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Abstract. Graph labeling is an important area of graph theory. It is used in coding theory,
x-ray crystallography, radar, astronomy, circuit design, communication network addressing, data
base management. In this paper, we study the total influence number as a graph labeling param-
eter. The total influence number can be viewed as vertex labeling problems concerned with the
sum of the labels. We give a general theorem related to the total influence number, and also show
how to find a maximum total influence set on various basic splitting graphs.

1 Introduction

Let G = (V,E) be a simple undirected graph, where V (G) and E(G) are the sets of vertices and
edges of G, respectively. For notation and terminology not defined here, see [5]. For a vertex
v ∈ V (G), the open neighboorhood N(v) is the set of all vertices adjacent with v. Let S be a
vertex subset, S ⊆ V , then S = V − S denotes the complement of S.

The distance d(u, v) between two vertices u and v in G is the minimum length of a path join-
ing them if any; otherwise d(u, v) = ∞. The diameter diam(G) of a graph G is the maximum
distance between two vertices of G. For any vertex u, d(u, S) = min

v∈S
d(u, v).

A vertex subset S is called an alternating set if and only if S is either (1) the empty set or (2)
a maximal independent set such that ∃u ∈ S 3 ∀v ∈ S, d(u, v) = 2k for some k ∈ Z [9].

A graph labeling is an assignment of integers to the vertices or edges, or both, subject to
certain conditions. Graph labelings were first introduced by Alex Rosa in 1967 [1]. Labeled
graphs have applications in many fields. An extensive study on applications of graph labeling
carried out by Bloom and Golomb in 1977 [6]. Further, a detailed survey on graph labeling is
studied by Gallian [7]. A variety of parameters have been proposed to quantify the graph labeling
such as influence and total influence number.

Agah et al. [8] introduced the concept of influence number. Daugherty et al. [9] introduced
the total influence number as a natural extention of the influence number. These graph parameters
are problems of vertex labeling deal with the sum of the labels. There are many vertex labeling
problems which seek to minimize the sum of all of the labels. But, the influence and total
influence number have the aim of maximizing the sum.

The concept of the influence number comes from the area of social networks that looks at
the level of the influence of a person on another one. For a set of people of S, a person who is
not membership of S, is influenced by the closest person in S. But, people in S do not influence
themselves. Since the distance between a person in S and his or her closest person is 1, a person
in S has an influence of 1

2 on their friends, an influence of 1
4 on their friends’ friends, and so on.

While in the event of the influence number each vertex in S is influenced by the closest vertex
in S, in the total influence number each vertex in S is influenced by every vertex in S. But, both
of them seek to maximize the influence of S to S. When we think about total influence number
in psychology, a person in S is influenced by all people in S.

The influence number of a vertex subset S is η(S) =
∑
u∈S

1
2d(u,S)

. The influence number of a

graph G is η(G) = max
S⊆V

η(S). A set S is called η-set if η(S) = η(G).
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The total influence number of a vertex v ∈ S is ηT (v) =
∑
u∈S

1
2d(u,v)

. The total influence

number of a vertex subset S is

ηT (S) =
∑
v∈S

ηT (v) =
∑
v∈S

∑
u∈S

1
2d(u,v)

.

The total influence number of a graph G is

ηT (G) = max
S⊆V

ηT (S).

A set S is called ηT –set if ηT (S) = ηT (G).
The aim of this article is to obtain general bound and efficient formulas for the total influence

number of some graphs.
The rest of this paper is structured as follows. In section 2, known results on total influence

number are given and a general bound is proved. In section 3, definition of the splitting graph is
given and exact values for the total influence number of some splitting graphs are determined.

We first give an important theorem which we need in the proof of theorems in Section 3.

Theorem 1.1. [4] If f is continuous on a closed, bounded set D in R × R, then f attains an
absolute maximum value f(x1, y1) and an absolute minimum value f(x2, y2) at some points
(x1, y1) and (x2, y2) in D.

To find the absolute maximum and minimum values of a continuous function f on a closed,
bounded set D:

1. Find the values of f at the critical points of f in D.

2. Find the extreme values of f on the boundary of D.

3. The largest of the values from steps 1 and 2 is the absolute maximum value; the smallest of
these values is the absolute minimum value.

2 Main Results On The Total Influence Number

Theorem 2.1. [10] Let G be a graph of order n. Then, ηT (G) 6 n2

8 .

Theorem 2.2. [9] For any graph G = (V,E), with vertex partitions V1 and V2 and a set S ⊆ V
let S1 = V1 ∩ S, S2 = V2 ∩ S, S = V − S, S1 = V1 − S1 and S2 = V2 − S2. Then,

ηT (S) = ηT (S1, S1) + ηT (S2, S1) + ηT (S2, S2) + ηT (S1, S2).

Theorem 2.3. [9] For a path Pn (n > 1), a vertex subset S has maximum total influence if and
only if it is a non-empty alternating set.

Corollary 2.4. [9] The total influence number of a path, Pn, is

ηT (Pn) =

{
(10)2−n+6n−10

9 if n is even,
(8)2−n+6n−10

9 if n is odd.

Theorem 2.5. [9] The total influnce number of some graphs is as follows:

(a) ηT (Kn) =

{
n2

8 if n is even,
n2−1

8 if n is odd.

(b) ηT (K1,n) =

{
(n+2)2

16 if n is even,
(n+1)(n+3)

16 if n is odd.
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(c) ηT (DSn,m) =

{
1

16n
2 + 3

8n+ 1
16m

2 + 3
8m+ 1

16nm+ 3
4 if n and m are even,

1
16n

2 + 3
8n+ 1

16m
2 + 3

8m+ 1
16nm+ 11

16 otherwise.

(d) ηT (Kn,m) =


mn

2 if n > m
2 ,

(2n+m)2

16 if n < m
2 , m even,

(2n+m+1)(2n+m−1)
16 if n < m

2 , m odd.

Theorem 2.6. For a graph G of order n, a set S is an ηT –set if and only if |S| and |S| must be
fairly close. Furthermore,{

n2

2diam(G)+2 6 ηT (G) 6 n2

8 if n is even
n2−1

2diam(G)+2 6 ηT (G) 6 n2−1
8 if n is odd.

Proof. Let |S| = x and S = {u1, u2, ..., ux}, S = {v1, v2, ..., vn−x}. Thus,

ηT (S) =
∑
u∈S

∑
v∈S

1
2d(u,v)

=
x∑

i=1

n−x∑
j=1

1
2d(ui,vj)

. (2.1)

Since 1 6 d(ui, vj) 6 diam(G) for any ui, vj ∈ V (G),

1
2diam(G)

6
1

2d(ui,vj)
6

1
2
. (2.2)

By (2.1) and (2.2), we say

1
2diam(G)

x(n− x) 6 ηT (S) 6
1
2
x(n− x).

By definition of the total influence number,

max
S⊆V

1
2diam(G)

x(n− x) 6 max
S⊆V

ηT (S) = ηT (G) 6 max
S⊆V

1
2
x(n− x). (2.3)

We have f(x) = x(n− x). By setting f ′(x) = 0 gives x = n
2 . Hence, |S| and |S| must be fairly

close.
If n is even, x = n

2 . If we substitute x = n
2 into the inequality (2.3), the proof is completed

for this. In the obtained inequality, the upper bound is equivalent to Theorem 2.1.
If n is odd, we consider x = dn2 e and x = bn2 c. But, since these are complements of

each other, we only consider x = dn2 e. By substituting x into the inequality (2.3) the proof is
completed.

3 Total Influence Number of Some Splitting Graphs

Definition 3.1. [11] For a graph G, the splitting graph S(G) of graph G is obtained by adding a
new vertex corresponding to each vertex v of G such that N(v) = N(v′), where N(v) and N(v′)
are the neighborhood sets of v and v′, respectively.

