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Abstract. The geometry of pseudo-slant submanifolds of (κ, µ)-contact space forms has
been studied. The necessary and sufficient condition for a pseudo-slant submanifold to be mixed-
geodesic has been obtained along with some results on totally umbilical pseudo-slant submani-
folds of (κ, µ)-contact space form.

1 Introduction

It is known that slant submanifolds are the generalization of invariant and anti-invariant subman-
ifolds, many geometers have shown interest in this study. Chen ([7], [8]) initiated this study on
complex manifolds. Lotta [16] introduced the concept of slant immersions in to an almost con-
tact metric manifold. Carriazo introduced another new class of submanifolds called hemi-slant
submanifolds (it is also called as anti-slant or pseudo-slant submanifold) [5]. Later many geome-
ters like ([9], [10], [12], [13], [15]) studied pseudo-slant submanifolds on various manifolds.

The notion of (κ, µ)-contact space form was introduced by Koufogiorgos [14], which con-
tains the well known class of Sasakian space forms for κ = 1. Thus it is worthwhile to study
pseudo-slant submanifolds in a (κ, µ)-contact space form. Tripathi et al., [6] introduced gener-
alized (κ, µ)-space forms and proved that the functions of a contact metric generalized (κ, µ)-
contact space form M(f1, · · · , f6) of dimension greater than or equal to 5 are constant and are
related to each other. Motivated by these studies we plan to study pseudo-slant submanifolds of
(κ, µ)-contact space forms.

This paper is organized as follows: Section 2 contains some basic formulas and definitions of
(κ, µ)-contact metric manifold and their submanifolds. In section 3, we review some definitions
and proved some basic results on pseudo-slant submanifold of (κ, µ)-contact metric manifold.
Last section deals with the study of totally umbilical pseudo-slant submanifold in (κ, µ)-contact
metric manifold and (κ, µ)-contact space forms.

2 Preliminaries

A (2m+ 1)-dimensional smooth manifold M̃ is said to be contact manifold if it carries a global
1-form η satisfying η ∧ (dη)m 6= 0 everywhere on M̃ . And a (2m + 1) dimensional almost
contact manifold with almost contact structure (φ, ξ, η) consisting of (1, 1) tensor field φ, global
1-form η and a characteristic vector field ξ satisfies ([1], [2]):

φ2 =− I + η ⊗ ξ, (2.1)

η(ξ) = 1, φξ = 0, η ◦ φ = 0. (2.2)

Let g be the compatible Riemannian metric with almost contact structure (φ, ξ, η) such that

g(φX, φY ) = g(X,Y )− η(X)η(Y ), (2.3)

g(φX, Y ) = −g(X,φY ), g(X, ξ) = η(X). (2.4)



PSEUDO-SLANT SUBMANIFOLDS OF (κ, µ)-SPACE FORMS 249

Then M̃ equipped with almost contact metric structure (φ, ξ, η, g) is called almost contact met-
ric manifold. Let Φ be the fundamental 2-form on M̃ defined by Φ(X,Y ) = g(X,φY ) =
−Φ(Y,X). Now if Φ = dη then almost contact metric structure becomes contact metric struc-
ture.

We know that in a contact metric manifold (M̃, φ, ξ, η, g), the symmetric tensor h, defined by
2h = Lξφ, satisfies the following [1]

hξ = 0, hφ+ φh = 0, ∇̃Xξ = −φX − φhX, tr(h) = tr(φh) = 0, (2.5)

where ∇̃ is the Levi-Civita connection of M̃ . A contact metric manifold M̃ is said to be (κ, µ)-
contact metric manifold if the structural vector field ξ belongs to (κ, µ)-nullity distribution de-
fined by [3]

N (κ, µ) : p→ Np(κ, µ) = {Z ∈ TpM̃ | R̃(X,Y )Z =κ(g(Y,Z)X − g(X,Z)Y )
+ µ(g(Y,Z)hX − g(X,Z)hY )},

where κ, µ are constants. We know that in a (κ, µ)-contact metric manifold M̃ , h2 = (κ− 1)φ2

and therefore κ ≤ 1. If κ = 1 then M̃ becomes Sasakian manifold.
Moreover for a (κ, µ)-contact metric manifold M̃ of dimension 2m + 1 and for all X,Y ∈

