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Abstract. In this paper, Eulerian complements of zero-divisor graphs are classified for a
special class of finite pseudocomplemented posets. Also, it is proved that the complement of the
zero-divisor graph of a finite pseudocomplemented poset P is Hamiltonian if and only if P has
at least three atoms. These results are applied to zero-divisor graphs and intersection graphs of
ideals of reduced commutative Artinian rings.

1 Introduction

Zero-divisor graphs have become popular as a means by which new descriptions of algebraic
structure can be given in the language of graph theory. The idea began in [4] within the context of
commutative rings, where questions regarding chromatic numbers were addressed. The graphs
were defined by letting every element of a commutative ring R be a vertex, and two distinct
vertices a and b were adjacent if and only if ab = 0. Since the appearance of [2], the vertices of
zero-divisor graphs of commutative rings have usually been restricted to nonzero zero-divisors,
as the zero-divisor relations involving 0 and nonzero-divisors are trivial.

More recently, the zero-divisor graph concept was extended to posets in [8]. Analogous to
the definition in [4], the graphs were defined for posets P that have the least element 0 by letting
every element of P be a vertex, and two distinct vertices a and b were adjacent if and only if 0
was the only lower bound of {a, b} in P . As in [2], the vertices of zero-divisor graphs of posets
were restricted in [16] to only include nonzero “zero-divisors” of P . This is the definition that
has been adopted in most of the subsequent related work, and it will be used in the majority of
the present investigation as well.

It seems equally beneficial to study complements of zero-divisor graphs, as the information
reflected in such graphs can be considered dual to that which is reflected by zero-divisor graphs.
Moreover, in the case of partially ordered sets, the complements of zero-divisor graphs generalize
the closely related notion of “intersection graphs of ideals” of rings, which was first introduced
in [6]. That is, given a (not necessarily commutative) ring R, the intersection graph of ideals
IG(R) of R is the graph whose vertices are the proper nonzero left ideals of R such that distinct
vertices I and J are adjacent if and only if I ∩ J ≠ {0}. Note that IG(R) coincides with the
complement of the zero-divisor graph (in the sense of [8], but without the vertex {0}) of the
poset (under inclusion) of proper left ideals of R.

Interest in the classical Eulerian and Hamiltonian properties of zero-divisor graphs is in-
spired, not only by their potential for illuminating algebraic structure, but also by their historical
relevance. For instance, determining whether a graph is Hamiltonian is an NP-complete problem,
which cultivates a broad interest in the discovery of significant classes of Hamiltonian graphs.
Eulerian and Hamiltonian zero-divisor graphs of rings have been examined in [13] and [1], re-
spectively, and results on Eulerian and Hamiltonian intersection graphs of ideals were given in
[6] and [12]. For example, Eulerian intersection graphs of ideals of Zn are characterized for
every nonprime integer n greater than 1 in [6, Theorem 5.1].
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The current paper considers the Eulerian and Hamiltonian properties for complements of
zero-divisor graphs of some special posets that are prototypical of several important ring theo-
retic structures. Specifically, it is proved that the complement Gc(P ) of the zero-divisor graph
of a finite pseudocomplemented poset P is Hamiltonian if and only if P has at least three atoms
(Theorem 4.1). Also, if P is a finite direct product of finite bounded posets that each has exactly
one atom then Gc(P ) is Eulerian if and only if P has at least three factors, and every factor of
P has even cardinality (Theorem 3.4). These results are applied to show that the complement
of the zero-divisor graph of a finite reduced commutative ring R with at least three prime ideals
is Hamiltonian (Corollary 4.10), and it is Eulerian if and only if R has characteristic 2 (Corol-
lary 3.5). Moreover, the result in [6, Theorem 5.1] on Eulerian intersection graphs of ideals is
generalized (and corrected; see the comments that follow Remark 3.7) to commutative Artinian
principal ideal rings (Corollaries 3.8 and 3.9).

2 Preliminaries

Let P be a poset. Given any ∅ ≠ A ⊆ P , set A∨ = {b ∈ P ∣ b ≥ a for every a ∈ A} and
A∧ = {b ∈ P ∣ b ≤ a for every a ∈ A}. If a ∈ P then the sets {a}∨ and {a}∧ will be denoted by a∨
and a∧, respectively.