Let G be a graph of order n and V (G) = {v1, v2, ..., vn}. For splitting graph of G of order
2n, let V (S(G)) = X ∪ Y , where X = {v1, v2, ..., vn}, Y = {v′1, v′2, ..., v′n}.

Theorem 3.2. For a splitting graph of complete graph S(Kn) with n > 3, a set S is an ηT –set if
and only if it contains exactly n vertices which are in X or in Y . Furthermore,

ηT (S(Kn)) =
n(2n−1)

4 .

Proof. For a vertex subset S, let x = |X∩S| and y = y1+y2 = |Y ∩S| and f(x, y1, y2) := ηT (S),
where y1 and y2 are the number of vertices corresponding to x vertices and not corresponding
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to x vertices, respectively. This yields the following equation with the bounds 0 6 x 6 n,
0 6 y1 6 x and 0 6 y2 6 n− x:

f(x, y1, y2) =
1
2
x(n− x) + 1

2
y1(n− y1 − y2) +

1
2
(x− y1)(n− 1− y1 − y2)

+
1
4
(x− y1) +

1
4
(y1 + y2)(n− y1 − y2) +

1
2
y1(n− x)

+
1
2
y2(n− 1− x) + 1

4
y2.

Solving the system fx(x, y1, y2) = 0, fy1(x, y1, y2) = 0, fy2(x, y1, y2) = 0 does not give critical
points. Thus, we search to the maximum of f(x, y1, y2) by looking at the boundaries for x, y1
and y2 and we do this search by Theorem 1.1.
Case 1. For x = 0, we maximize f(0, y1, y2) =

y1
4 −

y2
4 −

y1y2
2 + 3ny1

4 + 3ny2
4 −

y2
1

4 −
y2

2
4 by setting

fy1(0, y1, y2) = 0, fy2(0, y1, y2) = 0 and solving it for y1 and y2. Then, we do not find a solution
and we must look at the boundaries for y1 and y2.
Case 1.1. For y1 = 0 (y1 = x = 0), we maximize f(0, 0, y2) = − 1

4y2(y2 − 3n + 1). Solving
fy2(0, 0, y2) = 0 gives y2 =

3n−1
2 /∈ [0, n]. Thus, we look at the boundaries of y2 and the function

is maximized at y2 = n and f(0, 0, n) = 2n2−n
4 .

Case 1.2. For y2 = 0 and y2 = n − x = n, we maximize f(0, y1, 0) = 1
4y1(3n − y1 + 1)

and f(0, y1, n) = −y2
1

4 + ny1
4 + y1

4 + n2

2 −
n
4 , respectively. Since 0 6 y1 6 x and x = 0,

y1 takes the unique value y1 = 0. Thus, for the first function, we have f(0, 0, 0) = 0. Since
0 < |S| < 2n, there is not a maximum value of this function. For the second function, we have
f(0, 0, n) = 2n2−n

4 .

Case 2. For x = n, we maximize f(n, y1, y2) = −y2
1

4 −
y1y2

2 −
ny1

4 + y1
4 −

y2
2

4 −
ny2

4 −
y2
4 + n2

4 −
n
4

by setting fy1(n, y1, y2) = 0, fy2(n, y1, y2) = 0 and solving for y1 and y2. Then we do not find a
value and we must examine at the boundaries for y1 and y2.
Case 2.1. For y1 = 0 and y1 = x = n, we maximize f(n, 0, y2) = −y2

2
4 −

ny2
4 −

y2
4 + n2

2 −
n
4 and

f(n, n, y2) = − 1
4y2(y2 + 3n+ 1) by setting fy2(n, 0, y2) = 0 and fy2(n, n, y2) = 0, and solving

for y2, respectively. We find y2 = −n+1
2 and y2 = − 3n+1

2 . But, they are not pozitif integer. Thus,
for this case the function is maximized at y2 = 0 and f(n, 0, 0) = 2n2−n

4 .
Case 2.2. For y2 = 0 (y2 = n−x = 0), we have f(n, y1, 0) = − 1

4(y1−n)(y1+2n−1). Solving
fy1(n, y1, 0) = 0 gives y1 =

1−n
2 /∈ [0, n]. The function is maximized at y1 = 0.

Case 3. For y1 = 0, we maximize f(x, 0, y2) =
3ny2

4 −
x
4 −

y2
4 −xy2 +nx− y2

2
4 −

x2

2 . Solving the
system fx(x, 0, y2) = 0, fy2(x, 0, y2) = 0 gives the solution x = 2n−1

4 and y2 = n
2 . In this case,

we look at x = d 2n−1
4 e, x = b 2n−1

4 c and y2 = dn2 e, y2 = bn2 c to determine the maximum integer
solution. Consequently, the maximum of the function for these values is{

f(d 2n−1
4 e, 0,

n
2 ) =

7n2

16 −
n
4 if n is even,

f(d 2n−1
4 e, 0, d

n
2 e) = f(b 2n−1

4 c, 0, d
n
2 e) =

7n2

16 −
n
4 + 1

16 if n is odd.

But, we must examine the maximum of the function at the boundaries for x and y2.
Case 3.1. Examining at x = 0 and x = n are equivalent to Case 1.1 and Case 2.1, respectively.
Case 3.2. For y2 = 0, we maximize f(x, 0, 0) = − 1

4x(2x − 4n+ 1) by setting fx(x, 0, 0) = 0.
Then, we find x = n − 1

4 ∈ [0, n]. Substituting x = dn − 1
4e, x = bn − 1

4c into the function
gives f(dn − 1

4e, 0, 0) = 2n2−n
4 , f(bn − 1

4c, 0, 0) = 2n2−n−1
4 . After doing examination at the

boundaries of x, the function is maximized at x = n.
Case 3.3. For y2 = n− x, maximizing f(x, 0, n− x) = n2

2 −
nx
4 −

n
4 + x2

4 gives x = n
2 ∈ [0, n].

Then, the maximum of the function for this value is f(n2 , 0,
n
2 ) = 7n2

16 −
n
4 for n is even;

f(dn2 e, 0, n− d
n
2 e) =

7n2

16 −
n
4 + 1

16 for n is odd. Examining at the boundaries of x, the function
is maximized at x = 0 and x = n.
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Case 4. For y1 = x, we maximize f(x, x, y2) = 3ny2
4 − y2

4 −
3xy2

2 + 7nx
4 −

y2
2

4 −
7x2

4 . And
solving fx(x, x, y2) = 0, fy2(x, x, y2) = 0 gives x = 2n−3

4 ∈ [0, n], y2 = 7
8 /∈ Z+. Examining at

the boundaries gives the maximum of the function as f(0, 0, n) = 2n2−n
4 .

Case 5. For y2 = 0, we maximize f(x, y1, 0) = y1
4 −

x
4 + 3ny1

4 − xy1 + nx − y2
1

4 −
x2

2 . Solving
fx(x, y1, 0) = 0, fy1(x, y1, 0) = 0 gives x = 2n+3

4 ∈ [0, n] and y1 = n−2
2 ∈ [0, x]. We substitute

y1 = dn−2
2 e, y1 = bn−2

2 c and x = d 2n+3
4 e, x = b 2n+3

4 c into the function to determine the maxi-
mum integer solution and after examining at the boundaries for x and y1, we find the maximum
value of the function as f(n, 0, 0) = 2n2−n

4 .
From all cases, the total influence number of S(Kn) is

ηT (S(Kn)) = f(n, 0, 0) = f(0, 0, n) = n(2n−1)
4 .

Theorem 3.3. For a splitting graph of star graph S(K1,n−1), a set S is an ηT –set if and only if it
contains exactly n vertices such that (n− 1) vertices are in X and one vertex is in Y and center
vertex of K1,n−1 and its corresponding vertex is not in S or one vertex is in X , (n− 1) vertices
are in Y and both center vertex of K1,n−1 and its corresponding vertex are in S. Furthermore,

ηT (S(K1,n−1)) =
2n2+4n−3

8 .

