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Abstract. The reciprocal product degree distance(RDD∗), is defined as RDD(G) =∑
u,v∈V (G)

dG(u)dG(v)
dG(u,v) . The new graph invariant named reformulated reciprocal product degree dis-

tance is defined for a connected graph G as R
∗
t (G) =

∑
u,v∈V (G)

dG(u)dG(v)
dG(u,v)+t

, t ≥ 0. In this paper,

the reformulated reciprocal product degree distance and reciprocal product degree distance of
strong product of two graphs are obtained.

1 Introduction

All the graphs considered in this paper are simple and connected. For vertices u, v ∈ V (G), the
distance between u and v in G, denoted by dG(u, v), is the length of a shortest (u, v)-path in G
and dG(v) is the degree of a vertex v ∈ V (G). The strong product of graphs G and H, denoted
by G � H, is the graph with vertex set V (G) × V (H) = {(u, v) : u ∈ V (G), v ∈ V (H)} and
(u, x)(v, y) is an edge whenever (i) u = v and xy ∈ E(H), or (ii) uv ∈ E(G) and x = y, or
(iii) uv ∈ E(G) and xy ∈ E(H).

A topological index of a graph is a real number related to the graph; it does not depend
on labeling or pictorial representation of a graph. In theoretical chemistry, molecular structure
descriptors (also called topological indices) are used for modeling physicochemical, pharma-
cologic, toxicologic, biological and other properties of chemical compounds [11]. There exist
several types of such indices, especially those based on vertex and edge distances. One of the
most intensively studied topological indices is the Wiener index.

Let G be a connected graph. Then the Wiener index of G is defined as
W (G) = 1

2
∑

u, v ∈V (G)

dG(u, v) with the summation going over all pairs of distinct vertices of G.

Similarly, the Harary index of G is defined as H(G) = 1
2

∑
u, v ∈V (G)

1
dG(u,v) . Das et al. [7] pro-

posed the second and third Harary index and they extend it to the generalized version of Harary
index, namely, the t-Harary index, which is defined as Ht(G) = 1

2
∑

u, v ∈V (G)

1
dG(u,v)+t

, t ≥ 0.

Also they obtained the bounds for t-Harary index of G in terms of Wiener index of G.
Dobrynin and Kochetova [8] and Gutman [10] independently proposed a vertex-degree-

weighted version of Wiener index of a connected graph G called degree distance, which is
defined as DD(G) = 1

2
∑

u,v∈V (G)

(dG(u) + dG(v))dG(u, v). Note that the degree distance is a

degree-weight version of the Wiener index.
To strengthen the interactions between nodes in a network is described by their topologi-

cal distances, it is necessary to consider the weighted versions to measure the centrality of the
network with respect to the information flow [6]. Hua and Zhang [12] introduced a new graph
invariant named reciprocal degree distance, which can be seen as a degree-weight version of
Harary index, defined as, RDD(G) = 1

2
∑

u,v∈V (G)

dG(u)+dG(v)
dG(u,v) . Alizadeh et al. [2] has shown that

the reciprocal degree distance can be used as an efficient measuring tool in the study of com-
plex networks. Hua and Zhang [12] presented some lower and upper bounds of the reciprocal
degree distance in terms of graph invariants such as degree distance, Harary index, first Zagreb
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index, first Zagreb coindex, pendent vertices, independence number, chromatic number, vertex-
and edge-connectivity. They also characterized the extremal cactus graphs with the maximum
reciprocal degree distance.

Recently, Li et al. [14] introduced a vertex-degree-weighted version of t-Harary index of a
connected graph G called reformulated reciprocal degree distance, which is defined as Rt(G) =
1
2

∑
u,v∈V (G)

dG(u)+dG(v)
dG(u,v)+t

, t ≥ 0. In view of Ht(G), Rt(G) is just the additively weighted t-Harary

index; while in view of RDD(G) it is also the generalized version of the reciprocal degree
distance of a connected graphG. It is natural and interesting to study the mathematical properties
of this novel graph index. Li et al. [14] studied the mathematical properties of the reformulated
reciprocal degree distance under some edge grafting transformations and extremal properties
of the several class of trees. Also they established the sharp upper bound on the maximum
reformulated reciprocal degree distance of n-vertex trees with k pendents. Pattabiraman et al.
[17, 18, 19] obtained the reformulated reciprocal degree distance of some important classes of
graphs.