Suppose that P is a poset with 0. If ∅ ≠ A ⊆ P then the annihilator of A is denoted by
A⊥ = {b ∈ P ∣ {a, b}∧ = {0} for all a ∈ A}, and if A = {a} then set a⊥ = A⊥. An element a ∈ P
is an atom if a > 0 and {b ∈ P ∣ 0 < b < a} = ∅, and P is called atomic if for every b ∈ P ∖ {0}
there exists an atom a ∈ P such that a ≤ b.

A poset P is called bounded if P has both the least element 0 and the greatest element 1. An
element b of a bounded poset P is a complement of a ∈ P if {a, b}∧ = {0} and {a, b}∨ = {1}.
A pseudocomplement of a ∈ P is an element b ∈ P such that {a, b}∧ = {0}, and x ≤ b for every
x ∈ P with {a, x}∧ = {0}; that is, b is a pseudocomplement of a if and only if a⊥ = b∧. It
is straightforward to check that any element a ∈ P has at most one pseudocomplement, and it
will be denoted by a∗ (if it exists). A bounded poset P is called complemented (respectively,
pseudocomplemented) if every element of P has a complement (respectively, a∗ exists for every
a ∈ P ).

The direct product of posets P1, . . . , Pk is the poset ∏k
i=1 Pi with ≤ defined such that a ≤ b if

and only if a(i) ≤ b(i) (where a(i), b(i) ∈ Pi are the ith components of a and b, respectively)
for every i ∈ {1, . . . , k}. For any ∅ ≠ A ⊆ ∏

k
i=1 Pi, note that A∨ = {b ∈ ∏

k
i=1 Pi ∣ b(i) ≥ a(i) for

every a ∈ A and i ∈ {1, . . . , k}}. Similarly, A∧ = {b ∈ ∏
k
i=1 Pi ∣ b(i) ≤ a(i) for every a ∈ A and

i ∈ {1, . . . , k}}.
Let G be a finite simple graph with vertex-set V (G). A Hamiltonian path in G is a path that

contains every element of V (G). Similarly, a Hamiltonian cycle in G is a cycle that contains
every element of V (G), and G is called Hamiltonian if it has a Hamiltonian cycle.

An Eulerian trail in G is a trail that traverses every edge of G. Similarly, an Eulerian circuit
in G is a circuit that traverses every edge of G, and G is called Eulerian if it has an Eulerian
circuit. It is well known that a finite graph G has an Eulerian trail if and only if G is connected,
and either G has no vertices of odd degree or G has exactly two vertices of odd degree. Also,
G is Eulerian if and only if G is finite, connected, and every vertex of G has even degree ([5,
Theorem I.12]).

In this paper, every ring R is commutative with identity. The zero-divisor graph of R is the
graph Γ(R) whose vertices are the nonzero zero-divisors of R such that distinct vertices a and
b are adjacent if and only if ab = 0. Throughout, the complement of Γ(R) will be denoted by
Γ
c(R).

Let P be a poset with 0. Define a zero-divisor of P to be any element of the set
Z(P ) = {a ∈ P ∣ there exists b ∈ P ∖ {0} such that {a, b}∧ = {0}}. As in [16], the zero-
divisor graph of P is the graph G(P ) whose vertices are the elements of Z(P ) ∖ {0} such that
two vertices a and b are adjacent if and only if {a, b}∧ = {0}. If Z(P ) ≠ {0} then clearly G(P )

has at least two vertices, and G(P ) is connected with diameter at most three ([16, Proposition
2.1]). Throughout, the complement of G(P ) is denoted by Gc(P ).

Given a bounded poset P , let G∗(P ) be the graph with V (G∗(P )) = P ∖ {0,1} such that
distinct vertices a and b are adjacent if and only if {a, b}∧ = {0}. The complement of G∗(P ),
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denoted by (G∗)c(P ), provides a prototype for the graphs IG(R) of rings R. Note that Gc(P )

is the subgraph of (G∗)c(P ) induced by Z(P ) ∖ {0}.
Recall that if R is a finite reduced (i.e., R has a trivial nilradical) commutative ring then