Proof. For a vertex subset S, let x = |X ∩ S| and y = |Y ∩ S|. For the vertices vi ∈ X and
v′i ∈ Y , where i ∈ {1, 2, ..., n}, we consider three cases depending on center vertex (v1) and
corresponding center vertex’s (v′1) membership in S or not in S.
Case 1. Let S ⊆ X and f(x) := ηT (S).
Case 1.1. Let v1 ∈ S. Then, the bound is 1 6 x 6 n and we have

f(x) =
1
2
(n− x) + 1

4
(x− 1)(n− x) + 1

2
(n− 1) +

1
4
+

1
2
(x− 1) +

1
4
(x− 1)(n− 1).

Solving f ′(x) = 0 gives x = n. Thus, f(n) = n2+2n−2
4 .

Case 1.2. Let v1 /∈ S. Then, the bound is 1 6 x 6 n− 1 and we have

f(x) =
1
2
x+

1
4
x(n− 1− x) + 1

2
x+

1
2
x(n− 1).

Solving f ′(x) = 0 does not give a solution. Thus, we look at the boundaries of x. The function
is maximized at x = n− 1 and f(n− 1) = n2−1

2 .
Case 2. Let S ⊆ Y and f(y) := ηT (S).
Case 2.1. Let v′1 ∈ S. Then, the bound is 1 6 y 6 n and we have

f(y) =
1
8
(n− y) + 1

4
(y − 1)(n− y) + 1

2
(n− 1) +

1
4
+

1
2
(y − 1) +

1
4
(y − 1)(n− 1).

Solving f ′(y) = 0 gives y = n+ 3
4 . For y = bn+ 3

4c = n, we have n+ 3
4 ∈ [1, n]. Hence, the

function is maximized at y = n and f(n) = n2+2n−2
4 .

Case 2.2. Let v′1 /∈ S. Then, the bound is 1 6 y 6 n− 1 and we have

f(y) =
1
8
y +

1
4
y(n− 1− y) + 1

2
y +

1
4
y(n− 1).

Solving f ′(y) = 0 gives y = n + 1
4 . But, it is out of the range [1, n − 1]. Thus, we have the

maximum of f(y) at the boundary of y and f(n− 1) = 2n2+n−3
8 .

Case 3. Let S ∩X 6= ∅, S ∩ Y 6= ∅ and f(x, y) := ηT (S).
For the vertices v1 and v′1, we consider two subcases: firstly v1, v

′
1 ∈ S and secondly v1 ∈

S, v′1 /∈ S. Since the complements of these cases cover each of the four combinations of set
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membership, these two cases are comprehensive.
Case 3.1. Let v1, v

′
1 ∈ S. For this case, we have

f(x, y) =
1
2
(n− x) + 1

2
(n− y) + 1

4
(x− 1)(n− x) + 1

4
(x− 1)(n− y)

+
1
8
(n− y) + 1

4
(y − 1)(n− y) + 1

2
(n− x) + 1

4
(y − 1)(n− x)

with the bounds 1 6 x 6 n and 1 6 y 6 n.
Solving the system fx(x, y) = 0, fy(x, y) = 0 does not give a solution. Therefore, we must

seek the maximum of f(x, y) at the boundaries for x and y.
Case 3.1.1. For x = 1, we maximize f(1, y) = 9n

8 −
5y
8 + ny

2 −
y2

4 −
3
4 by setting fy(1, y) = 0

and solving for y. We find y = n− 5
4 and look at y = dn− 5

4e, y = bn−
5
4c for integer solution.

By considering the boundaries of y, the function is maximized at y = bn − 5
4c = n − 1 and

f(1, n− 1) = 2n2+4n−3
8 .

Case 3.1.2. For x = n, we maximize f(n, y) = 1
8(n − y)(2n + 2y + 1). Solving fy(n, y) = 0

gives y = − 1
4 /∈ Z+. By looking at the boundaries of y, we have f(n, 0) = 2n2+n

8 .
Case 3.1.3. For y = 1, we maximize f(x, 1) = 9n

8 − x + nx
2 −

x2

4 −
3
8 by setting fx(x, 1) = 0

and solving for x. We find x = n − 2. Then, the function is maximized at x = n − 2 and
f(n− 2, 1) = 2n2+n+5

8 .
Case 3.1.4. For y = n, solving fx(x, n) = 0 gives x = −1 /∈ [1, n]. Then, searching at
boundaries of x gives f(1, n) = 2n2+4n−6

8 .
Case 3.2. Let v1 ∈ S and v′1 /∈ S. For this case, the bounds are 1 6 x 6 n, 1 6 y 6 n − 1 and
the function is as follows:

f(x, y) =
1
2
(n− x) + 1

4
(x− 1)(n− x) + 1

2
(n− 1− y) + 1

4
+

1
2
(x− 1)

+
1
4
(x− 1)(n− 1− y) + 1

4
y(n− 1− y) + 1

8
y +

1
4
y(n− x).

Solving the system fx(x, y) = 0, fy(x, y) = 0 does not give a solution. Therefore, we must
search the maximum of f(x, y) at the boundaries for x and y.

We examine along x = 1, x = n, y = 1, y = n−1 similarly to above and we find f(1, n−2) =
n2

4 + n
8 as the maximum value of the function.

From all cases, consequently we have

ηT (S(K1,n−1)) = f(1, n− 1) = f(n− 1, 1) =
2n2 + 4n− 3

8
.

Theorem 3.4. Total influence number of a splitting graph of path, S(Pn), with n > 4 is

ηT (S(Pn)) =

 (8)2−n+6n−10
3 + n−1

8 +
4+4b

n
2 c(3bn2 c−4)
9(2n−1)

if n is odd,
(10)2−n+6n−10

3 + n−1
8 + 20+2n(3n−11)

9(2n+1)
if n is even.

Proof. Vertex set of S(Pn) can be partitioned into vertex set of two paths. Let V (S(Pn)) =

V (P
(1)
n ) ∪ V (P (2)

n ) and for a vertex subset S ⊆ V (S(Pn)), let S1 = X ∩ S, S2 = Y ∩ S,
S1 = X − S1, S2 = Y − S2. Thus, by Theorem 2.2

ηT (S(Pn)) = ηT (S1, S1) + ηT (S1, S2) + ηT (S2, S1) + ηT (S2, S2)

and considering Pn and the total influence set of Pn gives

ηT (S(Pn)) = 3ηT (Pn) + ηT (S2, S2).
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Let n be even and V (P (1)
n ) = {v1, v

′
2, v3, v

′
4, ..., vn−1, v

′
n}, V (P

(2)
n ) = {v′1, v2, v

′
3, v4, ..., v

′
n−1, vn}.

By Theorem 2.3, S1 = {v1, v3, v5, ..., vn−3, vn−1}, S2 = {v′1, v′3, v′5, ..., v′n−3, v
′
n−1}.

ηT (S2, S2) = 2
1
23 +

n
2 −1∑
i=1

( 1
23 +

1
23 +

1
25 +

1
27 + ...+

1
2n−(2i−1)

)

+

n
2 −1∑
i=2

( 1
23 +

1
23 +

1
25 +

1
27 + ...+

1
2n−(2i−1)

)

= 2

n
2 −1∑
i=1

( 1
23 +

1
23 +

1
25 +

1
27 + ...+

1
2n−(2i−1)

)
−

n
2 −1∑
i=2

1
22i+1

=
n− 1

23 +
1

2n+1

n
2 −1∑
i=1

(2i− 1)22i.

