (∇VW,X) = gM (TV JW,BX) + gM (∇JWJV, JCX)− gM ((∇JWJ)V, JCX)

−gM (PVW,CX)− gM (QVW,BX).
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Hence we have used that µ is invariant. Since f is a conformal submersion and using equation
(2.17) and Lemma 2.3(i), we have

gM (∇VW,X) = gM (TV JW,BX) + gM (Hgradlnλ, JCX)gM (JW, JV )

+
1
λ2 gN (∇f∗JW f∗JV, f∗JCX) + gM (PV JW, JCX)

+gM (QV JW, JCX)− gM (PVW,CX)− gM (QVW,BX).

Theorem 3.12. Let f be a conformal anti-invariant submersion from a nearly Kähler manifold
(M, gM , J) onto a Riemannian manifold (N, gN ). Then any two conditions below imply the
three:

(i) (ker f∗) defines a totally geodesic foliation on M ,
(ii) λ is a constant on Γ(µ).
(iii) − 1

λ2 gN (∇f∗JW f∗JV, f∗JCX)
= gM (TV JW,BX) + gM (PV JW, JCX) + gM (QV JW, JCX)− gM (PVW,CX)
−gM (QVW,BX), for V,W ∈ Γ(ker f∗) and X ∈ Γ(ker f∗)⊥.

Proof. For V,W ∈ Γ(ker f∗) and X ∈ Γ(ker f∗)⊥, from Theorem (3.11) we have

gM (∇VW,X) = gM (TV JW,BX) + gM (Hgradlnλ, JCX)gM (JW, JV )

+
1
λ2 gN (∇f∗JW f∗JV, f∗JCX) + gM (PV JW, JCX)

+gM (QV JW, JCX)− gM (PVW,CX)− gM (QVW,BX).

Now, if we have (i) and (ii), then we obtain

− 1
λ2 gN (∇f∗JW f∗JV, f∗JCX)

= gM (TV JW,BX) + gM (PV JW, JCX) + gM (QV JW, JCX)

−gM (PVW,CX)− gM (QVW,BX).

Similarly, one can obtain the other assertions.

Corollary 3.13. Let f be a conformal Lagrangian submersion from a nearly Kähler manifold
(M, gM , J) onto a Riemannian manifold (N, gN ). Then the following assertions are equivalent
to each other:

(i) (ker f∗) defines a totally geodesic foliation on M,
(ii) TV JW = QVW, for V,W ∈ Γ(ker f∗).

Proof. For V,W ∈ Γ(ker f∗) and X ∈ Γ(ker f∗)⊥, from Theorem (3.11), we have

gM (∇VW,X) = gM (TV JW,BX) + gM (Hgradlnλ, JCX)gM (JW, JV )

+
1
λ2 gN (∇f∗JW f∗JV, f∗JCX) + gM (PV JW, JCX)

+gM (QV JW, JCX)− gM (PVW,CX)− gM (QVW,BX).

Since f is conformal Lagrangian submersion, we get

gM (∇VW,X) = gM (TV JW,BX)− gM (QVW,BX),

which shows (i)⇔ (ii).

Now we obtain necessary and sufficient condition for conformal anti-invariant submersion
to be totally geodesic. We recall that a differentiable map f between Riemannian manifolds is
called totally geodesic if

(∇f∗)(X,Y ) = 0, for all X,Y ∈ Γ(TM).

A geometric interpretation of totally geodesic map is that it maps every geodesic in the total
space into a geodesic in the base space in proportion to arc lengths.
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Theorem 3.14. Let f be a conformal anti-invariant submersion from a nearly Kähler manifold
(M, gM , J) onto a Riemannian manifold (N, gN ). Then f is a totally geodesic map if and only if

−∇fXf∗Y = f∗(J(AXJY1 + V∇XBY2 +AXCY2 −QXY ) (3.10)

+C(H∇XJY1 +AXBY2 +H∇XCY2 − PXY )),

for any X ∈ Γ(ker f∗) and Y ∈ Γ(TM) where Y1 ∈ Γ(ker f∗) and Y2 ∈ Γ(ker f∗)⊥.

