ON PSEUDO-SLANT SUBMANIFOLDS OF (κ, μ)-CONTACT SPACE FORMS

Venkatesha, Srikantha N and Siddesha M.S.
Communicated by Zafar Ahsan

MSC 2010 Classifications: 53C15, 53C17, 53C25, 53D15.
Keywords and phrases: (κ, μ)-contact metric manifolds, (κ, μ)-contact space forms, mixed-geodesic, pseudo-slant submanifolds, totally umbilical.

The authors are grateful to the referee for their valuable suggestions in improving the paper.

Abstract

The geometry of pseudo-slant submanifolds of (κ, μ)-contact space forms has been studied. The necessary and sufficient condition for a pseudo-slant submanifold to be mixedgeodesic has been obtained along with some results on totally umbilical pseudo-slant submanifolds of (κ, μ)-contact space form.

1 Introduction

It is known that slant submanifolds are the generalization of invariant and anti-invariant submanifolds, many geometers have shown interest in this study. Chen ([7], [8]) initiated this study on complex manifolds. Lotta [16] introduced the concept of slant immersions in to an almost contact metric manifold. Carriazo introduced another new class of submanifolds called hemi-slant submanifolds (it is also called as anti-slant or pseudo-slant submanifold) [5]. Later many geometers like ([9], [10], [12], [13], [15]) studied pseudo-slant submanifolds on various manifolds.

The notion of (κ, μ)-contact space form was introduced by Koufogiorgos [14], which contains the well known class of Sasakian space forms for $\kappa=1$. Thus it is worthwhile to study pseudo-slant submanifolds in a (κ, μ)-contact space form. Tripathi et al., [6] introduced generalized (κ, μ)-space forms and proved that the functions of a contact metric generalized (κ, μ) contact space form $M\left(f_{1}, \cdots, f_{6}\right)$ of dimension greater than or equal to 5 are constant and are related to each other. Motivated by these studies we plan to study pseudo-slant submanifolds of (κ, μ)-contact space forms.

This paper is organized as follows: Section 2 contains some basic formulas and definitions of (κ, μ)-contact metric manifold and their submanifolds. In section 3, we review some definitions and proved some basic results on pseudo-slant submanifold of (κ, μ)-contact metric manifold. Last section deals with the study of totally umbilical pseudo-slant submanifold in (κ, μ)-contact metric manifold and ($\kappa, \mu)$-contact space forms.

2 Preliminaries

A $(2 m+1)$-dimensional smooth manifold \tilde{M} is said to be contact manifold if it carries a global 1 -form η satisfying $\eta \wedge(d \eta)^{m} \neq 0$ everywhere on \tilde{M}. And a $(2 m+1)$ dimensional almost contact manifold with almost contact structure (ϕ, ξ, η) consisting of $(1,1)$ tensor field ϕ, global 1 -form η and a characteristic vector field ξ satisfies ([1], [2]):

$$
\begin{gather*}
\phi^{2}=-I+\eta \otimes \xi \tag{2.1}\\
\eta(\xi)=1, \phi \xi=0, \eta \circ \phi=0 . \tag{2.2}
\end{gather*}
$$

Let g be the compatible Riemannian metric with almost contact structure (ϕ, ξ, η) such that

$$
\begin{align*}
g(\phi X, \phi Y) & =g(X, Y)-\eta(X) \eta(Y) \tag{2.3}\\
g(\phi X, Y) & =-g(X, \phi Y), \quad g(X, \xi)=\eta(X) \tag{2.4}
\end{align*}
$$

Then \tilde{M} equipped with almost contact metric structure (ϕ, ξ, η, g) is called almost contact metric manifold. Let Φ be the fundamental 2-form on \tilde{M} defined by $\Phi(X, Y)=g(X, \phi Y)=$ $-\Phi(Y, X)$. Now if $\Phi=d \eta$ then almost contact metric structure becomes contact metric structure.

We know that in a contact metric manifold ($\tilde{M}, \phi, \xi, \eta, g$), the symmetric tensor h, defined by $2 h=\mathcal{L}_{\xi} \phi$, satisfies the following [1]

$$
\begin{equation*}
h \xi=0, h \phi+\phi h=0, \tilde{\nabla}_{X} \xi=-\phi X-\phi h X, \operatorname{tr}(h)=\operatorname{tr}(\phi h)=0 \tag{2.5}
\end{equation*}
$$

where $\tilde{\nabla}$ is the Levi-Civita connection of \tilde{M}. A contact metric manifold \tilde{M} is said to be (κ, μ) contact metric manifold if the structural vector field ξ belongs to (κ, μ)-nullity distribution defined by [3]

$$
\begin{aligned}
\mathcal{N}(\kappa, \mu): p \rightarrow \mathcal{N}_{p}(\kappa, \mu)=\left\{Z \in T_{p} \tilde{M} \mid \tilde{R}(X, Y) Z=\right. & \kappa(g(Y, Z) X-g(X, Z) Y) \\
& +\mu(g(Y, Z) h X-g(X, Z) h Y)\}
\end{aligned}
$$

where κ, μ are constants. We know that in a (κ, μ)-contact metric manifold $\tilde{M}, h^{2}=(\kappa-1) \phi^{2}$ and therefore $\kappa \leq 1$. If $\kappa=1$ then \tilde{M} becomes Sasakian manifold.