Thus, we have

ηT (S(Pn)) = 3ηT (Pn) +
n− 1

8
+

1
2n+1

n
2 −1∑
i=1

(2i− 1)22i. (3.1)

It is easy to see that

n
2 −1∑
i=1

(2i − 1)22i =
20 + 2n(3n− 11)

9
. By substituting this formula into

(3.1) and using Corollary 2.4, this case is proved.
Let n be odd and V (P (1)

n ) = {v1, v
′
2, v3, v

′
4, ..., v

′
n−1, vn}, V (P

(2)
n ) = {v′1, v2, v

′
3, v4, ..., vn−1, v

′
n}.

By Theorem 2.3, S1 = {v1, v3, v5, ..., vn−2, vn}, S2 = {v′1, v′3, v′5, ..., v′n−2, v
′
n}.

ηT (S2, S2) =
1
23 +

1
23 + 2

bn2 c−1∑
i=2

( 1
23 +

1
23 +

1
25 +

1
27 + ...+

1
2n−2i

)

=
n− 1

23 + 2
bn2 c−1∑
i=1

i
1

2n−2i =
n− 1

23 +
1

2n−1

bn2 c−1∑
i=1

i22i.

Then, we have

ηT (S(Pn)) = 3ηT (Pn) +
n− 1

8
+

1
2n−1

bn2 c−1∑
i=1

i22i

= 3ηT (Pn) +
n− 1

8
+

4 + 4b
n
2 c(3bn2 c − 4)

9(2n−1)

By Corollary 2.4, the proof is completed.

Theorem 3.5. Total influence number of a splitting graph of cycle, S(Cn), with n > 12 is

ηT (S(Cn)) =


ηT (S(Pdn−2

2 e
)) + ηT (S(Pbn−2

2 c
))− 72bn4 c+120

9(4b
n
4 c)

+ 299
24 if n is odd, 2ηT (S(Pn−2

2
))− 96bn4 c+128

9(4b
n
4 c)

+ 2n
2
n
2
+ 229

18 if n
2 is odd

2ηT (S(Pn−2
2
))− 96bn4 c+128

9(4b
n
4 c)

+ 229
18 if n

2 is even
if n is even.

Proof. Let V (S(Cn)) = X ∪ Y = (X1 ∪ X2) ∪ (Y1 ∪ Y2), where X1 = {v1, v2, ..., vbn2 c},
X2 = {vbn2 c+1, vbn2 c+2, ..., vn} and Y1 = {v′1, v′2, ..., v′bn2 c}, Y2 = {v′bn2 c+1, v

′
bn2 c+2, ..., v

′
n}.

Vertex set of S(Cn) can be partitioned as V (S(Cn)) = V (S(Pn−2))∪{v1, vn, v
′
1, v
′
n}, where

V (S(Pn−2)) = V (S(Pbn−2
2 c

)) ∪ V (S(Pdn−2
2 e

)). For a subset S ⊆ V (S(Pn−2)), S1, S3 ⊆
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V (S(Pbn−2
2 c

)) and S2, S4 ⊆ V (S(Pdn−2
2 e

)), let S1 = X1 ∩ S, S2 = X2 ∩ S, S3 = Y1 ∩ S,
S4 = Y2 ∩S, S1 = X1−S1, S2 = X2−S2, S3 = Y1−S3, S4 = Y2−S4, S = S1 ∪S2 ∪S3 ∪S4.
By Theorem 2.3, if n is even, S1 = {v2, v4, v6, ..., vn−2

2
}, S2 = {vn+2

2
, vn+2

2 +2, vn+2
2 +4, ..., vn−2},

S3 = {v′2, v′4, v′6, ..., v′n−2
2
}, S4 = {v′n+2

2
, v′n+2

2 +2, v
′
n+2

2 +4, ..., v
′
n−2} and if n is odd, S1 = {v2, v4,

v6, ..., vbn2 c}, S2 = {vbn2 c+2, vbn2 c+4, vbn2 c+6, ..., vn−1}, S3 = {v′2, v′4, v′6, ..., v′bn2 c}, S4 = {v′bn2 c+2,

v′bn2 c+4, v
′
bn2 c+6, ..., v

′
n−1}.

Let S′ be a total influence set of S(Cn), where S′ ⊆ V (S(Cn)) (S ⊆ S′). We consider three
cases: when n is odd; when n is even and n

2 is odd; when n is even and n
2 is even. For each cases,

we examine the total influence number of S(Cn) depending on v1, vn, v
′
1, v
′
n’s membership in S′

or not in S′.
For abbreviation, we use d instead of diam(S(Cn)).
Case 1. Let n be even and n

2 be odd.

• Let S = S′. Then,

ηT (S(Cn)) =2ηT (S(Pn−2
2
)) + ηT (S1, S2) + ηT (S1, S4) + ηT (S2, S1) + ηT (S2, S3)

+ ηT (S3, S2) + ηT (S3, S4) + ηT (S4, S1) + ηT (S4, S3) + ηT (u1, S) (3.2)

+ ηT (un, S) + ηT (v1, S) + ηT (vn, S).

By definition of the total influence number, we find following equalities:

ηT (S1, S2) = 2
1
23 + 4

1
25 + 6

1
27 + ...+ (d− 3)

1
2d−2 +

d− 1
2d+1

=

bn4 c−1∑
i=1

2i
1

22i+1 + (d− 1)
1

2d+1 .

ηT (S2, S1) =
1
2
+ 2

1
23 + 4

1
25 + 6

1
27 + ...+ (d− 3)

1
2d−2 +

d− 3
2d+1

=

bn4 c−1∑
i=1

2i
1

22i+1 + (d− 3)
1

2d+1 +
1
2
.

ηT (S4, S3) =
1
23 + 2

1
23 + 4

1
25 + 6

1
27 + ...+ (d− 3)

1
2d−2 +

d− 3
2d+1 = ηT (S2, S1)−

3
8
.

ηT (S1, S4) = ηT (S3, S2) = ηT (S3, S4) = ηT (S1, S2).

ηT (S2, S3) = ηT (S4, S1) = ηT (S2, S1).

ηT (v1, S) = 2
1
2
+ 4

1
23 + 4

1
25 + 4

1
27 + ...+ 4

1
2d−2 + 2

1
2d

= 4
bn4 c−1∑
i=1

1
22i+1 +

2
2d

+ 1.

ηT (v
′
1, S) = 2

1
2
+ 4

1
23 + 4

1
25 + 4

1
27 + ...+ 4

1
2d−2 + 2

1
2d

= ηT (v1, S)−
3
8
.

ηT (vn, S) = ηT (v
′
n, S) = 4

1
22 + 4

1
24 + 4

1
26 + ...+ 4

1
2d−1 = 4

bn4 c∑
i=1

1
22i .

It is obvious that, diam(S(Cn)) = d = n
2 if n is even. Thus, we have



ηT (S1, S2) =
4(4b

n
4 c−3bn4 c−1)

9(4b
n
4 c)

+ (n2 − 1) 1
2
n
2 +1

ηT (S2, S1) =
4(4b

n
4 c−3bn4 c−1)

9(4b
n
4 c)

+ (n2 − 3) 1
2
n
2 +1

ηT (S4, S3) =
4(4b

n
4 c−3bn4 c−1)

9(4b
n
4 c)

+ (n2 − 3) 1
2
n
2 +1 − 3

8

ηT (S1, S4) = ηT (S3, S2) = ηT (S3, S4) = ηT (S1, S2)

ηT (S2, S3) = ηT (S4, S1) = ηT (S2, S1).

(3.3)
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
ηT (v1, S) =

2(4b
n
4 c−4)

3(4b
n
4 c)

+ 2
2
n
2
+ 1

ηT (v′1, S) =
2(4b

n
4 c−4)

3(4b
n
4 c)

+ 2
2
n
2
+ 5

8

ηT (vn, S) = ηT (v′n, S) =
4(4b

n
4 c−1)

3(4b
n
4 c)

.

