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Abstract. The geometry of pseudo-slant submanifolds of («, u1)-contact space forms has
been studied. The necessary and sufficient condition for a pseudo-slant submanifold to be mixed-
geodesic has been obtained along with some results on totally umbilical pseudo-slant submani-
folds of (k, u)-contact space form.

1 Introduction

It is known that slant submanifolds are the generalization of invariant and anti-invariant subman-
ifolds, many geometers have shown interest in this study. Chen ([7], [8]) initiated this study on
complex manifolds. Lotta [16] introduced the concept of slant immersions in to an almost con-
tact metric manifold. Carriazo introduced another new class of submanifolds called hemi-slant
submanifolds (it is also called as anti-slant or pseudo-slant submanifold) [5]. Later many geome-
ters like ([9], [10], [12], [13], [15]) studied pseudo-slant submanifolds on various manifolds.

The notion of (x, u)-contact space form was introduced by Koufogiorgos [14], which con-
tains the well known class of Sasakian space forms for x = 1. Thus it is worthwhile to study
pseudo-slant submanifolds in a (x, u)-contact space form. Tripathi et al., [6] introduced gener-
alized (x, u1)-space forms and proved that the functions of a contact metric generalized (x, p)-
contact space form M (fi,--- , f¢) of dimension greater than or equal to 5 are constant and are
related to each other. Motivated by these studies we plan to study pseudo-slant submanifolds of
(k, )-contact space forms.

This paper is organized as follows: Section 2 contains some basic formulas and definitions of
(%, p1)-contact metric manifold and their submanifolds. In section 3, we review some definitions
and proved some basic results on pseudo-slant submanifold of (x, u)-contact metric manifold.
Last section deals with the study of totally umbilical pseudo-slant submanifold in (&, ut)-contact
metric manifold and (, u)-contact space forms.

2 Preliminaries

A (2m + 1)-dimensional smooth manifold M is said to be contact manifold if it carries a global
1-form 7 satisfying n A (dn)™ # 0 everywhere on M. And a (2m + 1) dimensional almost
contact manifold with almost contact structure (¢, &, ) consisting of (1, 1) tensor field ¢, global
1-form 7 and a characteristic vector field ¢ satisfies ([1], [2]):

PF=—I+n®E, 2.1)
n€) =1, ¢£=0,no¢=0. (2.2)

Let g be the compatible Riemannian metric with almost contact structure (¢, £, ) such that
9(¢X,9Y) = g(X,Y) = n(X)n(Y), (2.3)

g(¢X7 Y) = _g(X7 (bY), g(X’ g) = W(X) (24)
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Then M equipped with almost contact metric st1ructure~(q$7 &,m, g) is called almost contact met-
ric manifold. Let @ be the fundamental 2-form on M defined by ®(X,Y) = g(X,9Y) =
—®(Y, X). Now if & = dn then almost contact metric structure becomes contact metric struc-
ture.

We know that in a contact metric manifold (M, ¢, £, 7, g), the symmetric tensor h, defined by
2h = L¢¢, satisfies the following [1]

he =0, hé+ ¢h =0, Vx& = —¢X — ¢hX, tr(h) = tr(¢h) = 0, (2.5)

where V is the Levi-Civita connection of M. A contact metric manifold M is said to be (k, ut)-
contact metric manifold if the structural vector field £ belongs to (&, p)-nullity distribution de-
fined by [3]

N (k1) i p— Np(k,p) ={Z € T,M | R(X,Y)Z =r(g(Y,Z)X — g(X, 2)Y)
where , ;1 are constants. We know that in a (k, ;1)-contact metric manifold M, h? = (k — 1)¢?
and therefore x < 1. If k = 1 then M becomes Sasakian manifold.