Γ(R) is isomorphic to the (poset-theoretic) zero-divisor graph of a finite direct product of finite
bounded linearly ordered sets (see the discussion prior to Corollary 3.5). Moreover, if R is an
Artinian principal ideal ring then its poset of ideals is isomorphic to a finite direct product of finite
bounded linearly ordered sets (see the proof of Corollary 3.8). This motivates the hypotheses of
Section 3, where every poset is of the form∏

k
i=1 Pi (k ∈ N) such that Pi ≠ {0} is a finite bounded

poset with Z(Pi) = {0} for every i ∈ {1, . . . , k}. Note that if P is a finite poset with P ≠ {0}
then Z(P ) = {0} if and only if P contains exactly one atom. The results of Section 4 are based
on finite pseudocomplemented posets, which generalize the posets of Section 3 by the following
proposition.

Proposition 2.1. If P1, . . . , Pk (k ∈ N) are pseudocomplemented posets then P = ∏
k
i=1 Pi is a

pseudocomplemented poset. In particular, P =∏
k
i=1 Pi is pseudocomplemented if Pi is bounded

with Z(Pi) = {0} for every i ∈ {1, . . . , k}.

Proof. Note that if a, b ∈ P then {a, b}∧ = {x ∈ P ∣ x(i) ∈ {a(i), b(i)}∧ for every i ∈ {1, . . . , k}}.
Given a ∈ P , we claim that the pseudocomplement of a in P is x = (a(1)∗, . . . , a(k)∗) (where
a(i)∗ is the pseudocomplement of a(i) in Pi).

It is easy to observe that {a, x}∧ = {(0, . . . ,0)}. Now, suppose that {a, b}∧ = {(0, . . . ,0)}
for some b ∈ P . Then {a(i), b(i)}∧ = {0} for every i ∈ {1, . . . , k}. Hence, b(i) ≤ a(i)∗ in Pi for
every i ∈ {1, . . . , k}. Therefore, b ≤ x, and it follows that a∗ = x in P .

The “in particular” statement follows since if Pi is bounded with Z(Pi) = {0} then Pi is
pseudocomplemented (with 0∗ = 1 and a∗ = 0 for every a ∈ Pi ∖ {0}).

Throughout, the set of positive integers and the ring of integers modulo n will be denoted by
N and Zn, respectively. Also, set D = P ∖Z(P ) (the notation D will not be ambiguous since the
underlying poset P will always be evident). References on commutative rings and graphs are
given in [3] and [5], respectively.

3 Eulerian graphs

In this section, the Eulerian condition is studied in the graphs Gc(P ) and (G∗)c(P ) for posets
P = ∏

k
i=1 Pi (k ∈ N) such that Pi ≠ {0} is a finite bounded poset with Z(Pi) = {0} for every

i ∈ {1, . . . , k}. Applications to zero-divisor graphs of finite reduced rings and intersection graphs
of ideals of Artinian principal ideal rings are also provided. The investigation begins with the
following two lemmas, which determine connectivity, and count the degrees of the vertices in
the graphs Gc(P ) and (G∗)c(P ). We adopt the convention that a graph is connected if it has
exactly one component, and hence the null graph is not connected.

Lemma 3.1. Let P = ∏
k
i=1 Pi (k ∈ N) such that Pi ≠ {0} is a finite bounded poset with

Z(Pi) = {0} for every i ∈ {1, . . . , k}. Then Gc(P ) is connected if and only if k ≥ 3. In this
case, diam(Gc(P )) = 2. Moreover, if ∣Pi∣ ≥ 3 for some i ∈ {1, . . . , k} then (G∗)c(P ) is con-
nected.

Proof. The “moreover” statement is clear since if ∣Pi∣ ≥ 3 (i.e., Pi ∖ {0,1} ≠ ∅) for some
i ∈ {1, . . . , k} then V ((G∗)c(P )) ∩ (P ∖ Z(P )) ≠ ∅. To prove the first assertion, observe that
if k = 1 then Gc(P ) is null, and if k = 2 then Gc(P ) is the disjoint union of the two complete
graphs induced by (P1×{0})∖{(0,0)} and ({0}×P2)∖{(0,0)}. Hence, if Gc(P ) is connected
then k ≥ 3.