In these background, the reformulated reciprocal product degree distance[15], which is de-
fined as R

∗
t (G) =

1
2

∑
u,v∈V (G)

dG(u)dG(v)
dG(u,v)+t

, t ≥ 0. In view of RDD∗(G) it is also the generalized

version of the reciprocal product degree distance of a connected graph G. The reformulated re-
ciprocal product degree distance of several graph operations are discussed in [15, 16]. In this
connection, we have obtained the exact formulae for the reformulated reciprocal product degree
distance and reciprocal product degree distance of strong product of graphs.

The first Zagreb index is defined as M1(G) =
∑

u∈V (G)

dG(u)2 =
∑

uv∈E(G)

(dG(u) + dG(v)).

Similarly, the first Zagreb coindex is defined as M1(G) =
∑

uv/∈E(G)

(dG(u)+ dG(v)). The Zagreb

indices are found to have applications in QSPR and QSAR studies as well, see [9].

2 Strong product of graphs

If m0 = m1 = . . . = mr−1 = s in Km0,m1, ...,mr−1 (the complete multipartite graph with
partite sets of sizes m0, m1, . . . , mr−1), then we denote it by Kr(s). For S ⊆ V (G), 〈S〉 denotes
the subgraph of G induced by S. For two subsets S, T ⊂ V (G), not necessarily disjoint, by
dG(S, T ), we mean the sum of the distances in G from each vertex of S to every vertex of T, that
is, dG(S, T ) =

∑
s∈S, t∈T

dG(s, t) and dHG (S, T ) =
∑

s∈S, t∈T

1
dG(s,t)+t

, t ≥ 0.

Let G be a simple connected graph with V (G) = {v0, v1, . . . , vn−1} and let Km0,m1, ...,mr−1 ,
r ≥ 2, be the complete multiparite graph with partite sets V0, V1, . . . , Vr−1 and let |Vi| =
mi, 0 ≤ i ≤ r − 1. In the graph G � Km0,m1, ...,mr−1 , let Bij = vi × Vj , vi ∈ V (G) and
0 ≤ j ≤ r − 1. For our convenience, the vertex set of G � Km0,m1, ...,mr−1 is written as

V (G) × V (Km0,m1, ...,mr−1) =

r−1
n−1⋃
i= 0
j = 0

Bij . Let B = {Bij}i= 0,1,..., n−1
j = 0,1,..., r−1

. Let Xi =
r−1⋃
j = 0

Bij and

Yj =
n−1⋃
i= 0

Bij ; we call Xi and Yj as layer and column of G � Km0,m1, ...,mr−1 , respectively.

If we denote V (Bij) = {xi1, xi2, . . . , ximj
} and V (Bkp) = {xk1, xk2, . . . , xkmp

}, then xi` and
xk`, 1 ≤ ` ≤ j, are called the corresponding vertices of Bij and Bkp. Further, if vivk ∈ E(G),
then the induced subgraph 〈Bij

⋃
Bkp〉 of G � Km0,m1, ...,mr−1 is isomorphic to K|Vj ||Vp| or,

mp independent edges joining the corresponding vertices of Bij and Bkj according as j 6= p or
j = p, respectively.

The following remark is follows from the structure of the graph Km0,m1, ...,mr−1 .

Remark 2.1. Let n0 and q be the number of vertices and edges of Km0,m1, ...,mr−1 . Then the

sums
∑r−1

j, p= 0
j 6= p

mjmp = 2q,
r−1∑
j=0

m2
j = n2

0 − 2q,
∑r−1

j, p= 0
j 6= p

m2
jmp = n0q − 3t =

∑r−1
j, p= 0
j 6= p

mjm
2
p,

r−1∑
j=0

m3
j = n3

0 − 3n0q + 3t and
r−1∑
j=0

m4
j = n4

0 − 4n2
0q + 2q2 + 4n0t − 4τ, where t and τ are the
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number of triangles and K
′s
4 in Km0,m1, ...,mr−1 .2

The proof of the following lemma follows easily from the properties and structure of G �
Km0,m1, ...,mr−1 .

Lemma 2.2. Let G be a connected graph and let Bij , Bkp ∈ B of the graph G′ = G �
Km0,m1, ...,mr−1 , where r ≥ 2. Then
(i) If vivk ∈ E(G) and xit ∈ Bij , xk` ∈ Bkj , then

dG′(xit, xk`) =

{
1, if t = `,

2, if t 6= `,

and if xit ∈ Bij , xk` ∈ Bkp, j 6= p, then dG′(xit, xk`) = 1.
(ii) If vivk /∈ E(G), then for any two vertices xit ∈ Bij , xk` ∈ Bkp, dG′(xit, xk`) = dG(vi, vk).
(iii) For any two distinct vertices in Bij , their distance is 2.2

The proof of the following lemma follows easily from Lemma 2.2. The lemma is used in the
proof of the main theorems of this section.