Γ(TM), we have [2]

(∇̃Xφ)Y = g(X + hX, Y )ξ − η(Y )(X + hX). (2.6)

The (κ, µ)-contact metric manifold is said to be (κ, µ) contact space form denoted by M̃(c)
if M̃ has constant φ-sectional curvature. Now the curvature tensor of M̃(c) is given by [14]

R̃ =
c+ 3

4
R1 +

c− 1
4

R2 +

(
c+ 3

4
− κ
)
R3 +

1
2
R4 +R5 + (1− µ)R6, (2.7)

where,

R1(X,Y )Z ={g(Y, Z)X − g(X,Z)Y }
R2(X,Y )Z ={g(X,φZ)φY − g(Y, φZ)φX + 2g(X,φY )φZ}
R3(X,Y )Z ={η(X)η(Z)Y − η(Y )η(Z)X + g(X,Z)η(Y )ξ − g(Y, Z)η(X)ξ}
R4(X,Y )Z ={g(hY, Z)hX − g(hX,Z)hY + g(φhX,Z)φhY − g(φhY, Z)φhX}
R5(X,Y )Z =g(Y,Z)hX − g(X,Z)hY + g(hY, Z)X − g(hX,Z)Y,
R6(X,Y )Z =η(X)η(Z)hY − η(Y )η(Z)hX + g(hX,Z)η(Y )ξ − g(hY, Z)η(X)ξ.

for any vector fields X,Y, Z.
Let M be a submanifold of a contact metric manifold M̃ with induced metric denoted by the

same symbol g. Then the Gauss and Weingarten formulas are given by

∇̃XY =∇XY + σ(X,Y ), (2.8)

∇̃XV =−AVX +∇⊥
XV, (2.9)

where ∇ and ∇⊥ are induced connections on the tangent bundle TM and T⊥M of M respec-
tively, σ and AV are the second fundamental form and the shape operator with respect to V
respectively. Further σ and AV are related by

g(AVX,Y ) = g(σ(X,Y ), V ), (2.10)

for any X,Y ∈ Γ(TM) and V ∈ Γ(T⊥M). The mean curvature vector H of M is given by

H =
1
l
tr(σ) =

1
l

l∑
i=1

σ(ei, ei), (2.11)

where l is the dimension of M and {e1, e2, · · · , el} is the local orthonormal frame of M .
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• A submanifold is said to be totally umbilical if

σ(X,Y ) = g(X,Y )H, (2.12)

where H is the mean curvature vector.

• A submanifold is said to be totally geodesic if σ(X,Y ) = 0.

• A submanifold is said to be minimal if H = 0.

Also, we have

σrij = g(σ(ei, ej), er) and ||σ||2 =
l∑

i,j=1

g(σ(ei, ej), σ(ei, ej)), (2.13)

for 1 ≤ i, j ≤ l, l+ 1 ≤ r ≤ 2m+ 1. Now for any submanifold M of a Riemannian manifold M̃
and for any X,Y, Z ∈ Γ(TM), the covariant derivative of σ is defined by

(∇̃Xσ)(Y,Z) = ∇⊥
Xσ(Y,Z)− σ(∇XY,Z)− σ(Y,∇XZ). (2.14)

Also for the submanifold M , the Riemannian curvature tensor R̃ of M̃ is given by

R̃(X,Y )Z = R(X,Y )Z +Aσ(X,Z)Y −Aσ(Y,Z)X + (∇̃Xσ)(Y,Z)− (∇̃Y σ)(X,Z), (2.15)

where R is the Riemannian curvature tensor of M . The tangent and normal components of the
above equation are, respectively

(R̃(X,Y )Z)T =R(X,Y )Z +Aσ(X,Z)Y −Aσ(Y,Z)X, (2.16)

(R̃(X,Y )Z)⊥ =(∇̃Xσ)(Y, Z)− (∇̃Y σ)(X,Z), (2.17)

for any X,Y, Z ∈ Γ(TM). Note that M is said to be curvature invariant submanifold of M̃ if
(R̃(X,Y )Z)⊥ = 0.