Moreover for a (k, ;1)-contact metric manifold /7 of dimension 2m + 1 and for all X,Y €
(T M), we have [2]

(Vxo)Y = g(X +hX, V)¢ —n(Y)(X + hX). (2.6)

The (#, j1)-contact metric manifold is said to be (x, 1) contact space form denoted by M (c)
if M has constant ¢-sectional curvature. Now the curvature tensor of M (c) is given by [14]

R = Ry +

i 3 1 3 1
et c R2+<C+ /€>R3+2R4+R5+(1u)R6, 2.7)

4 4 4
where,
Ri(X,Y)Z ={9(Y,2)X - g(X,2)Y}
Ro(X,Y)Z ={g(X,62)6Y — g(Y,62)0X + 29(X,0Y )2}
R3(X,Y)Z ={n(X)n(2)Y —n(Y)n(Z)X + g(X, Z)n(Y)§ — g(Y, Z)n(X)E}
Ry(X,Y)Z ={g(hY, Z)hX — g(hX, Z)hY + g(¢hX, Z)$hY — g(¢hY, Z)phX}
Rs(X,Y)Z =g(Y, Z)hX — g(X, Z)hY + g(hY, Z)X — g(hX, Z)Y,
Re(X,Y)Z =n(X)n(Z2)hY —n(Y)n(Z)hX + g(hX, Z)n(Y)§ — g(hY, Z)n(X)¢.

for any vector fields X, Y, Z. _
Let M be a submanifold of a contact metric manifold M with induced metric denoted by the
same symbol ¢g. Then the Gauss and Weingarten formulas are given by

VxY =VxY +0(X,Y), (2.8)
VxV =—AyX + V%V, (2.9)

where V and V+ are induced connections on the tangent bundle TM and T+M of M respec-
tively, o and Ay are the second fundamental form and the shape operator with respect to V'
respectively. Further o and Ay are related by

forany X,Y € [(TM) and V € I'(T+M). The mean curvature vector H of M is given by

l
1
H= m« 72 e €i), (2.11)

where [ is the dimension of M and {ej,es,- - , e} is the local orthonormal frame of M.
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» A submanifold is said to be totally umbilical if
o(X,Y) = g(X,Y)H, (2.12)

where H is the mean curvature vector.
+ A submanifold is said to be totally geodesic if o(X,Y) = 0.

« A submanifold is said to be minimal if H = 0.
Also, we have

!
of; = g(o(eiej),er) and l|o]|? = Z g(o(ei e;),o(ese5)), (2.13)

,5=1

forl <i,57 <[,l4+1<r <2m+ 1. Now for any submanifold M of a Riemannian manifold M
and for any XY, Z € I'(T'M), the covariant derivative of o is defined by

(Vxo)(Y,2) =Vx0(Y,Z) - o(VxY,Z) - o(Y,VxZ). (2.14)
Also for the submanifold M, the Riemannian curvature tensor R of M is given by
R(X,Y)Z = R(Xv Y)Z + AU(X,Z)Y - AO‘(Y,Z)X + (ﬁXJ)(Ya Z) - (ﬁyo—)(Xv Z)a (215)

where R is the Riemannian curvature tensor of M. The tangent and normal components of the
above equation are, respectively

(R(X,YV)Z)" =R(X,Y)Z + Ayx.2)Y — Agiv,2) X, (2.16)
(R(X,Y)Z): =(Vx0o)(Y,Z) - (Vyo)(X, Z), (2.17)
for any X,Y,Z € T(TM). Note that M is said to be curvature invariant submanifold of M if

(R(X,Y)Z)*+ =0.
The Ricci equation is given by

g(R(X,Y)U,V) = g(RH(X, YU, V) + g([Av, Av]X,Y), (2.18)

forany X,Y € I'(TM) and U,V € ['(T+M). Here R* denotes the Riemannian curvature
tensor tensor of 7+ M and if it is zero then the normal connection of M is flat.

Definition 2.1. A (, j1)-contact metric manifold 17 is said to be n-Einstein manifold if its Ricci
tensor S is of the form S(X,Y) = ag(X,Y’) + bn(X)n(Y'), where a and b are smooth functions
on M and X,Y € I'(TM).