(3.4)

Substituting (3.3) and (3.4) into the equality (3.2), we get

ηT (S(Cn)) =2ηT (S(Pn−2
2
))−

96bn4 c+ 200
9(4bn4 c)

+
2n− 4

2n
2

+
197
18

.

• Let S′ = {v1} ∪ S. Then,

ηT (S(Cn)) =2ηT (S(Pn−2
2
)) + ηT (S1, S2) + ηT (S1, S4) + ηT (S2, S1) + ηT (S2, S3)

+ ηT (S3, S2) + ηT (S3, S4) + ηT (S4, S1) + ηT (S4, S3) + ηT (v1, S′)

+ ηT (vn, S) + ηT (v
′
1, S) + ηT (v

′
n, S).

Since

ηT (v1, S′) = 2
1
2
+

1
22 + 4

1
22 + 4

1
24 + ...+ 4

1
2d−1

=
5
4
+ 4

bn4 c∑
i=1

1
22i =

4(4b
n
4 c − 1)

3(4bn4 c)
+

5
4
, (3.5)

substituting (3.3), (3.4) and (3.5) into the above equality gives

ηT (S(Cn)) =2ηT (S(Pn−2
2
))−

96bn4 c+ 92
9(4bn4 c)

+
2n− 6

2n
2

+
211
18

.

• Let S′ = {v′1} ∪ S. This case is equavilent to Case 2.

• Let S′ = {vn} ∪ S. Then,

ηT (S(Cn)) =2ηT (S(Pn−2
2
)) + ηT (S1, S2) + ηT (S1, S4) + ηT (S2, S1) + ηT (S2, S3)

+ ηT (S3, S2) + ηT (S3, S4) + ηT (S4, S1) + ηT (S4, S3) + ηT (v1, S)

+ ηT (vn, S′) + ηT (v
′
1, S) + ηT (v

′
n, S).

Since

ηT (vn, S′) =
1
22 + 2

1
2d

+ 4
1
2
+ 4

1
23 + ...+ 4

1
2d−2

=
9
4
+

2
2d

+ 4
bn4 c−1∑
i=1

1
22i+1 =

2(4b
n
4 c − 4)

3(4bn4 c)
+

2
2n

2
+

9
4
, (3.6)

substituting (3.3), (3.4) and (3.6) into the above equality gives

ηT (S(Cn)) =2ηT (S(Pn−2
2
))−

96bn4 c+ 116
9(4bn4 c)

+
2n− 2

2n
2

+
223
18

.

• Let S′ = {v′n} ∪ S. Then,

ηT (S(Cn)) =2ηT (S(Pn−2
2
)) + ηT (S1, S2) + ηT (S1, S4) + ηT (S2, S1) + ηT (S2, S3)

+ ηT (S3, S2) + ηT (S3, S4) + ηT (S4, S1) + ηT (S4, S3) + ηT (v1, S)

+ ηT (vn, S) + ηT (v
′
1, S) + ηT (v

′
n, S

′).
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ηT (v
′
n, S

′) = 2
1
2
+

1
22 + 2

1
23 +

2
2d

+ 4
1
23 + 4

1
25 + ...+ 4

1
2d−2

=
3
2
+

2
2d

+ 4
bn4 c−1∑
i=1

1
22i+1 =

2(4b
n
4 c − 4)

3(4bn4 c)
+

2
2n

2
+

3
2
. (3.7)

Substituting (3.3), (3.4) and (3.7) into the above equality, we get

ηT (S(Cn)) =2ηT (S(Pn−2
2
))−

96bn4 c+ 116
9(4bn4 c)

+
2n− 2

2n
2

+
419
36

.

• Let S′ = {v1, v
′
1} ∪ S. Then,

ηT (S(Cn)) =2ηT (S(Pn−2
2
)) + ηT (S1, S2) + ηT (S1, S4) + ηT (S2, S1) + ηT (S2, S3)

+ ηT (S3, S2) + ηT (S3, S4) + ηT (S4, S1) + ηT (S4, S3) + ηT (v1, S′)

+ ηT (vn, S) + ηT (v
′
1, S
′) + ηT (v

′
n, S).

ηT (v1, S′) = 1 + 4
∑bn4 c

i=1
1

22i = 1 + 4(4b
n
4 c−1)

3(4b
n
4 c)

ηT (v′1, S
′) = 5

8 + 4
∑bn4 c

i=1
1

22i = 5
8 + 4(4b

n
4 c−1)

3(4b
n
4 c)

.
(3.8)

Substituting (3.3), (3.4) and (3.8) into the above equality, we get

ηT (S(Cn)) =2ηT (S(Pn−2
2
))−

96bn4 c+ 80
9(4bn4 c)

+
2n− 8

2n
2

+
437
36

.

• Let S′ = {v1, vn} ∪ S. Then,

ηT (S(Cn)) =2ηT (S(Pn−2
2
)) + ηT (S1, S2) + ηT (S1, S4) + ηT (S2, S1) + ηT (S2, S3)

+ ηT (S3, S2) + ηT (S3, S4) + ηT (S4, S1) + ηT (S4, S3) + ηT (v1, S′)

+ ηT (vn, S′) + ηT (v
′
1, S) + ηT (v

′
n, S).

ηT (v1, S′) =
3
4 + 4

∑bn4 c
i=1

1
22i = 3

4 + 4(4b
n
4 c−1)

3(4b
n
4 c)

ηT (vn, S′) =
7
4 + 4

∑bn4 c−1
i=1

1
22i+1 +

2
2d = 7

4 + 2
2
n
2
+ 2(4b

n
4 c−4)

3(4b
n
4 c)

(3.9)

Substituting (3.3), (3.4) and (3.9) into the above equality, we get

ηT (S(Cn)) =2ηT (S(Pn−2
2
))−

96bn4 c+ 200
9(4bn4 c)

+
2n− 4

2n
2

+
923
72

.

• Let S′ = {v1, v
′
n} ∪ S. Then,

ηT (S(Cn)) =2ηT (S(Pn−2
2
)) + ηT (S1, S2) + ηT (S1, S4) + ηT (S2, S1) + ηT (S2, S3)

+ ηT (S3, S2) + ηT (S3, S4) + ηT (S4, S1) + ηT (S4, S3) + ηT (v1, S′)

+ ηT (vn, S) + ηT (v
′
1, S) + ηT (v

′
n, S

′).


ηT (v1, S′) =

3
4 + 4

∑bn4 c
i=1

1
22i = 3

4 + 4(4b
n
4 c−1)

3(4b
n
4 c)

ηT (v′n, S
′) = 1 + 2

2d + 4
∑bn4 c−1

i=1
1

22i+1 = 1 + 2
2
n
2
+ 2(4b

n
4 c−4)

3(4b
n
4 c)

.
(3.10)

Substituting (3.3), (3.4) and (3.10) into the above equality, we get

ηT (S(Cn)) =2ηT (S(Pn−2
2
))−

96bn4 c+ 200
9(4bn4 c)

+
2n− 4

2n
2

+
421
36

.
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• Let S′ = {vn, v′n} ∪ S. Then,

ηT (S(Cn)) =2ηT (S(Pn−2
2
)) + ηT (S1, S2) + ηT (S1, S4) + ηT (S2, S1) + ηT (S2, S3)

+ ηT (S3, S2) + ηT (S3, S4) + ηT (S4, S1) + ηT (S4, S3) + ηT (v1, S)

+ ηT (vn, S′) + ηT (v
′
1, S) + ηT (v

′
n, S

′).