The Ricci equation is given by

g(R̃(X,Y )U, V ) = g(R⊥(X,Y )U, V ) + g([AU , AV ]X,Y ), (2.18)

for any X,Y ∈ Γ(TM) and U, V ∈ Γ(T⊥M). Here R⊥ denotes the Riemannian curvature
tensor tensor of T⊥M and if it is zero then the normal connection of M is flat.

Definition 2.1. A (κ, µ)-contact metric manifold M̃ is said to be η-Einstein manifold if its Ricci
tensor S is of the form S(X,Y ) = ag(X,Y ) + bη(X)η(Y ), where a and b are smooth functions
on M̃ and X,Y ∈ Γ(TM).

Before going to main results we first recall a lemma of [18],

Lemma 2.2. If (M,φ, ξ, η, g) is a contact Riemannian manifold and ξ belongs to the (κ, µ)-
nullity distribution, then κ ≤ 1. If κ < 1, then M admits three mutually orthogonal and inte-
grable distributionsD(0), D(λ) andD(−λ) defined by the eigenspaces of h, where λ =

√
1− κ.

Further, if X ∈ D(λ), then hX = λX and if X ∈ D(−λ) then hX = −λX .

3 Pseudo-slant submanifolds of (κ, µ)-contact metric manifold

Let M be a submanifold of (κ, µ) contact metric manifold M̃ . Then for any X ∈ Γ(TM) and
V ∈ Γ(T⊥M) we can write

φX =TX +NX, (3.1)

φV = tV + nV, (3.2)
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where TX and NX (respectively tV and nV ) are the tangential and normal component of φX
(respectively φV ). Using (2.1) in the above equations one can get

T 2 = −tN − I + η ◦ ξ, NT + nN = 0, (3.3)

n2 = −I −Nt, T t+ tn = 0. (3.4)

Furthermore, from (2.4), (3.1) and (3.2) we can say T and n are skew-symmetric tensor fields.
Also for X ∈ Γ(TM) and V ∈ Γ(T⊥M), we can obtain relation between N and t as

g(NX,V ) = −g(X, tV ). (3.5)

In view of (2.7) and (2.18) we get

g(R̃⊥(X,Y )V,U) =
c− 1

4
{g(X,φV )g(φY,U)− g(Y, φV )g(φX,U) + 2g(X,φY )g(φV,U)}

+
1
2
{g(hY, V )g(hX,U)− g(hX, V )g(hY,U) + g(φhX, V )g(φhY,U)

− g(φhY, V )g(φhX,U)} − g([AU , AV ]X,Y ), (3.6)

for X,Y ∈ Γ(TM) and U, V ∈ Γ(T⊥M). And in view of (2.7), (2.16) and (2.17), we obtain

R(X,Y )Z =
c+ 3

4
R1 +

c− 1
4

RT2 +

(
c+ 3

4
− κ
)
R3 +

1
2
RT4 +R5 + (1− µ)R6, (3.7)

where, RT2 =g(X,φZ)TY − g(Y, φZ)TX + 2g(X,φY )TZ

and RT4 =g(hY, Z)hX − g(hX,Z)hY + g(φhX,Z)ThY − g(φhY,Z)ThX

and

(∇̃Xσ)(Y, Z)− (∇̃Y σ)(X,Z) =
(
c− 1

4

)
{g(X,φZ)NY − g(Y, φZ)NX + 2g(X,φY )NZ}

+
1
2
{g(φhX,Z)NhY − g(φhY,Z)NhX}, (3.8)

for all X,Y, Z ∈ Γ(TM). Again from (2.6), we obtain the following;

(∇XT )Y =ANYX + tσ(X,Y ) + g(X + hX, Y )ξ − η(Y )(X + hX), (3.9)

(∇XN)Y =nσ(X,Y )− σ(X,TY ), (3.10)

(∇Xt)V =AnVX − TAVX, (3.11)

(∇Xn)V =− σ(X, tV )−NAVX, (3.12)

for any X,Y ∈ Γ(TM) and V ∈ Γ(T⊥M).
Now let us recall some definitions of of classes of submanifolds. Let M be a submanifold,

then M is said to be

(i) Invariant submanifold if N is identically zero in (3.1), i.e., φX ∈ TM, ∀X ∈ TM .