Before going to main results we first recall a lemma of [18],

Lemma 2.2. If (M, ¢,£,n,9) is a contact Riemannian manifold and & belongs to the (k,u)-
nullity distribution, then k < 1. If k < 1, then M admits three mutually orthogonal and inte-
grable distributions D(0), D(\) and D(—)) defined by the eigenspaces of h, where A = \/1 — k.
Further, if X € D(X), then hX = AX and if X € D(—\) then hX = —)\X.

3 Pseudo-slant submanifolds of (~, 1)-contact metric manifold

Let M be a submanifold of (x, ) contact metric manifold M. Then for any X € ['(TM) and
V € I(T+ M) we can write

¢X =TX + NX, 3.1
PV =tV +nV, (3.2)
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where T'X and NX (respectively ¢tV and nV) are the tangential and normal component of ¢p.X
(respectively ¢V). Using (2.1) in the above equations one can get

T>=—tN—-T1+no0& NT+nN =0, (3.3)
n? = —I — Nt, Tt +tn =0. (3.4)

Furthermore, from (2.4), (3.1) and (3.2) we can say 7" and n are skew-symmetric tensor fields.
Also for X € I(TM) and V € T(T+ M), we can obtain relation between N and ¢ as

In view of (2.7) and (2.18) we get
g(RH(X,Y)V.U) —{g(X $V)g(oY,U) = g(Y,6V)g(6X,U) +29(X, ¢Y )g(6V,U)}

+ E{g(hY, V)g(hX,U) — g(hX,V)g(RY,U) + g(¢hX,V)g(¢hY,U)
—g(¢hY,V)g(¢ohX,U)} — g([Av, Av]X,Y), (3.6)

for X, Y € [(TM) and U,V € T(T+M). And in view of (2.7), (2.16) and (2.17), we obtain

3 3 1
R(X.,Y)Z _C+ R+ R2 (Cz - H) Ry + §R4T +Rs+(1—p)Re, (37)

where, Rg =g(X, gbZ)TY —g(Y,0Z2)TX +29(X,0Y)TZ
and Rf =g(hY, Z)hX — g(hX, Z)hY + g(¢hX, Z)ThY — g(¢hY, Z)ThX
and

(Txo)(¥.2) - (Fr0)(x,2) =

c—1

> {9(X,0Z)NY — g(Y,9Z)NX +29(X, ¢Y )N Z}

+ %{g(d)hX, Z)NLY — g(¢phY, Z)NhX}, 3.8)

forall X,Y,Z € T'(T'M). Again from (2.6), we obtain the following;

(VxT)Y =Any X +to(X,Y) + g(X + hX,Y){ —n(Y)(X + hX), (3.9)
(VxN)Y =no(X,Y) — o(X,TY), (3.10)
(Vxt)V =A,v X —TAy X, (3.11)
(Vxn)V = —o(X,tV) - NAy X, (3.12)

forany X, Y e I(TM) and V € T(T+M).
Now let us recall some definitions of of classes of submanifolds. Let M be a submanifold,
then M is said to be

(1) Invariant submanifold if N is identically zero in (3.1), i.e., X € TM, VX € TM.
(ii) Anti-invariant submanifold if 7" is identically zero in (3.1), i.e., X € T+ M, VX € TM.

(iii) Slant submanifold if there exists an angle §(x) € [0,7/2] between ¢X and T'M for all
non-zero vector X tangent to M at x called slant angle which is constant.

(iv) Pseudo-slant submanifold if there exists distributions Dy and D+ such that (1) TM admits
orthogonal direct composition TM = Dy @ D+, & € Dy, (2) Dy is a slant distribution with
slant angle # # 7/2 and (3) D+ is an anti-invariant distribution [12].

From the above definitions we can note that slant submanifold is the generalization of invariant
(if # = 0) and anti-invariant (if 6 = 7/2) submanifolds. A proper slant submanifold is neither in-
variant nor anti-invariant submanifold i.e., # € (0, 7/2). Hence in general we have the following
theorem which characterize slant submanifolds of almost contact metric manifolds;
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Theorem 3.1. [4] Let M be a slant submanifold of an almost contact metric manifold M such
that § € T(TM). Then, M is slant submanifold if and only if there exist a constant v € [0, 1]
such that

T = (I -ne¢), (3.13)
furthermore, in this case, if 0 is the slant angle of M, then v = cos> 0.