Lemma 2.3. Let G be a connected graph and let Bij in G′ = G � Km0,m1, ...,mr−1 . Then the
degree of a vertex (vi, uj) ∈ Bij in G′ is dG′((vi, uj)) = dG(vi)+(n0−mj)+dG(vi)(n0−mj),

where n0 =
r−1∑
j=0

mj .2

Lemma 2.4. Let G be a connected graph and let Bij , Bkp ∈ B of the graph G′ = G �
Km0,m1, ...,mr−1 , where r ≥ 2.
(i) If vivk ∈ E(G), then

dHG′(Bij , Bkp) =

{
mjmp

1+t , if j 6= p,
mj

1+t +
mj(mj−1)

2+t , if j = p,

(ii) If i 6= k and vivk /∈ E(G), then dHG′(Bij , Bkp) =


mjmp

dG(vi,vk)+t
, if j 6= p,

m2
j

dG(vi,vk)+t
, if j = p.

(iii) dHG′(Bij , Bip) =

{
mjmp

1+t , if j 6= p,
mj(mj−1)

2+t , if j = p.
2

Noe we obtain the reformulated reciprocal product degree distance of G�Km0,m1, ...,mr−1 .

Theorem 2.5. LetG be a connected graph with n vertices andm edges. ThenR
∗
t (G�Km0,m1, ...,mr−1) =

(n2
0 + 4q2 + 4n0q)R

∗
t (G) + (4q2 + 2n0q)Rt(G) + 4q2Ht(G) +

1
1+t

[(
2q2 + 2qn0 + 2n0t+ 2q+

4τ+6t
)

M1(G)
2 +m

(
2qn0+4n0t−4q2+6t+8τ

)
+ n

2

(
2n0t+2q2+4τ

)]
+ 1

(1+t)(2+t)

[
M2(G)

(
−

2q2 + 2n0t+ 4τ + 3n3
0 − 10n0q + 18t− n2

0 + 6q + n0

)
+M1(G)

(
− 2q2 + 4τ + 2n0t+ 6t+

2q
)
+m

(
− 2q2 + 4τ + 2n0t+ n0q + 3t

)]
+ 1

2+t

[
M1(G)

2

(
4n2

0q − 2n3
0 − 3n2

0 − 2n0t+ 5n0q −

9t− 6q − n0 − 4τ
)
+ 2m

(
2q2 − 2n0t− 2q − 6t− 4τ

)
+ n

2

(
2q2 − 2n0t− n0q − 3t− 4τ

)]
.
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Proof. Let G′ = G�Km0,m1, ...,mr−1 . Clearly,

R
∗
t (G

′) =
1
2

∑
Bij , Bkp ∈B

dG′(Bij)dG′(Bkp)d
H
G′(Bij , Bkp)

=
1
2

(
n−1∑
i= 0

r−1∑
j, p= 0
j 6= p

dG′(Bij)dG′(Bip)d
H
G′(Bij , Bip)

+
n−1∑

i, k= 0
i 6= k

r−1∑
j = 0

dG′(Bij)dG′(Bkj)d
H
G′(Bij , Bkj)

+
n−1∑

i, k= 0
i 6= k

r−1∑
j, p= 0
j 6= p

dG′(Bij)dG′(Bkp)d
H
G′(Bij , Bkp)

+
n−1∑
i= 0

r−1∑
j = 0

dG′(Bij)dG′(Bij)d
H
G′(Bij , Bij)

)
.

We consider the four sums S1, . . . , S4 as follows.

First we compute S1 =
n−1∑
i=0

∑r−1
j, p= 0
j 6= p

dG′(Bij)dG′(Bip)dHG′(Bij , Bip). For that first we find

the following.
By Lemma 2.3, we have

T ′1 = dG′(Bij)dG′(Bip)

=
(
dG(vi)(n0 −mj + 1) + (n0 −mj)

)(
dG(vi)(n0 −mp + 1) + (n0 −mp)

)
=

(
(n0 + 1)2 − (n0 + 1)mj − (n0 + 1)mp +mjmp

)
d2
G(vi)

+
(

2n0(n0 + 1)− (2n0 + 1)mj − (2n0 + 1)mp + 2mjmp

)
dG(vi)

+
(
n2

0 − n0mp − n0mj +mjmp

)
.