(ii) Anti-invariant submanifold if T is identically zero in (3.1), i.e., φX ∈ T⊥M, ∀X ∈ TM .

(iii) Slant submanifold if there exists an angle θ(x) ∈ [0, π/2] between φX and TM for all
non-zero vector X tangent to M at x called slant angle which is constant.

(iv) Pseudo-slant submanifold if there exists distributions Dθ and D⊥ such that (1) TM admits
orthogonal direct composition TM = Dθ ⊕D⊥, ξ ∈ Dθ, (2) Dθ is a slant distribution with
slant angle θ 6= π/2 and (3) D⊥ is an anti-invariant distribution [12].

From the above definitions we can note that slant submanifold is the generalization of invariant
(if θ = 0) and anti-invariant (if θ = π/2) submanifolds. A proper slant submanifold is neither in-
variant nor anti-invariant submanifold i.e., θ ∈ (0, π/2). Hence in general we have the following
theorem which characterize slant submanifolds of almost contact metric manifolds;
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Theorem 3.1. [4] Let M be a slant submanifold of an almost contact metric manifold M̃ such
that ξ ∈ Γ(TM). Then, M is slant submanifold if and only if there exist a constant γ ∈ [0, 1]
such that

T 2 = −γ(I − η ⊗ ξ), (3.13)

furthermore, in this case, if θ is the slant angle of M , then γ = cos2 θ.

Corollary 3.2. [4] Let M be a slant submanifold of an almost contact metric manifold M̃ with
slant angle θ. Then for any X,Y ∈ Γ(TM), we have

g(TX, TY ) = cos2 θ{g(X,Y )− η(X)η(Y )}, (3.14)

and g(NX,NY ) = sin2 θ{g(X,Y )− η(X)η(Y )}. (3.15)

If we denote the orthogonal complementary of φTM in T⊥M by ν, then the normal bundle
T⊥M can be decomposed as follows

T⊥M = N(Dθ)⊕N(D⊥)⊕ ν.

From the above decomposition one can see that g(X,Z) = 0, for each X ∈ Γ(Dθ) and Z ∈
Γ(D⊥). And hence g(NX,NZ) = g(φX, φZ) = g(X,Z) = 0. Also we know that tσ = 0, so
(3.9) reduces to

(∇XT )Y =g(X + hX, Y )ξ − η(Y )(X + hX),

for allX,Y ∈ Dθ. Hence we infer that the induced structure T is a (κ, µ)-contact metric structure
on M if the ambient manifold M̃ is a (κ, µ)-contact metric manifold.

Using (2.9) and (2.6) we can state the following result.

Lemma 3.3. In a pseudo-slant submanifold of (κ, µ)-contact metric manifold,ANZW = ANWZ
for any Z,W ∈ Γ(D⊥).

Theorem 3.4. LetM be a proper pseudo-slant submanifold of (κ, µ)-contact metric manifold M̃ .
Then (1) N is parallel. (2) t is parallel. (3) AnV Y + AV TY = 0, for any Y ∈ Γ(TM), V ∈
Γ(T⊥M) are equivalent.

Proof. Let N be parallel. For any X,Y ∈ Γ(TM), V ∈ Γ(T⊥M) , we have from (3.10) that

g((∇XN)Y, V ) = g(nσ(X,Y ), V )− g(σ(X,TY ), V ) = 0. (3.16)

In view of (2.10) and (3.11), the above equation become

−g(AnVX,Y ) + g(TAVX,Y ) = −g(AnVX − TAVX,Y ) = −g((∇Xt)V, Y ) = 0

Hence t is parallel. Converse part is obvious. Again if N is parallel, then from (3.16), we have

−g(AnV Y,X)− g(AVX,TY ) = −g(AnV Y +AV TY,X) = 0.