ηT (vn, S′) = 2 + 2

2d + 4
∑bn4 c−1

i=1
1

22i+1 = 2 + 2
2
n
2
+ 2(4b

n
4 c−4)

3(4b
n
4 c)

ηT (v′n, S
′) = 5

4 + 2
2d + 4

∑bn4 c−1
i=1

1
22i+1 = 5

4 + 2
2
n
2
+ 2(4b

n
4 c−4)

3(4b
n
4 c)

.
(3.11)

We substitute (3.3), (3.4) and (3.11) into the above equality and we have

ηT (S(Cn)) =2ηT (S(Pn−2
2
))−

96bn4 c+ 128
9(4bn4 c)

+
2n
2n

2
+

229
18

.

• Let S′ = {v′1, v′n} ∪ S. Then,

ηT (S(Cn)) =2ηT (S(Pn−2
2
)) + ηT (S1, S2) + ηT (S1, S4) + ηT (S2, S1) + ηT (S2, S3)

+ ηT (S3, S2) + ηT (S3, S4) + ηT (S4, S1) + ηT (S4, S3) + ηT (v1, S)

+ ηT (vn, S) + ηT (v
′
1, S
′) + ηT (v

′
n, S

′).


ηT (v′1, S

′) = 3
4 + 4

∑bn4 c
i=1

1
22i = 3

4 + 4(4b
n
4 c−1)

3(4b
n
4 c)

ηT (v′n, S
′) = 11

8 + 2
2d + 4

∑bn4 c−1
i=1

1
22i+1 = 11

8 + 2
2
n
2
+ 2(4b

n
4 c−4)

3(4b
n
4 c)

.
(3.12)

Substituting (3.3),(3.4) and (3.12) into the above equality gives

ηT (S(Cn)) =2ηT (S(Pn−2
2
))−

96bn4 c+ 200
9(4bn4 c)

+
2n− 4

2n
2

+
224
18

.

• Let S′ = {v′1, vn} ∪ S. Then,

ηT (S(Cn)) =2ηT (S(Pn−2
2
)) + ηT (S1, S2) + ηT (S1, S4) + ηT (S2, S1) + ηT (S2, S3)

+ ηT (S3, S2) + ηT (S3, S4) + ηT (S4, S1) + ηT (S4, S3) + ηT (v1, S)

+ ηT (vn, S′) + ηT (v
′
1, S
′) + ηT (v

′
n, S).


ηT (v′1, S

′) = 3
8 + 4

∑bn4 c
i=1

1
22i = 3

8 + 4(4b
n
4 c−1)

3(4b
n
4 c)

ηT (vn, S′) =
7
4 + 2

2d + 4
∑bn4 c−1

i=1
1

22i+1 = 7
4 + 2

2
n
2
+ 2(4b

n
4 c−4)

3(4b
n
4 c)

.
(3.13)

Substituting (3.3), (3.4) and (3.13) into the above equality, we get

ηT (S(Cn)) =2ηT (S(Pn−2
2
))−

96bn4 c+ 104
9(4bn4 c)

+
2n− 4

2n
2

+
443
36

.

• Let S′ = {v1, vn, v
′
1} ∪ S and S′ = {v1, v

′
1, v
′
n} ∪ S. Then, these cases are equivalent to

being S′ = {v1} ∪ S.

• Let S′ = {v1, vn, v
′
n} ∪ S. Thus, we have
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ηT (S(Cn)) =2ηT (S(Pn−2
2
)) + ηT (S1, S2) + ηT (S1, S4) + ηT (S2, S1) + ηT (S2, S3)

+ ηT (S3, S2) + ηT (S3, S4) + ηT (S4, S1) + ηT (S4, S3)

+ ηT (v1, S′) + ηT (vn, S′) + ηT (v
′
1, S) + ηT (v

′
n, S

′).


ηT (v1, S′) =

1
4 + 4

∑bn4 c
i=1

1
22i = 1

4 + 4(4b
n
4 c−1)

3(4b
n
4 c)

ηT (vn, S′) =
6
4 + 2

2d + 4
∑bn4 c−1

i=1
1

22i+1 = 6
4 + 2

2
n
2
+ 2(4b

n
4 c−4)

3(4b
n
4 c)

ηT (v′n, S
′) = 3

4 + 2
2d + 4

∑bn4 c−1
i=1

1
22i+1 = 3

4 + 2
2
n
2
+ 2(4b

n
4 c−4)

3(4b
n
4 c)

(3.14)

Substituting (3.3), (3.4) and (3.14) into the above equality, we get

ηT (S(Cn)) =2ηT (S(Pn−2
2
))−

96bn4 c+ 116
9(4bn4 c)

+
2n− 4

2n
2

+
419
36

.

• Let S′ = {vn, v′1, v′n} ∪ S. This case is equivalent to being S′ = {vn} ∪ S.

• Let S′ = {v1, vn, v
′
1, v
′
n} ∪ S. This case is equivalent to being S′ = S.

Analysing all sets gives

ηT (S(Cn)) =2ηT (S(Pn−2
2
))−

96bn4 c+ 128
9(4bn4 c)

+
2n
2n

2
+

229
18

for n > 10.

Case 2. Let n be even and n
2 be even. When we prove similarly to the proof of Case 1, we have

S′ = {vn, v′n} ∪ S and

ηT (S(Cn)) =2ηT (S(Pn−2
2
))−

96bn4 c+ 128
9(4bn4 c)

+
229
18

for n > 12.

Case 3. Let n be odd. Examining all cases of S′ similar to the proof of Case 1 gives S′ = {v1}∪S
or S′ = {v′1} ∪ S or S′ = {vn} ∪ S or S′ = {v′n} ∪ S and

ηT (S(Cn)) =ηT (S(Pdn−2
2 e

)) + ηT (S(Pbn−2
2 c

))−
72bn4 c+ 120

9(4bn4 c)
+

299
24

for n > 13.

Consequently, comparing the results gives the theorem as stated.

Theorem 3.6. For the graph S(Kn,m) with n 6 m and n,m > 4, a set S is an ηT -set if and only
if, for k ∈ Z+,

(x1, x2, y1, y2) =




(0,m, 0, 5n

4 ) n = 4k, n even
(0,m, 0, d 5n

4 e) or (0,m, 0, b 5n
4 c) n 6= 4k, n even

(0,m, 0, b 5n
4 c) n = 4k + 1, n odd

(0,m, 0, d 5n
4 e) n 6= 4k + 1, n odd

if m > 5n
4

(0,m, 0,m) or (n, 0, n, 0) otherwise
or S is the complement of one of these sets.

Furthermore,

ηT (S(Kn,m) =





{
m2

4 + 25n2

64 +mn n = 4k
m2

4 + 25n2

64 +mn− 1
16 n 6= 4k

n even{
m2

4 + 25n2

64 +mn− 1
64 n = 4k + 1

m2

4 + 25n2

64 +mn− 1
64 n 6= 4k + 1

n odd
if m > 5n

4 ,

13mn
8 otherwise.

Proof. Let V (S(Kn,m)) = X ∪ Y = (X1 ∪X2) ∪ (Y1 ∪ Y2), where X1 = {v1, v2, ..., vn}, X2 =
{vn+1, vn+2, ..., vn+m} and Y1 = {v′1, v′2, ..., v′n}, Y2 = {v′n+1, v

′
n+2, ..., v

′
n+m}. For a vertex
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subset S, let x1 = |X1 ∩ S|, x2 = |X2 ∩ S|, y1 = |Y1 ∩ S|, y2 = |Y2 ∩ S| and f(x1, x2, y1, y2) :=
ηT (S). Then, bounds are 0 6 x1 6 n, 0 6 x2 6 m and 0 6 y1 6 n, 0 6 y2 6 m. Using the
definitions of x1, x2, y1, y2 above, we have

f(x1, x2, y1, y2) =
1
2
x1(m− x2) +

1
2
x2(n− x1) +

1
4
x1(n− x1) +

1
4
x2(m− x2)

+
1
4
x1(n− y1) +

1
2
x1(m− y2) +

1
4
x2(m− y2) +

1
2
x2(n− y1)

+
1
4
y1(n− y1) +

1
4
y2(m− y2) +

1
8
y1(m− y2) +

1
8
y2(n− y1)

+
1
2
y1(m− x2) +

1
4
y1(n− x1) +

1
2
y2(n− x1) +

1
4
y2(m− x2).