From Lemma 2.4, we have dHG′(Bij , Bip) =
mjmp

1+t . Thus

T ′1d
H
G′(Bij , Bip) = T ′1

mjmp

1 + t

=
1

1 + t

[(
(n0 + 1)2mjmp − (n0 + 1)m2

jmp − (n0 + 1)mjm
2
p +m2

jm
2
p

)
d2
G(vi)

+
(

2n0(n0 + 1)mjmp − (2n0 + 1)m2
jmp − (2n0 + 1)mjm

2
p + 2m2

jm
2
p

)
dG(vi)

+
(
n2

0mjmp − n0m
2
jmp − n0mjm

2
p +m2

jm
2
p

)]
.

By Remark 2.1, we have

T1 =
r−1∑

j, p= 0
j 6= p

T ′1d
H
G′(Bij , Bip)

=
1

1 + t

[(
2q2 + 2qn0 + 2n0t+ 2q + 4τ + 6t

)
d2
G(vi)

+
(

2qn0 + 4n0t− 4q2 + 6t+ 8τ
)
dG(vi)

+
(

2n0t+ 2q2 + 4τ
)]
.



RRPDD OF STRONG PRODUCT OF GRAPHS 299

From the definition of the first Zagreb index, we have

S1 =
n−1∑
i=0

T1

=
1

1 + t

[(
2q2 + 2qn0 + 2n0t+ 2q + 4τ + 6t

)
M1(G)

+2m
(

2qn0 + 4n0t− 4q2 + 6t+ 8τ
)

+n
(

2n0t+ 2q2 + 4τ
)]
.

Next we compute S2 =
r−1∑
j = 0

∑n−1
i, k= 0
i 6= k

dG′(Bij)dG′(Bkj)dHG′(Bij , Bkj). For that first we find

T ′2.
By Lemma 2.3, we have

T ′2 = dG′(Bij)dG′(Bkj)

=
(
dG(vi)(n0 −mj + 1) + (n0 −mj)

)(
dG(vk)(n0 −mj + 1) + (n0 −mj)

)
= (n0 −mj + 1)2dG(vi)dG(vk) + (n0 −mj)(n0 −mj + 1)(dG(vi) + dG(vk)) + (n0 −mj)

2.

Thus

S2 =
r−1∑
j = 0

n−1∑
i, k= 0
i 6= k

T ′2d
H
G′(Bij , Bkj)

=
r−1∑
j = 0

n−1∑
i, k= 0
i 6= k

vivk∈E(G)

T ′2d
H
G′(Bij , Bkj) +

r−1∑
j = 0

n−1∑
i, k= 0
i 6= k

vivk /∈E(G)

T ′2d
H
G′(Bij , Bkj)

By Lemma 2.4, we have

S2 =
r−1∑
j = 0

n−1∑
i, k= 0
i 6= k

vivk∈E(G)

T ′2

( mj

1 + t
+
mj(mj − 1)

2 + t

)
+

r−1∑
j = 0

n−1∑
i, k= 0
i 6= k

vivk /∈E(G)

T ′2
m2

j

dG(vi, vk) + t
,

=
r−1∑
j = 0

n−1∑
i, k= 0
i 6= k

vivk∈E(G)

T ′2

( mj

1 + t
+
mj(mj − 1)

2 + t
+

m2
j

1 + t
−

m2
j

1 + t

)
+

r−1∑
j = 0

n−1∑
i, k= 0
i 6= k

vivk /∈E(G)

T ′2
m2

j

dG(vi, vk) + t

=
r−1∑
j = 0

n−1∑
i, k= 0
i 6= k

vivk∈E(G)

T ′2
mj −m2

j

(1 + t)(2 + t)
+

r−1∑
j = 0

n−1∑
i, k= 0
i 6= k

T ′2
m2

j

dG(vi, vk) + t

= S′2 + S′′2 , (2.1)

where S′2 and S′′2 are the sums of the terms of the above expression, in order.
Now we calculate S′2. For that first we find the following.