Converse part is trivial. This proves our assertion.

Theorem 3.5. Let M be a proper pseudo-slant submanifold of a (κ, µ)-contact metric manifold.
Then the covariant derivative of T is skew-symmetric.

Proof. For any X,Y, Z ∈ Γ(TM), we have from (3.9) that

g((∇XT )Y,Z) = g(ANYX + tσ(X,Y ) + g(X + hX, Y )ξ − η(Y )(X + hX), Z).

Using (2.10) in the above equation we get

g((∇XT )Y,Z) =g(σ(X,Z), NY ) + g(tσ(X,Y ), Z) + g(X + hX, Y )η(Z)

− η(Y )g(X + hX,Z)

=− {g(tσ(X,Z), Y ) + g(σ(X,Y ), NZ)− g(X + hX, Y )η(Z)

+ η(Y )g(X + hX,Z)} = −g((∇XT )Z, Y ).

This completes the proof.



PSEUDO-SLANT SUBMANIFOLDS OF (κ, µ)-SPACE FORMS 253

Theorem 3.6. Let M be a proper pseudo-slant submanifold of a (κ, µ)-contact metric manifold.
Then the covariant derivative of n is skew-symmetric.

Proof. For any X ∈ Γ(TM) and U, V ∈ Γ(T⊥M), in view of (3.12) and (2.10) and following
same procedure of the above theorem we obtain g((∇Xn)V,U) = −g(V, (∇Xn)U).

Lemma 3.7. Let M be a proper pseudo-slant submanifold of a (κ, µ)-contact metric manifold
M̃ . Then n is parallel if and only if the shape operator AV of M satisfies the condition AV tU =
AU tV for all U, V ∈ Γ(T⊥M).

Proof. Let n be parallel. Then from (3.12), (2.10) and (3.5) we have

g((∇Xn)V,U) = −g(σ(X, tV ), U)− g(NAVX,U) = 0

−g(AU tV,X) + g(AVX, tU) = 0

−g(AU tV −AV tU,X) = 0.

Hence we get AU tV = AV tU for X ∈ Γ(TM), U, V ∈ Γ(T⊥M).

Definition 3.8. A pseudo-slant submanifold M of a (κ, µ)-contact metric manifold M̃ is said to
be mixed-geodesic submanifold if σ(X,Z) = 0 for any X ∈ Γ(Dθ) and Z ∈ Γ(D⊥).

Theorem 3.9. Let M be a totally umbilical proper pseudo-slant submanifold of a (κ, µ)-contact
metric manifold M̃ . If t is parallel then M is either mixed-geodesic or anti-invariant submani-
fold.

Proof. Let X ∈ Dθ, Y ∈ D⊥ and t is parallel. By Theorem 3.4, we have N is parallel and hence
(∇XN)Y = 0. This implies

nσ(X,Y )− σ(X,TY ) = 0.

Replacing X by TX in the above equation we get

nσ(TX, Y )− σ(TX, TY ) = 0.

Since M is totally umbilical, from (2.12) and (3.13) the above equation reduces to

−σ(T 2X,Y ) = cos2 θσ(X,Y ) = 0.

Hence we get either θ = π/2 (M is anti-invariant) or σ(X,Y ) = 0 (M is mixed-geodesic). This
completes our proof.

4 Pseudo-slant submanifolds of (κ, µ)-contact space forms

Let us define {e1, · · · , ep, ep+1 = sec θTe1, · · · , e2p = sec θTep, e2p+1 = ξ, e2p+2, · · · , e2p+q+1}
as an orthonormal basis of Γ(TM) such that {e1, · · · , e2p+1} ∈ Γ(Dθ) and {e2p+2, · · · , e2p+q+1} ∈
Γ(D⊥).