Moreover for a (κ, μ)-contact metric manifold \tilde{M} of dimension $2 m+1$ and for all $X, Y \in$ $\Gamma(T M)$, we have [2]

$$
\begin{equation*}
\left(\tilde{\nabla}_{X} \phi\right) Y=g(X+h X, Y) \xi-\eta(Y)(X+h X) \tag{2.6}
\end{equation*}
$$

The (κ, μ)-contact metric manifold is said to be (κ, μ) contact space form denoted by $\tilde{M}(c)$ if \tilde{M} has constant ϕ-sectional curvature. Now the curvature tensor of $\tilde{M}(c)$ is given by [14]

$$
\begin{equation*}
\tilde{R}=\frac{c+3}{4} R_{1}+\frac{c-1}{4} R_{2}+\left(\frac{c+3}{4}-\kappa\right) R_{3}+\frac{1}{2} R_{4}+R_{5}+(1-\mu) R_{6} \tag{2.7}
\end{equation*}
$$

where,

$$
\begin{aligned}
& R_{1}(X, Y) Z=\{g(Y, Z) X-g(X, Z) Y\} \\
& R_{2}(X, Y) Z=\{g(X, \phi Z) \phi Y-g(Y, \phi Z) \phi X+2 g(X, \phi Y) \phi Z\} \\
& R_{3}(X, Y) Z=\{\eta(X) \eta(Z) Y-\eta(Y) \eta(Z) X+g(X, Z) \eta(Y) \xi-g(Y, Z) \eta(X) \xi\} \\
& R_{4}(X, Y) Z=\{g(h Y, Z) h X-g(h X, Z) h Y+g(\phi h X, Z) \phi h Y-g(\phi h Y, Z) \phi h X\} \\
& R_{5}(X, Y) Z=g(Y, Z) h X-g(X, Z) h Y+g(h Y, Z) X-g(h X, Z) Y \\
& R_{6}(X, Y) Z=\eta(X) \eta(Z) h Y-\eta(Y) \eta(Z) h X+g(h X, Z) \eta(Y) \xi-g(h Y, Z) \eta(X) \xi
\end{aligned}
$$

for any vector fields X, Y, Z.
Let M be a submanifold of a contact metric manifold \tilde{M} with induced metric denoted by the same symbol g. Then the Gauss and Weingarten formulas are given by

$$
\begin{align*}
& \tilde{\nabla}_{X} Y=\nabla_{X} Y+\sigma(X, Y), \tag{2.8}\\
& \tilde{\nabla}_{X} V=-A_{V} X+\nabla_{X}^{\perp} V \tag{2.9}
\end{align*}
$$

where ∇ and ∇^{\perp} are induced connections on the tangent bundle $T M$ and $T^{\perp} M$ of M respectively, σ and A_{V} are the second fundamental form and the shape operator with respect to V respectively. Further σ and A_{V} are related by

$$
\begin{equation*}
g\left(A_{V} X, Y\right)=g(\sigma(X, Y), V) \tag{2.10}
\end{equation*}
$$

for any $X, Y \in \Gamma(T M)$ and $V \in \Gamma\left(T^{\perp} M\right)$. The mean curvature vector H of M is given by

$$
\begin{equation*}
H=\frac{1}{l} \operatorname{tr}(\sigma)=\frac{1}{l} \sum_{i=1}^{l} \sigma\left(e_{i}, e_{i}\right) \tag{2.11}
\end{equation*}
$$

where l is the dimension of M and $\left\{e_{1}, e_{2}, \cdots, e_{l}\right\}$ is the local orthonormal frame of M.

- A submanifold is said to be totally umbilical if

$$
\begin{equation*}
\sigma(X, Y)=g(X, Y) H \tag{2.12}
\end{equation*}
$$

where H is the mean curvature vector.

- A submanifold is said to be totally geodesic if $\sigma(X, Y)=0$.
- A submanifold is said to be minimal if $H=0$.

Also, we have

$$
\begin{equation*}
\sigma_{i j}^{r}=g\left(\sigma\left(e_{i}, e_{j}\right), e_{r}\right) \text { and }\|\sigma\|^{2}=\sum_{i, j=1}^{l} g\left(\sigma\left(e_{i}, e_{j}\right), \sigma\left(e_{i}, e_{j}\right)\right), \tag{2.13}
\end{equation*}
$$

for $1 \leq i, j \leq l, l+1 \leq r \leq 2 m+1$. Now for any submanifold M of a Riemannian manifold \tilde{M} and for any $X, Y, Z \in \Gamma(T M)$, the covariant derivative of σ is defined by

$$
\begin{equation*}
\left(\tilde{\nabla}_{X} \sigma\right)(Y, Z)=\nabla_{X}^{\perp} \sigma(Y, Z)-\sigma\left(\nabla_{X} Y, Z\right)-\sigma\left(Y, \nabla_{X} Z\right) \tag{2.14}
\end{equation*}
$$

Also for the submanifold M, the Riemannian curvature tensor \tilde{R} of \tilde{M} is given by

$$
\begin{equation*}
\tilde{R}(X, Y) Z=R(X, Y) Z+A_{\sigma(X, Z)} Y-A_{\sigma(Y, Z)} X+\left(\tilde{\nabla}_{X} \sigma\right)(Y, Z)-\left(\tilde{\nabla}_{Y} \sigma\right)(X, Z) \tag{2.15}
\end{equation*}
$$

where R is the Riemannian curvature tensor of M. The tangent and normal components of the above equation are, respectively

$$
\begin{align*}
(\tilde{R}(X, Y) Z)^{T} & =R(X, Y) Z+A_{\sigma(X, Z)} Y-A_{\sigma(Y, Z)} X \tag{2.16}\\
(\tilde{R}(X, Y) Z)^{\perp} & =\left(\tilde{\nabla}_{X} \sigma\right)(Y, Z)-\left(\tilde{\nabla}_{Y} \sigma\right)(X, Z) \tag{2.17}
\end{align*}
$$

for any $X, Y, Z \in \Gamma(T M)$. Note that M is said to be curvature invariant submanifold of \tilde{M} if $(\tilde{R}(X, Y) Z)^{\perp}=0$.