T ′2

(
mj −m2

j

)
=
[(
−m4

j + (2n0 + 3)m3
j − (n2

0 + 4n0 + 3)m2
j + (n0 + 1)2mj

)
dG(vi)dG(vk) +

(
−m4

j + (2n0 + 2)m3
j − (n2

0 + 3n0 + 1)m2
j + (n2

0 + n0)mj

)
(dG(vi) + dG(vk)) +

(
−m4

j + (2n0 + 1)m3
j − (n2

0 + 2n0)m
2
j + n2

0mj

)]
.
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By Remark 2.1, we have

T ′′2 =
r−1∑
j = 0

T ′2

(
mj −m2

j

)
=

[(
− 2q2 + 2n0t+ 4τ + 3n3

0 − 10n0q + 18t− n2
0 + 6q + n0

)
dG(vi)dG(vk)

+
(
− 2q2 + 4τ + 2n0t+ 6t+ 2q

)
(dG(vi) + dG(vk))

+
(
− 2q2 + 4τ + 2n0t+ n0q + 3t

)]
.

Hence

S′2 =
n−1∑

i, k= 0
i 6= k

vivk∈E(G)

T ′′2
(1 + t)(2 + t)

=
1

(1 + t)(2 + t)

[
2M2(G)

(
− 2q2 + 2n0t+ 4τ + 3n3

0 − 10n0q + 18t− n2
0 + 6q + n0

)
+2M1(G)

(
− 2q2 + 4τ + 2n0t+ 6t+ 2q

)
+ 2m

(
− 2q2 + 4τ + 2n0t+ n0q + 3t

)]
.

Next we calculate S′′2 . For that we need the following.

T ′2m
2
j =

(
m4

j − (2n0 + 2)m3
j + (n0 + 1)2m2

j

)
dG(vi)dG(vk)

+
(
m4

j − (2n0 + 1)m3
j + (n2

0 + n0)m
2
j

)
(dG(vi) + dG(vk))

+
(
m4

j − 2n0m
3
j + n2

0m
2
j

)
.

By Remark 2.1, we have

T2 =
r−1∑
j = 0

T ′2m
2
j

=
(

2q2 − 4τ − 2n0t− 6t+ 2n0q − 2q + n2
0

)
dG(vi)dG(vk)

+
(

2q2 − 4τ − 2n0t− 3t+ n0q
)
(dG(vi) + dG(vk))

+
(

2q2 − 4τ − 2n0t
)
.

From the definitions of R
∗
t ,Rt and Ht, we obtain

S′′2 =
n−1∑

i, k= 0
i 6= k

T2

dG(vi, vk) + t

= 2
(

2q2 − 4τ − 2n0t− 6t+ 2n0q − 2q + n2
0

)
R
∗
t (G)

+2
(

2q2 − 4τ − 2n0t− 3t+ n0q
)
Rt(G)

+2
(

2q2 − 4τ − 2n0t
)
Ht(G).

Now we calculate A3 =
n−1∑

i, k= 0
i 6= k

r−1∑
j, p= 0
j 6= p

dG′(Bij)dG′(Bkp)dHG′(Bij , Bkp). For that first we com-
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pute T ′3. By Lemma 2.3, we have

T ′3 = dG′(Bij)dG′(Bkp)

=
(
dG(vi)(n0 −mj + 1) + (n0 −mj)

)(
dG(vk)(n0 −mp + 1) + (n0 −mp)

)
= dG(vi)dG(vk)(n0 −mj + 1)(n0 −mp + 1) + dG(vi)(n0 −mj + 1)(n0 −mp)

+dG(vk)(n0 −mp + 1)(n0 −mj) + (n0 −mj)(n0 −mp).

Since the distance between Bij and Bkp is mjmp

dG(vi,vk)+t
. Thus

T ′3mjmp = dG(vi)dG(vk)
(
(n2

0 + 2n0 + 1)mjmp − (n0 + 1)m2
jmp − (n0 + 1)mjm

2
p +m2

jm
2
p

)
+dG(vi)

(
(n2

0 + n0)mjmp − (n0 + 1)mjm
2
p − n0m

2
jmp +m2

jm
2
p

)
+dG(vk)

(
(n2

0 + n0)mjmp − n0mjm
2
p − (n0 + 1)m2

jmp +m2
jm

2
p

)
+
(
n2

0mjmp − n0mjm
2
p − n0m

2
jmp +m2

jm
2
p

)
.

By Remark 2.1, we obtain

T3 =
r−1∑

j, p= 0,
j 6= p

T ′3mjmp

= dG(vi)dG(vk)
(

2n0q + 2n0t+ 2q + 2q2 + 6t+ 4τ
)

+(dG(vi) + dG(vk))
(
qn0 + 2n0t+ 3t+ 2q2 + 4τ

)
+
(

2n0t+ 2q2 + 4τ
)
.