Theorem 4.1. LetM be a proper pseudo-slant submanifold of a (κ, µ)-contact space form M̃(c).
Then the Ricci tensor S of M is given by

S(X,W ) =(K1 +K3 +K5 +K6)g(X,W ) + (2K2 +K4 −K5)η(X)η(W )

+ (2p+ q − 1)g(σ(X,W ), H)−
2p+q∑
l=1

g(σ(el,W ), σ(X, el)), (4.1)
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where

K1 =(p− 2)
(
c+ 3

4

)
+ (2p− 3− µ)(±λ) + p− 2

2
(±λ2) +

3(c− 1)
4

+ κ,

K2 =(1− µ)(±λ)− c− 3
2
− κ+ (±λ2)

2
,

K3 =(p− 2)
(
c+ 3

4
± 2λ+

(±λ2)

2

)
+

(
c− 1

4
− (±λ2)

2

)
cos2 θ +

c− 1
2

,

K4 =

(
c+ 3

4
± 2λ+

(±λ2)

2

)
−
(
c− 1

4
− (±λ2)

2

)
cos2 θ − c− 1

2

− (p− 1)
(
c+ 3

4
− κ+ (1− µ)(±λ)

)
,

K5 =± λ+
(±λ2)

2
+ κ− (1− µ)(±λ)− sin2 θ,

K6 =(q − 2)
(
c+ 3

4

)
+ (2q − 3− µ)(±λ) + q − 2

2
(±λ2) +

3(c− 1)
4

+ κ,

for any X,W ∈ Γ(TM).

Proof. For any X,Y, Z,W ∈ Γ(TM), by (2.7), (2.15) and Lemma 2.2 we have

g(R(X,Y )Z,W ) =

(
c+ 3

4
± 2λ+

(±λ2)

2

)
{g(Y,Z)g(X,W )− g(X,Z)g(Y,W )}

+

(
c− 1

4
− (±λ2)

)
{g(X,φZ)g(φY,W )− g(Y, φZ)g(φX,W )}

+
c− 1

2
g(X,φY )g(φZ,W )

+

(
c+ 3

4
− κ+ (1− µ)(±λ)

)
{η(X)η(Z)g(Y,W )

− η(Y )η(Z)g(X,W ) + η(Y )η(W )g(X,Z)− η(X)η(W )g(Y,Z)}
+ g(σ(X,W ), σ(Y,Z))− g(σ(Y,W ), σ(X,Z)). (4.2)

Now consider the orthonormal basis as defined in the beginning of this section. By taking Y =
Z = ei, ej , ξ, ek where 1 ≤ i ≤ p, p+ 1 ≤ j ≤ 2p, 2p+ 2 ≤ k ≤ 2p+ q + 1 repeatedly in (4.2)
and adding the resultant equations we obtain

S(X,W ) =
p∑
i=1

g(R(X, ei)ei,W ) +
2p∑

i=p+1

g(R(X, sec θTej) sec θTej ,W )

+ g(R(X, ξ)ξ,W ) +
2p+q+1∑
k=2p+2

g(R(X, ek)ek,W ). (4.3)

On simplifying, we obtain

g(R(X, ei)ei,W ) =K1g(X,W ) +K2η(X)η(W )

+ g(σ(X,W ), σ(ei, ei))− g(σ(ei,W ), σ(X, ei)), (4.4)

where K1 =(p− 2)
(
c+ 3

4

)
+ (2p− 3− µ)(±λ) + p− 2

2
(±λ2) +

3(c− 1)
4

+ κ,

and K2 =(1− µ)(±λ)− c− 3
2
− κ+ (±λ2)

2
,
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g(R(X, sec θTej) sec θTej ,W ) =K3g(X,W ) +K4η(X)η(W )

+ g(σ(X,W ), σ(sec θTej , sec θTej))

− g(σ(sec θTej ,W ), σ(X, sec θTej)), (4.5)

where K3 =(p− 2)
(
c+ 3

4
± 2λ+

(±λ2)

2

)
+

(
c− 1

4
− (±λ2)