Corollary 3.2. [4] Let M be a slant submanifold of an almost contact metric manifold M with
slant angle 6. Then for any XY € T'(T M), we have

g(TX,TY) = cos® {g(X,Y) — n(X)n(Y)}, (3.14)
and g(NX,NY) = sin® 0{g(X,Y) — n(X)n(¥)}. (3.15)

If we denote the orthogonal complementary of ¢T'M in T M by v, then the normal bundle
T+ M can be decomposed as follows

T+*M = N(Dy) ® N(D*) @ v.

From the above decomposition one can see that g(X, Z) = 0, for each X € I'(Dy) and Z €
[(D1). And hence g(NX,NZ) = g(¢X,¢Z) = g(X,Z) = 0. Also we know that to = 0, so
(3.9) reduces to

(VxT)Y =g(X + hX,Y)§ —n(Y)(X + hX),

forall X, Y € Dy. Hence we infer that the induced structure T'is a (x, 11)-contact metric structure
on M if the ambient manifold M is a (k, u)-contact metric manifold.
Using (2.9) and (2.6) we can state the following result.

Lemma 3.3. In a pseudo-slant submanifold of (k, v)-contact metric manifold, AyzW = Anw Z
forany Z,W € T'(D4).

Theorem 3.4. Let M be a proper pseudo-slant submanifold of (k, u1)-contact metric manifold M.
Then (1) N is parallel. (2) t is parallel. (3) AnvY + AyTY =0, foranyY € T(TM),V €
[(T+M) are equivalent.

Proof. Let N be parallel. For any X,Y € I'(TM),V € I'(T+ M) , we have from (3.10) that
g(VxN)Y, V) =g(no(X,Y),V)—g(c(X, TY),V) = 0. (3.16)
In view of (2.10) and (3.11), the above equation become
—9(Aw X, Y) +g(TAvX,Y) = —g(Apw X —TAvX,Y) = —g((Vxt)V,Y) =0
Hence t is parallel. Converse part is obvious. Again if N is parallel, then from (3.16), we have
—g(AwY, X) — g(Av X, TY) = —g(AvY + AyTY, X) = 0.
Converse part is trivial. This proves our assertion. O

Theorem 3.5. Let M be a proper pseudo-slant submanifold of a (k, u)-contact metric manifold.
Then the covariant derivative of T is skew-symmetric.

Proof. Forany X,Y,Z € T(T M), we have from (3.9) that
g(VxT)Y,Z) = g(Any X +to(X,Y) + g(X + hX,Y)E —n(Y)(X + hX), Z).
Using (2.10) in the above equation we get
9(VxT)Y, Z) =g(o(X, Z), NY) + g(to(X,Y), Z) + g(X + hX,Y)n(2)
—n(Y)g(X + hX, Z)
=—{g(to(X,2),Y)+g(c(X,Y),NZ) — g(X + hX,Y)n(Z)
+n(V)g(X +hX,2)} = —g((VxT)Z,Y).

This completes the proof. O
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Theorem 3.6. Let M be a proper pseudo-slant submanifold of a (k, u)-contact metric manifold.
Then the covariant derivative of n is skew-symmetric.

Proof. Forany X € T'(TM) and U,V € I(T+M), in view of (3.12) and (2.10) and following
same procedure of the above theorem we obtain g((Vxn)V,U) = —g(V,(Vxn)U). i

Lemma 3.7. Let M be a proper pseudo-slant submanifold of a (K, u)-contact metric manifold
M. Then n is parallel if and only if the shape operator Ay of M satisfies the condition AytU =
AgtV forall U,V € T(T+M).

Proof. Let n be parallel. Then from (3.12), (2.10) and (3.5) we have

9(Vxn)V.U) = —g(o(X,tV),U) — g(NAy X, U) =0
—g(AutV, X) + g(Av X, tU) = 0
—g(AUtV — Ath, X) =0.