The Ricci equation is given by

$$
\begin{equation*}
g(\tilde{R}(X, Y) U, V)=g\left(R^{\perp}(X, Y) U, V\right)+g\left(\left[A_{U}, A_{V}\right] X, Y\right) \tag{2.18}
\end{equation*}
$$

for any $X, Y \in \Gamma(T M)$ and $U, V \in \Gamma\left(T^{\perp} M\right)$. Here R^{\perp} denotes the Riemannian curvature tensor tensor of $T^{\perp} M$ and if it is zero then the normal connection of M is flat.

Definition 2.1. A (κ, μ)-contact metric manifold \tilde{M} is said to be η-Einstein manifold if its Ricci tensor S is of the form $S(X, Y)=a g(X, Y)+b \eta(X) \eta(Y)$, where a and b are smooth functions on \tilde{M} and $X, Y \in \Gamma(T M)$.

Before going to main results we first recall a lemma of [18],
Lemma 2.2. If (M, ϕ, ξ, η, g) is a contact Riemannian manifold and ξ belongs to the (κ, μ) nullity distribution, then $\kappa \leq 1$. If $\kappa<1$, then M admits three mutually orthogonal and integrable distributions $D(0), D(\lambda)$ and $D(-\lambda)$ defined by the eigenspaces of h, where $\lambda=\sqrt{1-\kappa}$. Further, if $X \in D(\lambda)$, then $h X=\lambda X$ and if $X \in D(-\lambda)$ then $h X=-\lambda X$.

3 Pseudo-slant submanifolds of (κ, μ)-contact metric manifold

Let M be a submanifold of (κ, μ) contact metric manifold \tilde{M}. Then for any $X \in \Gamma(T M)$ and $V \in \Gamma\left(T^{\perp} M\right)$ we can write

$$
\begin{align*}
\phi X & =T X+N X, \tag{3.1}\\
\phi V & =t V+n V \tag{3.2}
\end{align*}
$$

where $T X$ and $N X$ (respectively $t V$ and $n V$) are the tangential and normal component of ϕX (respectively ϕV). Using (2.1) in the above equations one can get

$$
\begin{array}{ll}
T^{2}=-t N-I+\eta \circ \xi, & N T+n N=0 \\
n^{2}=-I-N t, & T t+t n=0 \tag{3.4}
\end{array}
$$

Furthermore, from (2.4), (3.1) and (3.2) we can say T and n are skew-symmetric tensor fields. Also for $X \in \Gamma(T M)$ and $V \in \Gamma\left(T^{\perp} M\right)$, we can obtain relation between N and t as

$$
\begin{equation*}
g(N X, V)=-g(X, t V) \tag{3.5}
\end{equation*}
$$

In view of (2.7) and (2.18) we get

$$
\begin{align*}
g\left(\tilde{R}^{\perp}(X, Y) V, U\right)= & \frac{c-1}{4}\{g(X, \phi V) g(\phi Y, U)-g(Y, \phi V) g(\phi X, U)+2 g(X, \phi Y) g(\phi V, U)\} \\
+ & \frac{1}{2}\{g(h Y, V) g(h X, U)-g(h X, V) g(h Y, U)+g(\phi h X, V) g(\phi h Y, U) \\
& -g(\phi h Y, V) g(\phi h X, U)\}-g\left(\left[A_{U}, A_{V}\right] X, Y\right) \tag{3.6}
\end{align*}
$$

for $X, Y \in \Gamma(T M)$ and $U, V \in \Gamma\left(T^{\perp} M\right)$. And in view of (2.7), (2.16) and (2.17), we obtain

$$
\begin{equation*}
R(X, Y) Z=\frac{c+3}{4} R_{1}+\frac{c-1}{4} R_{2}^{T}+\left(\frac{c+3}{4}-\kappa\right) R_{3}+\frac{1}{2} R_{4}^{T}+R_{5}+(1-\mu) R_{6} \tag{3.7}
\end{equation*}
$$

where, $R_{2}^{T}=g(X, \phi Z) T Y-g(Y, \phi Z) T X+2 g(X, \phi Y) T Z$

$$
\text { and } R_{4}^{T}=g(h Y, Z) h X-g(h X, Z) h Y+g(\phi h X, Z) T h Y-g(\phi h Y, Z) T h X
$$

and

$$
\begin{align*}
\left(\tilde{\nabla}_{X} \sigma\right)(Y, Z)-\left(\tilde{\nabla}_{Y} \sigma\right)(X, Z)= & \left(\frac{c-1}{4}\right)\{g(X, \phi Z) N Y-g(Y, \phi Z) N X+2 g(X, \phi Y) N Z\} \\
& +\frac{1}{2}\{g(\phi h X, Z) N h Y-g(\phi h Y, Z) N h X\} \tag{3.8}
\end{align*}
$$