Proof. Using equations (2.17), (2.2) and (2.4), we have

(∇f∗)(X,Y ) = ∇fXf∗Y + f∗(J∇XJY − J(∇XJ)Y ),

for any X ∈ Γ(ker f∗) and Y ∈ Γ(TM). Then from equations (2.12), (2.13) and (3.2), we get

(∇f∗)(X,Y ) = ∇fXf∗Y + f∗(JAXJY1 +BH∇XJY1 + CH∇XJY1

+BAXBY1 + CAXBY2 + JV∇XBY2 + JAXCY2

+BH∇XCY2 + CH∇XCY2 − JPXY − JQXY ),

for any Y1 ∈ Γ(ker f∗) and Y2 ∈ Γ(ker f∗)⊥. Thus taking into account the vertical parts, we find

(∇f∗)(X,Y ) = ∇fXf∗Y + f∗(J(AXJY1 + V∇XBY2 +AXCY2 −QXY ) + C(H∇XJY1

+C(AXBY2 + CH∇XCY2 − PXY )).

Thus (∇f∗)(X,Y ) = 0 if and only if the equation (3.10) is satisfied.

Definition 3.15. Let f be conformal anti-invariant submersion from a nearly Kähler manifold
(M, gM , J) onto a Riemannian manifold (N, gN ). Then f is called a (J ker f∗, µ)−totally geodesic
map if

(∇f∗)(JU,X) = 0,

for U ∈ Γ(ker f∗) and X ∈ Γ(ker f∗)⊥.
In the squeal we show that this notion has an important effect on the character of the confor-

mal submersion.

Theorem 3.16. Let f be conformal anti-invariant submersion from a nearly Kähler manifold
(M, gM , J) to a Riemannian manifold (N, gN ). Then f is called a (J ker f∗, µ)−totally geodesic
map if and only if f is horizontally homothetic map.

Proof. For U ∈ Γ(ker f∗) and for X ∈ Γ(µ), from Lemma 2.3(i), we have

(∇f∗)(JU,X) = JU(lnλ)f∗X +X(lnλ)f∗JU − gM (JU,X)f∗(Hgradlnλ).

From above equation if f is a horizontally homothetic, then (∇f∗)(JU,X) = 0.
Conversely if (∇f∗)(JU,X) = 0, we get

JU(lnλ)f∗X +X(lnλ)f∗JU = 0. (3.11)

Taking inner product in (3.11) with f∗JU and since f is a conformal submersion, we get

gM (Hgradlnλ,X)gM (JU, JU) = 0.

Above equation implies that λ is a constant on Γ(µ). On the other hand, taking inner product in
(3.11) with f∗X and since f is a conformal submersion, we get

gM (Hgradlnλ,X)gM (X,X) = 0.

Above equation implies that λ is a constant on ΓJ(ker f∗). Then λ is a constant on Γ(ker f∗)⊥.

Theorem 3.17. Let f be conformal anti-invariant submersion from a nearly Kähler manifold
(M, gM , J) onto a Riemannian manifold (N, gN ). Then f is a totally geodesic map if and only if
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(i) TUJV = QUV and H∇UJV − PUV ∈ ΓJ(ker f∗),
(ii) f is horizontally homothetic,
(iii) ∇̂VBX + TV CX −QVX = 0 and TVBX +H∇V CX − PVX ∈ ΓJ(ker f∗),
for U, V ∈ Γ(ker f∗) and X,Y ∈ Γ(ker f∗)⊥.

Proof. For any U, V ∈ Γ(ker f∗), from using equations (2.17), (2.2) and (2.4), we have

(∇f∗)(U, V ) = f∗(J(∇UJV )− J(∇UJ)V ).

Using equations (2.12), (3.2) and (3.5), we have

(∇f∗)(U, V ) = f∗(JTUJV + CH∇UJV )− JQUV − CPUV ).

From above equation (∇f∗)(U, V ) = 0 if and only if

f∗(JTUJV + CH∇UJV − JQUV − CPUV ) = 0.