Hence we get AptV = AytU for X € T(TM),U,V € T(T+M). O

Definition 3.8. A pseudo-slant submanifold M of a (, u)-contact metric manifold M is said to
be mixed-geodesic submanifold if o(X, Z) = 0 for any X € I'(Dg) and Z € T'(D+).

Theorem 3.9. Let M be a totally umbilical proper pseudo-slant submanifold of a (K, u)-contact
metric manifold M. If t is parallel then M is either mixed-geodesic or anti-invariant submani-

fold.

Proof. Let X € Dy, Y € D and t is parallel. By Theorem 3.4, we have N is parallel and hence
(VxN)Y = 0. This implies

no(X,Y)—-o(X,TY) =0.
Replacing X by T'X in the above equation we get
no(TX,Y)—o(TX, TY) =0.
Since M is totally umbilical, from (2.12) and (3.13) the above equation reduces to
—0(T*X,Y) = cos® 0o (X,Y) = 0.
Hence we get either § = 7/2 (M is anti-invariant) or o(X,Y") = 0 (M is mixed-geodesic). This

completes our proof. O

4 Pseudo-slant submanifolds of (~, p)-contact space forms

Let us define {e,--- ,ep, ept1 = secHTey, - e, = secOTey, eopr1 = &, €2pt2, "+, €2pigtl}
as an orthonormal basis of I'(T'M ) such that {ey, - - - ,ezpt1} € I'(Dyg) and {ezp12, -+ , €2ptq+i1} €
r(D4).

Theorem 4.1. Let M be a proper pseudo-slant submanifold of a (k, u)-contact space form M (c).
Then the Ricci tensor S of M is given by

S(X, W) =(K1 + K3 + Ks + K¢)g(X, W) + (2K2 + K4 — Ks)n(X)n(W)

2p+q

+ (Zp +q- 1)9(U(X7 W)vH) - Z g(a(el,W)7J(X, el))» 4.1)
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where
Kl—(p—Z)(c—:3)—|—(2p—3—u)(j:)\)+p;2(j:)\2)+3(c4_1)—i—n,
Kzz(l—u)(ix)—¥—m+(%2),
K3:(p2)(Cz3izx+(i;2)>+<czl(igz))coszwc_zl,
K4:(C:3ﬁ:2/\+(i2)\2))<c41(ﬁ:;z))coszeczl

-0 (SR - rr - ).

Ks —i>\+( )\2)+l€—(l—u)(:t)\)—sin29,
K¢ =(q — 2)(cz3>+(2q—3 1) (£X) + zz(i)\z)+¥+m

forany X, W € I(TM).
Proof. Forany X,Y,Z W € I'(TM), by (2.7), (2.15) and Lemma 2.2 we have

2
c+3iz>\+(:|:)\)
c—

o(R(X.Y)Z,W) = ( ) (0¥, Z2)g(X, W) — g(X, Z)g(¥, W)}

(=) ) (9(X, 62)g(6Y. W) — g(Y, 62)g(6X, W)}

o evgezw)
c+3

+< u)(ﬂm) (n(X)n(Z)g(v, W)
Y IN(Z)g(X W)+ () n(W)a(X, Z) — n(X)n(W)g(Y. 2)}
 g(o(X, W), 0(Y. 2)) — g(o (Y. W),0(X. 2)). 42)

Now consider the orthonormal basis as defined in the beginning of this section. By taking ¥ =
Z =¢e;,¢e5,€epwhere ] <i<pp+1<75<2p2p+2<k<2p+ g+ 1repeatedly in (4.2)
and adding the resultant equations we obtain

p
S(X, W) =Y g(R(X,ei)e;, W) + Z R(X,secTe;)secOTe;, W)
i=1 i=p+1
2p+q+1

+9(R(X,6W)+ > g(R(X, ex)ex, W). (4.3)

k=2p+2
On simplifying, we obtain

g(R(X, ei)ei, W) =K 1g(X, W) 4+ Kon(X)n(W)

+g(a(X,W),0(eie;) — glo(e;, W), o(X, e:)), (4.4)
where K =(p - 2) (cz3> (2p-3-— u)(j:/\)+])T2(ﬁ:)\2)+ 3(04_ D4 s,
and K =(1 — p)(£N) — ;3 — k4 (=N)