for all $X, Y, Z \in \Gamma(T M)$. Again from (2.6), we obtain the following;

$$
\begin{align*}
\left(\nabla_{X} T\right) Y & =A_{N Y} X+t \sigma(X, Y)+g(X+h X, Y) \xi-\eta(Y)(X+h X) \tag{3.9}\\
\left(\nabla_{X} N\right) Y & =n \sigma(X, Y)-\sigma(X, T Y) \tag{3.10}\\
\left(\nabla_{X} t\right) V & =A_{n V} X-T A_{V} X \tag{3.11}\\
\left(\nabla_{X} n\right) V & =-\sigma(X, t V)-N A_{V} X \tag{3.12}
\end{align*}
$$

for any $X, Y \in \Gamma(T M)$ and $V \in \Gamma\left(T^{\perp} M\right)$.
Now let us recall some definitions of of classes of submanifolds. Let M be a submanifold, then M is said to be
(i) Invariant submanifold if N is identically zero in (3.1), i.e., $\phi X \in T M, \forall X \in T M$.
(ii) Anti-invariant submanifold if T is identically zero in (3.1), i.e., $\phi X \in T^{\perp} M, \forall X \in T M$.
(iii) Slant submanifold if there exists an angle $\theta(x) \in[0, \pi / 2]$ between ϕX and $T M$ for all non-zero vector X tangent to M at x called slant angle which is constant.
(iv) Pseudo-slant submanifold if there exists distributions D_{θ} and D^{\perp} such that (1) $T M$ admits orthogonal direct composition $T M=D_{\theta} \oplus D^{\perp}, \xi \in D_{\theta}$, (2) D_{θ} is a slant distribution with slant angle $\theta \neq \pi / 2$ and (3) D^{\perp} is an anti-invariant distribution [12].
From the above definitions we can note that slant submanifold is the generalization of invariant (if $\theta=0$) and anti-invariant (if $\theta=\pi / 2$) submanifolds. A proper slant submanifold is neither invariant nor anti-invariant submanifold i.e., $\theta \in(0, \pi / 2)$. Hence in general we have the following theorem which characterize slant submanifolds of almost contact metric manifolds;

Theorem 3.1. [4] Let M be a slant submanifold of an almost contact metric manifold \tilde{M} such that $\xi \in \Gamma(T M)$. Then, M is slant submanifold if and only if there exist a constant $\gamma \in[0,1]$ such that

$$
\begin{equation*}
T^{2}=-\gamma(I-\eta \otimes \xi) \tag{3.13}
\end{equation*}
$$

furthermore, in this case, if θ is the slant angle of M, then $\gamma=\cos ^{2} \theta$.
Corollary 3.2. [4] Let M be a slant submanifold of an almost contact metric manifold \tilde{M} with slant angle θ. Then for any $X, Y \in \Gamma(T M)$, we have

$$
\begin{align*}
g(T X, T Y) & =\cos ^{2} \theta\{g(X, Y)-\eta(X) \eta(Y)\}, \tag{3.14}\\
\text { and } g(N X, N Y) & =\sin ^{2} \theta\{g(X, Y)-\eta(X) \eta(Y)\} . \tag{3.15}
\end{align*}
$$

If we denote the orthogonal complementary of $\phi T M$ in $T^{\perp} M$ by ν, then the normal bundle $T^{\perp} M$ can be decomposed as follows

$$
T^{\perp} M=N\left(D_{\theta}\right) \oplus N\left(D^{\perp}\right) \oplus \nu
$$

From the above decomposition one can see that $g(X, Z)=0$, for each $X \in \Gamma\left(D_{\theta}\right)$ and $Z \in$ $\Gamma\left(D^{\perp}\right)$. And hence $g(N X, N Z)=g(\phi X, \phi Z)=g(X, Z)=0$. Also we know that $t \sigma=0$, so (3.9) reduces to

$$
\left(\nabla_{X} T\right) Y=g(X+h X, Y) \xi-\eta(Y)(X+h X)
$$

for all $X, Y \in D_{\theta}$. Hence we infer that the induced structure T is a (κ, μ)-contact metric structure on M if the ambient manifold \tilde{M} is a (κ, μ)-contact metric manifold.

Using (2.9) and (2.6) we can state the following result.
Lemma 3.3. In a pseudo-slant submanifold of (κ, μ)-contact metric manifold, $A_{N Z} W=A_{N W} Z$ for any $Z, W \in \Gamma\left(D^{\perp}\right)$.
Theorem 3.4. Let M be a proper pseudo-slant submanifold of (κ, μ)-contact metric manifold \tilde{M}. Then (1) N is parallel. (2) t is parallel. (3) $A_{n V} Y+A_{V} T Y=0$, for any $Y \in \Gamma(T M), V \in$ $\Gamma\left(T^{\perp} M\right)$ are equivalent.