This implies TUJV =QUV andH∇UJV −PUV ∈ ΓJ(ker f∗).On the other hand, from Lemma
2.3(i), we have

(∇f∗)(X,Y ) = X(lnλ)f∗Y + Y (lnλ)f∗X − gM (X,Y )f∗(Hgradlnλ),

for anyX,Y ∈ Γ(µ). It is obvious that f is horizontally homothetic it follows that (∇f∗)(X,Y ) =
0. Conversely, if (∇f∗)(X,Y ) = 0, taking Y = JX in above equation, we get

X(lnλ)f∗JX + JX(lnλ)f∗X = 0. (3.12)

Taking inner product in (3.12) with f∗JX, we get

gM (Hgradlnλ,X)gM (JX, JX) = 0. (3.13)

From above equation λ is a constant on Γ(µ). On the other hand, for U, V ∈ Γ(ker f∗), from
Lemma 2.3(i), we have

(∇f∗)(U, V ) = JU(lnλ)f∗JV + JV (lnλ)f∗JU − gM (JU, JV )f∗(Hgradlnλ).

Again if f is horizontally homothetic, then (∇f∗)(U, V ) = 0. Conversely, if (∇f∗)(U, V ) = 0,
putting U instead of V in above equation, we derive

2JU(lnλ)f∗JU − gM (JU, JU)f∗(Hgradlnλ) = 0.

Taking inner product in (3.12) with and since f is a conformal submersion, we have

gM (JU, JU)gM (Hgradlnλ, JU) = 0.

From above equation, λ is a constant on ΓJ(ker f∗). Thus λ is a constant on Γ(ker f∗)⊥.
Now, for X ∈ Γ(ker f∗)⊥ and V ∈ ΓJ(ker f∗), from equations (2.2), (2.4), and (2.17), we

have
(∇f∗)(X,V ) = f∗(J∇V JX − J(∇XJ)V ).

Using equations (3.2), (2.11), (2.12) and (3.5), we have

(∇f∗)(X,V ) = f∗(CTVBX + J∇̂VBX + CH∇V CX + JTV CX − CPVX − JQVX).

Thus (∇f∗)(X,V ) = 0 if and only if

f∗(CTVBX + J∇̂VBX + CH∇V CX + JTV CX − CPVX − JQVX) = 0.
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4 Total manifold as product manifold

In this section, we obtain some decomposition theorems for a conformal anti-invariant submer-
sion from a nearly Kähler manifold (M, gM , J) onto a Riemannian manifold (N, gN ).

Definition 4.1. [16] Let gB be a Riemannian metric tensor on the manifold B = M × N and
assume that the canonical foliations DM and DN intersect perpendicularly everywhere. The gB
is a metric tensor of

(i) a twisted product if and only ifDM is totally geodesic foliation andDN is totally umbilical
foliation,

(ii) a usually product of Riemannian manifolds if and only if DM and DN are totally
geodesic foliations,

(iii) a warped product if and only if DM is totally geodesic foliation and DN is a spheric
foliation, i.e., it is umbilical and its mean curvature vector field is parallel,

We note in this case, from [3] we have

∇XU = X(lnF )U,

for X ∈ Γ(TM) and U ∈ Γ(TN), where ∇ is the Riemannian connection on M ×N.
We have the following decomposition theorem for a conformal anti-invariant submersion

which follows from Theorems (3.8) and (3.11) in term of the second fundamental form of such
submersions.

Theorem 4.2. Let f be a conformal anti-invariant submersion from a nearly Kähler manifold
(M, gM , J) onto a Riemannian manifold (N, gN ). Then M is a locally product manifold if and
only if

− 1
λ2 gN (∇

f
Xf∗CY, f∗JV ) = gM (AXBY, JV ) + gM (Hgradlnλ,CY )gM (X, JV )

−gM (Hgradlnλ, JV )gM (X,CY )− gM (PXY, JV ),

and

− 1
λ2 gN (∇f∗JW f∗JV, f∗JCX)

= gM (TV JW,BX) + gM (Hgradlnλ, JCX)gM (JW, JV )

+gM (PV JW, JCX) + gM (QV JW, JCX)− gM (PVW,CX)− gM (QVW,BX),

for X,Y ∈ Γ(ker f∗)⊥ and V ∈ Γ(ker f∗).
From Corollaries (3.10) and (3.13), we have the following theorem.