Solving the system fx1(x1, x2, y1, y2) = 0, fx2(x1, x2, y1, y2) = 0 and fy1(x1, x2, y1, y2) = 0,
fy2(x1, x2, y1, y2) = 0 gives x1 = y1 = n

2 and x2 = y2 = m
2 . When we examine the maximum

of the function depending on n and m being odd and even, we have


f(n2 ,

m
2 ,

n
2 ,

m
2 ) =

m2

4 + 13mn
16 + n2

4 n even
f(dn2 e,

m
2 , b

n
2 c,

m
2 )

f(bn2 c,
m
2 , d

n
2 e,

m
2 )

}
= m2

4 + 13mn
16 + n2

4 n odd
if m is even,


f(n2 , d

m
2 e,

n
2 , b

m
2 c)

f(n2 , b
m
2 c,

n
2 , d

m
2 e)

}
= m2

4 + 13mn
16 + n2

4 n even

f(dn2 e, b
m
2 c, d

n
2 e, b

m
2 c)

f(bn2 c, d
m
2 e, b

n
2 c, d

m
2 e)

}
= m2

4 + 13mn
16 + n2

4 + 5
16 n odd

if m is odd.

But, we must look at the boundaries for x1, x2, y1 and y2 for the maximum of the function
and compare results. Since complements sets are equivalent, we can ignore searching along
x1 = n, x2 = m, y1 = n and y2 = m. Therefore, we do our search along x1 = 0, x2 = 0, y1 = 0
and y2 = 0.
Case 1. For x1 = 0, we maximize f(0, x2, y1, y2) =

5my1
8 − y1y2

4 + ny1
2 + my2

2 + 5ny2
8 − x2y1 −

x2y2
2 + mx2

2 + nx2 − y2
1

4 −
y2

2
4 −

x2
2

4 by setting fx2(0, x2, y1, y2) = 0, fy1(0, x2, y1, y2) = 0 and
fy2(0, x2, y1, y2) = 0 and solving for x2, y1, y2. Then we find x2 = m

2 ∈ [0,m], y1 = n
2 ∈ [0, n]

and y2 = n+ m
2 . If m > 2n, then n+ m

2 ∈ [0,m].
Substituting these values into the function gives the maximum of the function as follows:


f(0, m2 ,

n
2 , n+ m

2 ) =
m2

4 + 13mn
16 + 7n2

16 n even
f(0, m2 , d

n
2 e, n+ m

2 )

f(0, m2 , b
n
2 c, n+ m

2 )

}
= m2

4 + 13mn
16 + 7n2

16 −
1

16 n odd
if m is even,


f(0, dm2 e,

n
2 , n+ dm2 e)

f(0, bm2 c,
n
2 , n+ bm2 c)

}
= m2

4 + 13mn
16 + 7n2

16 −
1
16 n even

f(0, dm2 e, b
n
2 c, n+ bm2 c)

f(0, bm2 c, d
n
2 e, n+ dm2 e)

}
= m2

4 + 13mn
16 + 7n2

16 + 1
8 n odd

if m is odd.

But, we must look at the boundaries for x2, y1, y2 and then compare the obtained results.
Case 1.1. For y1 = 0, we maximize f(0, x2, 0, y2) =

my2
2 + 5ny2

8 −
x2y2

2 + mx2
2 +nx2− y2

2
4 −

x2
2

4 by
solving fx2(0, x2, 0, y2) = 0 and fy2(0, x2, 0, y2) = 0. But, this does not give a solution. Thus,
we search the maximum of the function along x2 = 0, x2 = m, y2 = 0 and y2 = m.

For x2 = 0 and y2 = 0, we maximize f(0, 0, 0, y2) =
my2

4 + 5ny2
8 +y2(m−y2)

4 and f(0, x2, 0, 0) =
mx2

4 + nx2 + x2(m−x2)
4 and we have y2 = m + 5n

4 /∈ [0,m], x2 = m + 2n /∈ [0,m], respec-
tively. After looking at the boundaries of x2 and y2, we find the maximum values of two
function as f(0, 0, 0,m) = m2

4 + 5mn
8 , f(0,m, 0, 0) = m2

4 + mn, respectively. Notice that,
f(0, 0, 0,m) < f(0,m, 0, 0). Thus, f(0,m, 0, 0) is the maximizing choice for these cases.

For x2 = m, maximizing f(0,m, 0, y2) = 5ny2
8 + mn + (m+y2)(m−y2)

4 gives y2 = 5n
4 . If

5n 6 4m, then 5n
4 ∈ [0,m]. Thus, we compute the function when 5n 6 4m depending on n

being odd and even. With the boundaries of y2, we find the maximum value of the function as
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f(0,m, 0,m) = 13mn
8 .

For y2 = m, we maximize f(0, x2, 0,m) = 5mn
8 + nx2 +

1
4(m + x2)(m − x2) by setting

fx2(0, x2, 0,m) = 0 and solving for x2. We find x2 = 2n. If m > 2n, then 2n ∈ [0,m]. Thus,
f(0, 2n, 0,m) = m2

4 + n2 + 5mn
8 . For the boundary of x2, we have f(0,m, 0,m) = 13mn

8 . Since
f(0, 2n, 0,m) < f(0,m, 0,m), the function f(0, x2, 0,m) is maximized at x2 = m.
Case 1.2. For y1 = n, we maximize f(0, x2, n, y2) = −y2

2
4 + 3ny2

8 − x2y2
2 + my2

2 + n2

4 + 5mn
8 −

x2
2

4 + mx2
2 . Solving fx2(0, x2, n, y2) = 0, fy2(0, x2, n, y2) = 0 does not give a solution. And so,

we examine the maximum of the function at the boundaries for x2 and y2 as follows:
For x2 = 0, maximizing f(0, 0, 0, y2) = −y2

2
4 + 3ny2

8 + my2
2 + n2

4 + 5mn
8 gives y2 = m+ 3n

4 /∈
[0,m]. Thus, the function is maximized at y2 = m and f(0, 0, 0,m) = m2

4 +mn+ n2

4 .
For x2 = m, maximizing f(0,m, 0, y2) =

1
8(m− y2 + 2n)(2y2 + 2m+ n) gives y2 = 3n

4 ∈
[0,m]. Boundaries of y2 are y2 = 0 and y2 = m. Then, we substitute these values into the
function and by comparing results for k ∈ Z+ gives

{
f(0,m, n, d 3n

4 e) =
m2

4 + 25n2

64 + 5mn
8 − 1

64 n = 4k + 1
f(0,m, n, b 3n

4 c) =
m2

4 + 25n2

64 + 5mn
8 − 1

64 n 6= 4k + 1
if n is odd,

f(0,m, n, 3n
4 ) = m2

4 + 25n2

64 + 5mn
8 n = 4k

f(0,m, n, b 3n
4 c)

f(0,m, n, d 3n
4 e)

}
= m2

4 + 25n2

64 + 5mn
8 − 1

16 n 6= 4k
if n is even.

For y2 = 0 and y2 = m, we maximize f(0, x2, 0, 0) = n2

4 + 5mn
8 −

x2
2

4 +
mx2

2 and f(0, x2, 0,m) =
m2

4 + mn + n2

4 −
x2

2
4 by solving fx2(0, x2, 0, 0) = 0 and fx2(0, x2, 0,m) = 0. Then, we have

x2 = m ∈ [0,m] and x2 = 0 ∈ [0,m], respectively. Summarizing the maximum values for two
functions gives f(0, 0, n,m) = m2

4 +mn+ n2

4 .