Proof. Let N be parallel. For any $X, Y \in \Gamma(T M), V \in \Gamma\left(T^{\perp} M\right)$, we have from (3.10) that

$$
\begin{equation*}
g\left(\left(\nabla_{X} N\right) Y, V\right)=g(n \sigma(X, Y), V)-g(\sigma(X, T Y), V)=0 \tag{3.16}
\end{equation*}
$$

In view of (2.10) and (3.11), the above equation become

$$
-g\left(A_{n V} X, Y\right)+g\left(T A_{V} X, Y\right)=-g\left(A_{n V} X-T A_{V} X, Y\right)=-g\left(\left(\nabla_{X} t\right) V, Y\right)=0
$$

Hence t is parallel. Converse part is obvious. Again if N is parallel, then from (3.16), we have

$$
-g\left(A_{n V} Y, X\right)-g\left(A_{V} X, T Y\right)=-g\left(A_{n V} Y+A_{V} T Y, X\right)=0
$$

Converse part is trivial. This proves our assertion.
Theorem 3.5. Let M be a proper pseudo-slant submanifold of a (κ, μ)-contact metric manifold. Then the covariant derivative of T is skew-symmetric.
Proof. For any $X, Y, Z \in \Gamma(T M)$, we have from (3.9) that

$$
g\left(\left(\nabla_{X} T\right) Y, Z\right)=g\left(A_{N Y} X+t \sigma(X, Y)+g(X+h X, Y) \xi-\eta(Y)(X+h X), Z\right)
$$

Using (2.10) in the above equation we get

$$
\begin{aligned}
g\left(\left(\nabla_{X} T\right) Y, Z\right)= & g(\sigma(X, Z), N Y)+g(t \sigma(X, Y), Z)+g(X+h X, Y) \eta(Z) \\
& -\eta(Y) g(X+h X, Z) \\
= & -\{g(t \sigma(X, Z), Y)+g(\sigma(X, Y), N Z)-g(X+h X, Y) \eta(Z) \\
& +\eta(Y) g(X+h X, Z)\}=-g\left(\left(\nabla_{X} T\right) Z, Y\right)
\end{aligned}
$$

This completes the proof.

Theorem 3.6. Let M be a proper pseudo-slant submanifold of a (κ, μ)-contact metric manifold. Then the covariant derivative of n is skew-symmetric.

Proof. For any $X \in \Gamma(T M)$ and $U, V \in \Gamma\left(T^{\perp} M\right)$, in view of (3.12) and (2.10) and following same procedure of the above theorem we obtain $g\left(\left(\nabla_{X} n\right) V, U\right)=-g\left(V,\left(\nabla_{X} n\right) U\right)$.

Lemma 3.7. Let M be a proper pseudo-slant submanifold of $a(\kappa, \mu)$-contact metric manifold \tilde{M}. Then n is parallel if and only if the shape operator A_{V} of M satisfies the condition $A_{V} t U=$ $A_{U} t V$ for all $U, V \in \Gamma\left(T^{\perp} M\right)$.

Proof. Let n be parallel. Then from (3.12), (2.10) and (3.5) we have

$$
\begin{aligned}
g\left(\left(\nabla_{X} n\right) V, U\right)=-g(\sigma(X, t V), U)-g\left(N A_{V} X, U\right) & =0 \\
-g\left(A_{U} t V, X\right)+g\left(A_{V} X, t U\right) & =0 \\
-g\left(A_{U} t V-A_{V} t U, X\right) & =0
\end{aligned}
$$

Hence we get $A_{U} t V=A_{V} t U$ for $X \in \Gamma(T M), U, V \in \Gamma\left(T^{\perp} M\right)$.
Definition 3.8. A pseudo-slant submanifold M of a (κ, μ)-contact metric manifold \tilde{M} is said to be mixed-geodesic submanifold if $\sigma(X, Z)=0$ for any $X \in \Gamma\left(D_{\theta}\right)$ and $Z \in \Gamma\left(D^{\perp}\right)$.

Theorem 3.9. Let M be a totally umbilical proper pseudo-slant submanifold of a (κ, μ)-contact metric manifold \tilde{M}. If t is parallel then M is either mixed-geodesic or anti-invariant submanifold.

Proof. Let $X \in D_{\theta}, Y \in D^{\perp}$ and t is parallel. By Theorem 3.4, we have N is parallel and hence $\left(\nabla_{X} N\right) Y=0$. This implies

$$
n \sigma(X, Y)-\sigma(X, T Y)=0
$$

Replacing X by $T X$ in the above equation we get

$$
n \sigma(T X, Y)-\sigma(T X, T Y)=0
$$

Since M is totally umbilical, from (2.12) and (3.13) the above equation reduces to

$$
-\sigma\left(T^{2} X, Y\right)=\cos ^{2} \theta \sigma(X, Y)=0
$$

Hence we get either $\theta=\pi / 2$ (M is anti-invariant) or $\sigma(X, Y)=0$ (M is mixed-geodesic). This completes our proof.

4 Pseudo-slant submanifolds of (κ, μ)-contact space forms

Let us define $\left\{e_{1}, \cdots, e_{p}, e_{p+1}=\sec \theta T e_{1}, \cdots, e_{2 p}=\sec \theta T e_{p}, e_{2 p+1}=\xi, e_{2 p+2}, \cdots, e_{2 p+q+1}\right\}$ as an orthonormal basis of $\Gamma(T M)$ such that $\left\{e_{1}, \cdots, e_{2 p+1}\right\} \in \Gamma\left(D_{\theta}\right)$ and $\left\{e_{2 p+2}, \cdots, e_{2 p+q+1}\right\} \in$ $\Gamma\left(D^{\perp}\right)$.