Theorem 4.3. Let f be a conformal Lagrangian submersion from a nearly Kähler manifold
(M, gM , J) onto a Riemannian manifold (N, gN ). Then M is a locally product manifold if and
only if AXJY = PXY, and TV JW = QVW, for V,W ∈ Γ(ker f∗) and X,Y ∈ Γ(ker f∗)⊥.

Again we obtain a decomposition theorem which is the related to the notation of twisted
product manifold.

Theorem 4.4. Let f be a conformal anti-invariant submersion from a nearly Kähler manifold
(M, gM , J) onto a Riemannian manifold (N, gN ). Then M is a locally twisted product manifold
of the from M(ker f∗) ×M(ker f∗)⊥ if and only if

− 1
λ2 gN (∇

f
JW f∗JV, f∗JCX) (4.1)

= gM (TV JW,BX) + gM (JW, JV )gM (Hgradlnλ, JCX)

−gM (PJWV, JCX)− gM (PVW,CX)− gM (QVW,BX),
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and

gM (X,Y )H = −BAXBY + CY (lnλ)BX −HgradlnλgM (X,CY ) (4.2)

−BPXY − Jf∗(∇fXf∗CY ),

for V,W ∈ Γ(ker f∗) and X,Y ∈ Γ(ker f∗)⊥, where M(ker f∗)⊥ and M(ker f∗) are integral man-
ifold of the distribution Γ(ker f∗)⊥ and Γ(ker f∗) and H is the mean curvature vector field of
M(ker f∗)⊥ .

Proof. For V,W ∈ Γ(ker f∗) and X ∈ Γ(ker f∗)⊥, using equations (2.1), (2.2), (2.4), (3.2),
(2.12) and (3.5), we have

gM (∇VW,X)

= gM (TV JW,BX) + gM (H∇V JW,CX)− gM (PVW,CX)− gM (QVW,BX),

gM (∇VW,X)

= gM (TV JW,BX) + gM ([V, JW ] +∇JWV,CX)− gM (PVW,CX)− gM (QVW,BX).

Since ∇ is torsion free and [V, JW ] ∈ Γ(ker f∗), we obtain

gM (∇VW,X)

= gM (TV JW,BX) + gM (∇JWJV, JCX)− gM ((∇JWJ)V, JCX)

−gM (PVW,CX)− gM (QVW,BX).

Since f is conformal submersion, using equations (2.1), (2.2), (2.4), (2.17) and (3.3) and Lemma
2.3(i), we have

gM (∇VW,X)

= gM (TV JW,BX) +
1
λ
gN (∇fJW f∗JV, f∗JCX) + gM (JW, JV )gM (Hgradlnλ, JCX)

gM (PJWV, JCX)− gM (PVW,CX)− gM (QVW,BX).

Thus it follows that M(ker f∗) is totally geodesic if and only if the equation (4.1) is satisfied. On
the other hand, for V ∈ Γ(ker f∗) andX,Y ∈ Γ(ker f∗)⊥, using equations (2.1), (2.2), (2.4), (2.13), (2.14)
and (3.5), we have

gM (∇XY, V ) = gM (AXBY, JV ) + gM (H∇XCY, JV )− gM (PXY, JV ).

Since f is conformal submersion, using equations (2.17) and (3.3) and Lemma 2.3(i), we have

gM (∇XY, V )

= gM (AXBY, JV ) +
1
λ
gN (∇fXf∗CY, f∗JV )− gM (X, JV )gM (Hgradlnλ,CY )

+gM (X,CY )gM (Hgradlnλ, JV )− gM (PXY, JV ),

using that conclude thatM(ker f∗)⊥ is totally umbilical if and only if the equation (4.2) is satisfied.

In a similar way with Theorem (5.4) ([1]), we obtain following theorem:

Theorem 4.5. Let f be a conformal anti-invariant submersion from nearly Kähler manifold
(M, gM , J) to a Riemannian manifold (N, gN ) with rank(ker f∗) > 1. If M is a locally warped
product manifold of the form M(ker f∗) ×M(ker f∗)⊥ , with either f is horizontally homothetic sub-
mersion or the fibres are one dimensional.
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