Case 1.3. For x2 = 0, we maximize f(0, 0, y1, y2) =
5my1

8 − y1y2
4 + ny1

2 + my2
2 + 5ny2

8 −
y2

2
4 −

y2
1

4
and find y1 = m+ n

2 /∈ [0, n] and for m > 2n, y2 = n+ m
2 ∈ [0,m]. Hence, we must seek the

maximum of f(0, 0, y1, y2) at the boundaries for y1 and y2.
Examining the maximum of the function along y1 = 0 and y2 = 0 gives the same value of

Case 1.1 (x2 = 0) and Case 1.2 (x2 = 0), respectively.
For y2 = 0 and y2 = m, maximizing f(0, 0, y1, 0) = 5my1

8 + ny1
4 + 1

4y1(n − y1) and

f(0, 0, y1,m) = −y2
1

4 + 3my1
8 + ny1

2 + m2

4 + 5mn
8 gives y1 = n + 5m

4 , y1 = n + 3m
4 , respec-

tively. But, they are not in the range [0, n]. Thus, these functions are maximized at the bound-
aries and we compute f(0, 0, n, 0) = n2

4 + 5mn
8 , f(0, 0, n,m) = m2

4 + mn + n2

4 . Notice that,
f(0, 0, n,m) > f(0, 0, n, 0). Therefore, f(0, 0, n,m) is the maximizing choice.
Case 1.4. For x2 = m, we maximize f(0,m, y1, y2) = −y2

1
2 −

y1y2
4 −

3my1
8 + ny1

2 −
y2

2
4 + 5ny2

8 +
m2

4 +mn and find y1 =
n
2 −m, y2 = n+ m

2 . Since n
2 −m is outside the range [0, n], we look at

the boundaries for y1 and y2.
Examining the maximum of the function along y1 = 0 and y1 = n is equivalent to Case 1.1

(x2 = m) and Case 1.2 (x2 = m), respectively.
For y2 = 0 and y2 = m, we maximize f(0,m, y1, 0) = 1

8(y1 + 2m)(m − 2y1 + 4n) and

f(0,m, y1,m) = ny1
2 −

5my1
8 + 13mn

8 − y2
1

4 by solving fy1(0,m, y1, 0) = 0, fy1(0,m, y1,m) = 0
for y1. We find y1 = n − 3m

4 and y1 = n − 5m
4 , respectively. But, these values are not in the

range [0, n]. Therefore, these functions are maximized at y1 = 0 and comparing the maximum
of the functions gives f(0,m, 0,m) = 13mn

8 .

Case 1.5. For y2 = 0, we maximize f(0, x2, y1, 0) = − 5my1
8 + ny1

2 −x2y1+
mx2

2 +nx2− y2
1

4 −
x2

2
4 .

Solving the system fx2(0, x2, y1, 0) = 0 and fy1(0, x2, y1, 0) = 0 gives x2 =
m
2 and y1 = n+ m

4 .
Since n+ m

4 is outside the range [0, n], we search the maximum of the function at boundaries.
Maximizing the function along x2 = 0, x2 = m and y1 = 0, y1 = n is equivalent to Case 1.3,

Case 1.4 and Case 1.1, Case 1.2, respectively.
Case 1.6. For y2 = m, we maximize f(0, x2, y1,m) = −y2

1
4 + 3my1

8 − x2y1 +
ny1

2 + nx2 +
m2

4 +
5nm

8 −
x2

2
4 and find x2 =

m
2 ∈ [0,m], y1 = n− m

4 . If 4n > m, then n− m
4 ∈ [0, n]. We look at the
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lower and upper bounds for y1 and x2 depending on m being odd and even. Then, by checking
the values at the boundaries of x2 and y1, we find the maximum of the function as follows:



{
f(0, dm2 e, n− d

m
4 e,m) = 13m2

64 + n2

4 +mn+ 11
64 m = 4k + 1

f(0, bm2 c, n− b
m
4 c,m) = 13m2

64 + n2

4 +mn+ 11
64 m 6= 4k + 1

m odd
f(0, m2 , n−

m
4 ,m) = 13m2

64 + n2

4 +mn m = 4k
f(0, m2 , n− d

m
4 e,m)

f(0, m2 , n− b
m
4 c,m)

}
= 13m2

64 + n2

4 +mn− 1
16 m 6= 4k

m even
if m

4 6 n,

f(0, 2n, 0,m) = m2

4 + n2 + 5mn
8 if n 6 m

2 ,

f(0,m, 0,m) = 13mn
8 otherwise.

We prove for x2 = 0, y1 = 0 and y2 = 0 similar to Case 1. Then we find the maximum value
of the function for each of them and have following cases:
Case 2. For x2 = 0, k ∈ Z+



{
f(n, 0, d 3m

4 e,m) = 25m2

64 + n2

4 + 5mn
8 − 1

64 m = 4k + 1
n, 0, b 3m

4 c,m) = 25m2

64 + n2

4 + 5mn
8 − 1

64 m 6= 4k + 1
m odd

f(n, 0, 3m
4 ,m) = 25m2

64 + n2

4 + 5mn
8 m = 4k

f(n, 0, d 3m
4 e,m)

f(n, 0, b 3m
4 c,m)

}
= 25m2

64 + n2

4 + 5mn
8 − 1

16 m 6= 4k
m even

if 3m
4 6 n,



{
f(n, 0, n,m− b 5n

4 c) =
m2

4 + 25n2

64 +mn− 1
64 n = 4k + 1

f(n, 0, n,m− d 5n
4 e) =

m2

4 + 25n2

64 +mn− 1
64 n 6= 4k + 1

n odd
f(n, 0, n,m− 5n

4 ) = m2

4 + 25n2

64 +mn n = 4k
f(n, 0, n,m− d 5n

4 e)
f(n, 0, n,m− b 5n

4 c)

}
= m2

4 + 25n2

64 +mn− 1
16 n 6= 4k

n even
if 5n

4 6 m,

f(n, 0, n, 0) = 13mn
8 otherwise.

Case 3. For y1 = 0, k ∈ Z+



{
f(0,m, 0, b 5n

4 c) =
m2

4 + 25n2

64 +mn− 1
64 n = 4k + 1

f(0,m, 0, d 5n
4 e) =

m2

4 + 25n2

64 +mn− 1
64 n 6= 4k + 1

n odd
f(0,m, 0, 5n

4 ) = m2

4 + 25n2

64 +mn n = 4k
f(0,m, 0, d 5n

4 e)
f(0,m, 0, b 5n

4 c)

}
= m2

4 + 25n2

64 +mn− 1
16 n 6= 4k

n even
if 5n

4 6 m,

f(0, 2n, 0,m) = m2

4 + n2 + 5mn
8 if n 6 m

2 ,

f(n, 0, n, 0) = 13mn
8 otherwise.

Case 4. For y2 = 0, k ∈ Z+



{
f(n, bm2 c, d

m
4 e, 0) =

13m2

64 + n2

4 +mn+ 11
64 m = 4k + 1

f(n, dm2 e, b
m
4 c, 0) =

13m2

64 + n2

4 +mn+ 11
64 m 6= 4k + 1

m odd
f(n, m2 ,

m
4 , 0) =

13m2

64 + n2

4 +mn m = 4k
f(n, m2 , d

m
4 e, 0)

f(n, m2 , b
m
4 c, 0)

}
= 13m2

64 + n2

4 +mn− 1
16 m 6= 4k

m even
if m

4 6 n,

f(n,m− 2n, n, 0) = m2

4 + n2 + 5mn
8 if n 6 m

2 ,

f(0,m, 0,m) = 13mn
8 otherwise.

Summarizing these results gives the theorem as stated.
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