Theorem 4.1. Let M be a proper pseudo-slant submanifold of a (κ, μ)-contact space form $\tilde{M}(c)$. Then the Ricci tensor S of M is given by

$$
\begin{align*}
S(X, W)= & \left(K_{1}+K_{3}+K_{5}+K_{6}\right) g(X, W)+\left(2 K_{2}+K_{4}-K_{5}\right) \eta(X) \eta(W) \\
& +(2 p+q-1) g(\sigma(X, W), H)-\sum_{l=1}^{2 p+q} g\left(\sigma\left(e_{l}, W\right), \sigma\left(X, e_{l}\right)\right) \tag{4.1}
\end{align*}
$$

where

$$
\begin{aligned}
K_{1}= & (p-2)\left(\frac{c+3}{4}\right)+(2 p-3-\mu)(\pm \lambda)+\frac{p-2}{2}\left(\pm \lambda^{2}\right)+\frac{3(c-1)}{4}+\kappa \\
K_{2}= & (1-\mu)(\pm \lambda)-\frac{c-3}{2}-\kappa+\frac{\left(\pm \lambda^{2}\right)}{2} \\
K_{3}= & (p-2)\left(\frac{c+3}{4} \pm 2 \lambda+\frac{\left(\pm \lambda^{2}\right)}{2}\right)+\left(\frac{c-1}{4}-\frac{\left(\pm \lambda^{2}\right)}{2}\right) \cos ^{2} \theta+\frac{c-1}{2}, \\
K_{4}= & \left(\frac{c+3}{4} \pm 2 \lambda+\frac{\left(\pm \lambda^{2}\right)}{2}\right)-\left(\frac{c-1}{4}-\frac{\left(\pm \lambda^{2}\right)}{2}\right) \cos ^{2} \theta-\frac{c-1}{2} \\
& -(p-1)\left(\frac{c+3}{4}-\kappa+(1-\mu)(\pm \lambda)\right) \\
K_{5}= & \pm \lambda+\frac{\left(\pm \lambda^{2}\right)}{2}+\kappa-(1-\mu)(\pm \lambda)-\sin ^{2} \theta \\
K_{6}= & (q-2)\left(\frac{c+3}{4}\right)+(2 q-3-\mu)(\pm \lambda)+\frac{q-2}{2}\left(\pm \lambda^{2}\right)+\frac{3(c-1)}{4}+\kappa
\end{aligned}
$$

for any $X, W \in \Gamma(T M)$.
Proof. For any $X, Y, Z, W \in \Gamma(T M)$, by (2.7), (2.15) and Lemma 2.2 we have

$$
\begin{align*}
g(R(X, Y) Z, W)= & \left(\frac{c+3}{4} \pm 2 \lambda+\frac{\left(\pm \lambda^{2}\right)}{2}\right)\{g(Y, Z) g(X, W)-g(X, Z) g(Y, W)\} \\
& +\left(\frac{c-1}{4}-\left(\pm \lambda^{2}\right)\right)\{g(X, \phi Z) g(\phi Y, W)-g(Y, \phi Z) g(\phi X, W)\} \\
& +\frac{c-1}{2} g(X, \phi Y) g(\phi Z, W) \\
& +\left(\frac{c+3}{4}-\kappa+(1-\mu)(\pm \lambda)\right)\{\eta(X) \eta(Z) g(Y, W) \\
& -\eta(Y) \eta(Z) g(X, W)+\eta(Y) \eta(W) g(X, Z)-\eta(X) \eta(W) g(Y, Z)\} \\
& +g(\sigma(X, W), \sigma(Y, Z))-g(\sigma(Y, W), \sigma(X, Z)) \tag{4.2}
\end{align*}
$$

Now consider the orthonormal basis as defined in the beginning of this section. By taking $Y=$ $Z=e_{i}, e_{j}, \xi, e_{k}$ where $1 \leq i \leq p, p+1 \leq j \leq 2 p, 2 p+2 \leq k \leq 2 p+q+1$ repeatedly in (4.2) and adding the resultant equations we obtain

$$
\begin{align*}
S(X, W)= & \sum_{i=1}^{p} g\left(R\left(X, e_{i}\right) e_{i}, W\right)+\sum_{i=p+1}^{2 p} g\left(R\left(X, \sec \theta T e_{j}\right) \sec \theta T e_{j}, W\right) \\
& +g(R(X, \xi) \xi, W)+\sum_{k=2 p+2}^{2 p+q+1} g\left(R\left(X, e_{k}\right) e_{k}, W\right) \tag{4.3}
\end{align*}
$$

On simplifying, we obtain

$$
\begin{align*}
g\left(R\left(X, e_{i}\right) e_{i}, W\right)= & K_{1} g(X, W)+K_{2} \eta(X) \eta(W) \\
& +g\left(\sigma(X, W), \sigma\left(e_{i}, e_{i}\right)\right)-g\left(\sigma\left(e_{i}, W\right), \sigma\left(X, e_{i}\right)\right) \tag{4.4}
\end{align*}
$$

$$
\begin{aligned}
\text { where } K_{1} & =(p-2)\left(\frac{c+3}{4}\right)+(2 p-3-\mu)(\pm \lambda)+\frac{p-2}{2}\left(\pm \lambda^{2}\right)+\frac{3(c-1)}{4}+\kappa \\
\text { and } K_{2} & =(1-\mu)(\pm \lambda)-\frac{c-3}{2}-\kappa+\frac{\left(\pm \lambda^{2}\right)}{2}
\end{aligned}
$$