2 2 7
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g(R(X,secOTe;)secTe;, W) =K3g(X, W) + Kan(X)n(W)
+ g(o(X,W),0o(secTe;,secOTe;))
—g(o(secOTe;,W),o(X,secTe;)), (4.5)

2 _ 2 B
where K3 =(p — 2) <C—:3 2+ <:t2)\ )> + (C4 ! (i2)\)> 005294_%7

2 _ 2 _
andK4—<C—:f3i2)\+ (A )) — (C 1— (A ))coszﬁ—czl

2 4 2
-1 (SR - nr - ).

g(R(X, )& W) =Ks{g(X, W) — n(X)n(W)}, (4.6)

[

where K5 =+ \ + — (1 = p)(£A) — sin® 6,

g(R(X, er)er, W) =Keg(X, W) 4+ Kyn(X)n(W)

+g(a(X, W), 0(er,exr)) — glo(er, W), 0(X, er)), 4.7
-2 -1
where K¢ =(q — 2) <C+ 3) +(2¢ =3 — p)(£N) + qT(j:/\z) + 3<C4 ) + K,
For 1 <[ <2p+ ¢, put
2p+ p
Z elv X 61)) Zg(a(mei)ao—(Xvei))
1=1 i=1
+ Z o(secOTe;, W),o(X,secOTe;))
j=p+1
2p+q+1
+ Z eka (X7 ek)) (48)
1=2p+2
Thus we get (4.1) by using (2.11) in (4.4) to (4.8) and then substituting in (4.3). O

Theorem 4.2. Let M be a pseudo-slant submanifold of a (k, iv)-contact space form M (c). Then
the scalar curvature p of M is given by

=(K| + K3+ Ks+ K¢)(2p+q+1)
+ 2Kz + K4 — Ks)((2p+ q)* = V)||H||* = ||o]]*. (4.9)

Proof. Using the fact that
2p+q+1
Z S(eia ei))
i=1
and (4.1) we get (4.9). O

Corollary 4.3. Every totally umbilical pseudo-slant submanifold M of a (K, )-contact space
form M c) is an n-Einstein submanifold.



256 Venkatesha, Srikantha N and Siddesha M.S.

Proof. Using (4.1) and (2.12) we have

S(X, W) =(Ki + K3 + K5 + Ko )g(X, W) + (2K + K4 — Ks)n(X)n(W)

2p+q+1

+(2p+q—Dg(g(X, W)H, H) — > glg(er, W)H, g(X, e1)H),

This completes our proof. O

Theorem 4.4. Let M be a pseudo-slant submanifold of a (k, j1)-contact space form M c). If M is
curvature-invariant pseudo-slant submanifold, then M is either semi-invariant or anti-invariant
submanifold, provided 3(1 — c) # (£2)?).

Proof. Let M be a curvature-invariant pseudo-slant submanifold of a (, z1)-contact space form
M (c). Then from (2.17) and (3.8) we have

c—1
4

(Vx0) (Y, Z) — (Fyo)(X. 2) = ( ) {9(X, TZ)NY — g(Y,TZ)NX + 29(X,TY)NZ}

+ %{Q(ThX, Z)NhY — g(ThY, Z)NhX} = 0,

for X,Y,Z € I'(TM). By taking in to account of Lemma 2.2 and putting X = Z we obtain

{3@_ D, 1

1 2(i)\2)] 9(TZ,Y)NZ = 0.

Now putting Y = T'Z in the above equation and taking inner product with N Z we get

{3@ D, 1

= 2(i)\2)] 9(TZ,TZ)g(NZ,NZ) = 0.

Simplifying the above equation by considering (3.14) and (3.15), we obtain

\/3(‘341> " %(iv) sin26{g(Z, Z) — n*(Z)} = 0.

Thus we infer that either M is semi-invariant (¢ = 0) or anti-invariant (¢ = /2), provided
3(1 —¢) # (£2)2). O
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