Hence

S3 =
n−1∑

i, k= 0
i 6= k

T3

dG(vi, vk) + t

= 2R
∗
t (G)

(
2n0q + 2n0t+ 2q + 2q2 + 6t+ 4τ

)
+2Rt(G)

(
qn0 + 2n0t+ 3t+ 2q2 + 4τ

)
+2Ht(G)

(
2n0t+ 2q2 + 4τ

)
.

Finally, we obtain S4 =
n−1∑
i= 0

r−1∑
j = 0

dG′(Bij)dG′(Bij)dHG′(Bij , Bij). For that first we calculate

T ′4. By Lemma 2.3, we have

T ′4 = dG′(Bij)dG′(Bij)

=
(
dG(vi)(n0 −mj + 1) + (n0 −mj)

)2

= d2
G(vi)(n0 −mj + 1)2 + 2dG(vi)(n0 −mj)(n0 −mj + 1) + (n0 −mj)

2.

From Lemma 2.4, the distance between Bij and Bij is mj(mj−1)
2+t . Thus

T ′4mj(mj − 1) = d2
G(vi)

(
m4

j − (2n0 + 3)m3
j + ((n0 + 1)2 + 2)m2

j − (n0 + 1)2mj

)
+2dG(vi)

(
m4

j − (2n0 + 2)m3
j + (n2

0 + 3n0 + 1)m2
j − (n2

0 + n0)mj

)
+
(
m4

j − (2n0 + 1)m3
j + (n2

0 + 2n0)m
2
j − n2

0mj

)
.
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By Remark 2.1, we obtain

T4 =
r−1∑
j = 0

T ′4mj(mj − 1)

= d2
G(vi)

(
4n2

0q − 2n3
0 − 3n2

0 − 2n0t+ 5n0q − 9t− 6q − n0 − 4τ
)

+2dG(vi)
(

2q2 − 2n0t− 2q − 6t− 4τ
)

+
(

2q2 − 2n0t− n0q − 3t− 4τ
)
.

Hence

S4 =
n−1∑
i= 0

T4

2 + t

=
1

2 + t

[
M1(G)

(
4n2

0q − 2n3
0 − 3n2

0 − 2n0t+ 5n0q − 9t− 6q − n0 − 4τ
)

+4m
(

2q2 − 2n0t− 2q − 6t− 4τ
)

+n
(

2q2 − 2n0t− n0q − 3t− 4τ
)]
.

Hence we have

R
∗
t (G

′) =
1
2

(
S1 + S2 + S3 + S4

)
= (n2

0 + 4q2 + 4n0q)R
∗
t (G) + (4q2 + 2n0q)Rt(G) + 4q2Ht(G)

+
1

1 + t

[(
2q2 + 2qn0 + 2n0t+ 2q + 4τ + 6t

)M1(G)

2
+m

(
2qn0 + 4n0t− 4q2 + 6t+ 8τ

)
+
n

2

(
2n0t+ 2q2 + 4τ

)]
+

1
(1 + t)(2 + t)

[
M2(G)

(
− 2q2 + 2n0t+ 4τ + 3n3

0 − 10n0q

+18t− n2
0 + 6q + n0

)
+M1(G)

(
− 2q2 + 4τ + 2n0t+ 6t+ 2q

)
+m

(
− 2q2 + 4τ + 2n0t

+n0q + 3t
)]

+
1

2 + t

[M1(G)

2

(
4n2

0q − 2n3
0 − 3n2

0 − 2n0t+ 5n0q − 9t− 6q − n0 − 4τ
)

+2m
(

2q2 − 2n0t− 2q − 6t− 4τ
)
+
n

2

(
2q2 − 2n0t− n0q − 3t− 4τ

)]
.

If t = 0, in Theorem 2.5, we obtain the reciprocal product degree distance ofG�Km0,m1, ...,mr−1 .

Corollary 2.6. Let G be a connected graph with n vertices and m edges. Then RDD∗(G �
Km0,m1, ...,mr−1) = (4q2+n2

0+4n0q)RDD∗(G)+4q2H(G)+(4q2+2n0q)RDD(G)+ n
2 (4q

2−
n0q − 3t) + M1(G)

2

[
4n2

0q + 2n0t+ 3t+ 7n0q − n0 − 3n2
0 − 2n3

0 − 2q + 4τ
]
+m

[
5n0q

2 + n0t−

q2 − 9t
2 − 4q + 2τ

]
− M2(G)

2

[
2q2 − 2n0t− 3n3

0 + 10n0q + n2
0 − 18t− 6q − n0 − 4τ

]
r ≥ 2.
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