$$
\begin{align*}
g\left(R\left(X, \sec \theta T e_{j}\right) \sec \theta T e_{j}, W\right)= & K_{3} g(X, W)+K_{4} \eta(X) \eta(W) \\
& +g\left(\sigma(X, W), \sigma\left(\sec \theta T e_{j}, \sec \theta T e_{j}\right)\right) \\
& -g\left(\sigma\left(\sec \theta T e_{j}, W\right), \sigma\left(X, \sec \theta T e_{j}\right)\right) \tag{4.5}
\end{align*}
$$

$$
\begin{align*}
& \text { where } K_{3}=(p-2)\left(\frac{c+3}{4} \pm 2 \lambda+\frac{\left(\pm \lambda^{2}\right)}{2}\right)+\left(\frac{c-1}{4}-\frac{\left(\pm \lambda^{2}\right)}{2}\right) \cos ^{2} \theta+\frac{c-1}{2} \\
& \text { and } K_{4}=\left(\frac{c+3}{4} \pm 2 \lambda+\frac{\left(\pm \lambda^{2}\right)}{2}\right)-\left(\frac{c-1}{4}-\frac{\left(\pm \lambda^{2}\right)}{2}\right) \cos ^{2} \theta-\frac{c-1}{2} \\
& \\
& -(p-1)\left(\frac{c+3}{4}-\kappa+(1-\mu)(\pm \lambda)\right)
\end{aligned} \begin{aligned}
\qquad \begin{aligned}
g(R(X, \xi) \xi, W)= & K_{5}\{g(X, W)-\eta(X) \eta(W)\} \\
\text { where } K_{5}= & \pm \lambda+\frac{\left(\pm \lambda^{2}\right)}{2}+\kappa-(1-\mu)(\pm \lambda)-\sin ^{2} \theta
\end{aligned} \tag{4.6}\\
\qquad \begin{aligned}
g\left(R\left(X, e_{k}\right) e_{k}, W\right)= & K_{6} g(X, W)+K_{2} \eta(X) \eta(W) \\
& +g\left(\sigma(X, W), \sigma\left(e_{k}, e_{k}\right)\right)-g\left(\sigma\left(e_{k}, W\right), \sigma\left(X, e_{k}\right)\right)
\end{aligned}
\end{align*}
$$

where $K_{6}=(q-2)\left(\frac{c+3}{4}\right)+(2 q-3-\mu)(\pm \lambda)+\frac{q-2}{2}\left(\pm \lambda^{2}\right)+\frac{3(c-1)}{4}+\kappa$,
For $1 \leq l \leq 2 p+q$, put

$$
\begin{align*}
\sum_{l=1}^{2 p+q} g\left(\sigma\left(e_{l}, W\right), \sigma\left(X, e_{l}\right)\right)= & \sum_{i=1}^{p} g\left(\sigma\left(W, e_{i}\right), \sigma\left(X, e_{i}\right)\right) \\
& +\sum_{j=p+1}^{2 p} g\left(\sigma\left(\sec \theta T e_{j}, W\right), \sigma\left(X, \sec \theta T e_{j}\right)\right) \\
& +\sum_{i=2 p+2}^{2 p+q+1} g\left(\sigma\left(e_{k}, W\right), \sigma\left(X, e_{k}\right)\right) \tag{4.8}
\end{align*}
$$

Thus we get (4.1) by using (2.11) in (4.4) to (4.8) and then substituting in (4.3).
Theorem 4.2. Let M be a pseudo-slant submanifold of a (κ, μ)-contact space form $\tilde{M}(c)$. Then the scalar curvature ρ of M is given by

$$
\begin{align*}
\rho= & \left(K_{1}+K 3+K_{5}+K_{6}\right)(2 p+q+1) \\
& +\left(2 K_{2}+K_{4}-K_{5}\right)\left((2 p+q)^{2}-1\right)\|H\|^{2}-\|\sigma\|^{2} . \tag{4.9}
\end{align*}
$$

Proof. Using the fact that

$$
\rho=\sum_{i=1}^{2 p+q+1} S\left(e_{i}, e_{i}\right)
$$

and (4.1) we get (4.9).
Corollary 4.3. Every totally umbilical pseudo-slant submanifold M of $a(\kappa, \mu)$-contact space form $\tilde{M}(c)$ is an η-Einstein submanifold.

Proof. Using (4.1) and (2.12) we have

$$
\begin{aligned}
S(X, W)= & \left(K_{1}+K_{3}+K_{5}+K_{6}\right) g(X, W)+\left(2 K_{2}+K_{4}-K_{5}\right) \eta(X) \eta(W) \\
& +(2 p+q-1) g(g(X, W) H, H)-\sum_{l=1}^{2 p+q+1} g\left(g\left(e_{l}, W\right) H, g\left(X, e_{l}\right) H\right)
\end{aligned}
$$

This completes our proof.
Theorem 4.4. Let M be a pseudo-slant submanifold of a (κ, μ)-contact space form $\tilde{M}(c)$. If M is curvature-invariant pseudo-slant submanifold, then M is either semi-invariant or anti-invariant submanifold, provided $3(1-c) \neq\left(\pm 2 \lambda^{2}\right)$.