2

)
cos2 θ +

c− 1
2

,

and K4 =

(
c+ 3

4
± 2λ+

(±λ2)

2

)
−
(
c− 1

4
− (±λ2)

2

)
cos2 θ − c− 1

2

− (p− 1)
(
c+ 3

4
− κ+ (1− µ)(±λ)

)
,

g(R(X, ξ)ξ,W ) =K5{g(X,W )− η(X)η(W )}, (4.6)

where K5 =± λ+
(±λ2)

2
+ κ− (1− µ)(±λ)− sin2 θ,

g(R(X, ek)ek,W ) =K6g(X,W ) +K2η(X)η(W )

+ g(σ(X,W ), σ(ek, ek))− g(σ(ek,W ), σ(X, ek)), (4.7)

where K6 =(q − 2)
(
c+ 3

4

)
+ (2q − 3− µ)(±λ) + q − 2

2
(±λ2) +

3(c− 1)
4

+ κ,

For 1 ≤ l ≤ 2p+ q, put

2p+q∑
l=1

g(σ(el,W ), σ(X, el)) =
p∑
i=1

g(σ(W, ei), σ(X, ei))

+
2p∑

j=p+1

g(σ(sec θTej ,W ), σ(X, sec θTej))

+
2p+q+1∑
i=2p+2

g(σ(ek,W ), σ(X, ek)) (4.8)

Thus we get (4.1) by using (2.11) in (4.4) to (4.8) and then substituting in (4.3).

Theorem 4.2. Let M be a pseudo-slant submanifold of a (κ, µ)-contact space form M̃(c). Then
the scalar curvature ρ of M is given by

ρ =(K1 +K3 +K5 +K6)(2p+ q + 1)

+ (2K2 +K4 −K5)((2p+ q)2 − 1)||H||2 − ||σ||2. (4.9)

Proof. Using the fact that

ρ =
2p+q+1∑
i=1

S(ei, ei),

and (4.1) we get (4.9).

Corollary 4.3. Every totally umbilical pseudo-slant submanifold M of a (κ, µ)-contact space
form M̃(c) is an η-Einstein submanifold.
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Proof. Using (4.1) and (2.12) we have

S(X,W ) =(K1 +K3 +K5 +K6)g(X,W ) + (2K2 +K4 −K5)η(X)η(W )

+ (2p+ q − 1)g(g(X,W )H,H)−
2p+q+1∑
l=1

g(g(el,W )H, g(X, el)H),

This completes our proof.

Theorem 4.4. LetM be a pseudo-slant submanifold of a (κ, µ)-contact space form M̃(c). IfM is
curvature-invariant pseudo-slant submanifold, then M is either semi-invariant or anti-invariant
submanifold, provided 3(1− c) 6= (±2λ2).

Proof. Let M be a curvature-invariant pseudo-slant submanifold of a (κ, µ)-contact space form
M̃(c). Then from (2.17) and (3.8) we have

(∇̃Xσ)(Y, Z)− (∇̃Y σ)(X,Z) =
(
c− 1

4

)
{g(X,TZ)NY − g(Y, TZ)NX + 2g(X,TY )NZ}

+
1
2
{g(ThX,Z)NhY − g(ThY, Z)NhX} = 0,

for X,Y, Z ∈ Γ(TM). By taking in to account of Lemma 2.2 and putting X = Z we obtain[
3(c− 1)

4
+

1
2
(±λ2)

]
g(TZ, Y )NZ = 0.

Now putting Y = TZ in the above equation and taking inner product with NZ we get[
3(c− 1)

4
+

1
2
(±λ2)

]
g(TZ, TZ)g(NZ,NZ) = 0.

Simplifying the above equation by considering (3.14) and (3.15), we obtain√
3(c− 1)

4
+

1
2
(±λ2) sin 2θ {g(Z,Z)− η2(Z)} = 0.

Thus we infer that either M is semi-invariant (θ = 0) or anti-invariant (θ = π/2), provided
3(1− c) 6= (±2λ2).
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