Proof. Let M be a curvature-invariant pseudo-slant submanifold of a (κ, μ)-contact space form $\tilde{M}(c)$. Then from (2.17) and (3.8) we have

$$
\begin{aligned}
\left(\tilde{\nabla}_{X} \sigma\right)(Y, Z)-\left(\tilde{\nabla}_{Y} \sigma\right)(X, Z)= & \left(\frac{c-1}{4}\right)\{g(X, T Z) N Y-g(Y, T Z) N X+2 g(X, T Y) N Z\} \\
& +\frac{1}{2}\{g(T h X, Z) N h Y-g(T h Y, Z) N h X\}=0
\end{aligned}
$$

for $X, Y, Z \in \Gamma(T M)$. By taking in to account of Lemma 2.2 and putting $X=Z$ we obtain

$$
\left[\frac{3(c-1)}{4}+\frac{1}{2}\left(\pm \lambda^{2}\right)\right] g(T Z, Y) N Z=0
$$

Now putting $Y=T Z$ in the above equation and taking inner product with $N Z$ we get

$$
\left[\frac{3(c-1)}{4}+\frac{1}{2}\left(\pm \lambda^{2}\right)\right] g(T Z, T Z) g(N Z, N Z)=0
$$

Simplifying the above equation by considering (3.14) and (3.15), we obtain

$$
\sqrt{\frac{3(c-1)}{4}+\frac{1}{2}\left(\pm \lambda^{2}\right)} \sin 2 \theta\left\{g(Z, Z)-\eta^{2}(Z)\right\}=0
$$

Thus we infer that either M is semi-invariant $(\theta=0)$ or anti-invariant $(\theta=\pi / 2)$, provided $3(1-c) \neq\left(\pm 2 \lambda^{2}\right)$.

References

[1] D. E. Blair, Contact Manifolds in Riemannian Geometry: Lecture Notes in Mathematics, 509, Springer, Berlin (1976).
[2] D. E. Blair, Riemannian Geometry of Contact and Symplectic Manifolds, Birkhäuser, Boston (2002).
[3] D. E. Blair, T. Koufogiorgos, B. J. Papantoniou, Contact metric manifolds satisfying a nullity condition, Israel Journal of Mathematics 91, (1995), 189-214.
[4] J. L. Cabrerizo, A. Carriazo, L. M. Fernandez, M. Fernandez, Slant submanifolds in Sasakian manifolds, Glasgow Mathematical Journal, 42, (2000), 125-138.
[5] A. Carriazo, New Devolopments in Slant Submanifolds Theory, Narosa publishing House, New Delhi, India, (2002).
[6] A. Carriazo, V. Martin-Molina and M. M. Tripathi, Generalized (κ, μ)-pace forms, Mediterranean Journal of Mathematics, 10, (2013), 475-496, doi: 10.1007/s00009-012-0196-2.
[7] B. Y. Chen, Geometry of Slant Submanifolds, Katholieke Universiteit Leuven, Leuven, (1990).
[8] B.Y. Chen, Slant Immersions, Bulletin of the Australian Mathematical Society, 41, (1990), 135-147.
[9] U.C. De and A. Sarkar, On pseudo-slant submanifolds of trans-Sasakian manifolds, Proceedings of the Estonian Academy of Sciences, 60, 1(2011), 1-11, doi: 10.3176/proc.2011.1.01.
[10] S. Dirik, M. Atçeken, Pseudo-slant submanifolds in cosymplectic space forms, Acta Universitatis Sapientiae: Mathematica, 8, 1(2016), 53-74, doi: 10.1515/ausm-2016-0004.
[11] S. Dirik, M. Atçeken, \ddot{U}. Yildirim, Pseudo-slant submanifold in Kenmotsu space forms, Journal of Advances in Mathematics, 11, 10(2016), 5680-5696.
[12] V. A. Khan and M. A. Khan, Pseudo-slant Submanifolds of a Sasakian manifold, Indian Journal of pure and applied Mathematics, 38, 1(2007), 31-42.
[13] M. A. Khan, Totally umbilical Hemi-slant submanifolds of Cosymplectic manifolds, Mathematica Aeterna, 3, 8(2013), 645-653.
[14] T. Koufogiorgos, Contact Riemannian manifolds with constant ϕ-sectional curvature, Tokyo Journal of Mathematics, 20, 1(1997),13-22.
[15] B. Laha and A. Bhattacharyya, Totally Umbilical Hemislant Submanifolds of LP-Sasakian Manifold, Lobachevskii Journal of Mathematics, 36, 2(2015), 127-131, doi: 10.1134/S1995080215020122.
[16] A. Lotta, Slant Submanifolds in Contact Geometry, Bulletin of Mathematical Society Romania, 39, (1996), 183-198.
[17] M.S. Siddesha and C. S. Bagewadi, On Slant submanifolds of (κ, μ)-contact manifold, Differential Geometry-Dynamical Systems, 18, (2016), 123-131.
[18] S. Tanno, Ricci curvatures of contact Riemannian manifolds, Tohoku Mathematical Journal, 40, (1988), 441-448.
[19] K. Yano and S. Ishihara, Invariant submanifolds of almost contact manifolds, Kodai Math. Sem. Rep., 21, (1969), 350-364.

Author information

Venkatesha, Srikantha N, Department of Mathematics, Kuvempu University, Shankaraghatta - 577451, Shivamogga, Karnataka, India.
E-mail: vensmath@gmail.com, srikantha087@gmail.com
Received: August 17, 2017.
Accepted: Februery 11, 2018.
Siddesha M.S., Department of Mathematics, New Horizon College of Engineering, Bengaluru, Karnataka, India.
E-mail: s.siddu2010@gmail.com