Conversely, suppose that k ≥ 3, and let x, y ∈ V (Gc(P )). If i, j ∈ {1, . . . , k} such that
x(i), y(j) ≠ 0, then consider any vertex z ∈ V (Gc(P )) such that z(i) = z(j) = 1 (such a vertex
z exists since k ≥ 3). Then the vertices x, z, y belong to a path in Gc(P ). This completes
the proof of the first statement, and shows that if Gc(P ) is connected then diam(Gc(P )) ≤ 2.
Hence, the second assertion follows since the zero-divisor graph G(P ) is connected with at least
two vertices (so that Gc(P ) is not complete).
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In the next two lemmas, note that the assumption “x ∈ V (Gc(∏
k
i=1 Pi))” implies x(i) = 0

and x(j) ≠ 0 for some i, j ∈ {1, . . . , k} (in particular, it implies k ≥ 2).

Lemma 3.2. Let P = ∏
k
i=1 Pi (k ∈ N) such that Pi ≠ {0} is a finite bounded poset with

Z(Pi) = {0} for every i ∈ {1, . . . , k}. The following statements hold.

(1) If x ∈ V (Gc(P )) then

deg(x) =∏k
i=1 ∣Pi∣ −∏

k
i=1 (∣Pi∣ − 1) −∏x(i)=0 ∣Pi∣ − 1.

(2) If x ∈ V ((G∗)c(P )) then

deg(x) =∏k
i=1 ∣Pi∣ −∏x(i)=0 ∣Pi∣ − 2

(where the empty product is defined as 1).

Proof. Let G ∈ {Gc(P ), (G∗)c(P )}. If x, y ∈ P then y ∈ x⊥ if and only if y(i) = 0 for every
i ∈ {1, . . . , k} such that x(i) ≠ 0. Thus, ∣x⊥∣ =∏x(i)=0 ∣Pi∣. Therefore, if x ∈ V (G) then

deg(x) = ∣V (G) ∖ (x⊥ ∪ {x})∣

= ∣V (G)∣ − ∣x⊥ ∖ {0}∣ − ∣{x}∣

= ∣V (G)∣ −

⎡
⎢
⎢
⎢
⎢
⎣

∏
x(i)=0

∣Pi∣ − 1
⎤
⎥
⎥
⎥
⎥
⎦

− 1

= ∣V (G)∣ − ∏
x(i)=0

∣Pi∣.

Observe that (2) is now clear since ∣V ((G∗)c(P ))∣ = ∣P ∖ {0,1}∣ = ∏k
i=1 ∣Pi∣ − 2. Also,

∣D∣ = ∏
k
i=1(∣Pi∣ − 1) since x ∈ D if and only if x(i) ≠ 0 for every i ∈ {1, . . . , k}, and hence

∣V (Gc(P ))∣ = ∣P ∣ − ∣D ∪ {0}∣ = ∏k
i=1 ∣Pi∣ − (∏

k
i=1(∣Pi∣ − 1) + 1). Therefore, (1) follows imme-

diately.

Now, the focus is put on the graphs Gc(P ). The next result gives criteria to determine the
parities of the degrees of vertices in Gc(P ).

Lemma 3.3. Let P = ∏
k
i=1 Pi (k ∈ N) such that Pi ≠ {0} is a finite bounded poset with

Z(Pi) = {0} for every i ∈ {1, . . . , k}, and set J = {i ∈ {1, . . . , k} ∣ ∣Pi∣ is even}. If x ∈ V (Gc(P ))

then deg(x) is even if and only if either J = {1, . . . , k}, or ∅ ≠ J ⫋ {1, . . . , k} and x(j) ≠ 0 for
every j ∈ J .

Proof. The “if” portion easily follows by Lemma 3.2(1). Conversely, suppose that J ≠ {1, . . . , k}.
By Lemma 3.2(1), deg(x) is odd if J = ∅, so assume J ≠ ∅. Then ∏k

i=1 ∣Pi∣ and ∏k
i=1(∣Pi∣ − 1)

are even since J ≠ ∅ and J ≠ {1, . . . , k}, respectively. Moreover, if x(j) = 0 for some j ∈ J then
∏x(i)=0 ∣Pi∣ + 1 is odd, and therefore deg(x) is odd by Lemma 3.2(1).

The preparation to establish the first main theorem of this section is now in place.

Theorem 3.4. Let P = ∏
k
i=1 Pi (k ∈ N) such that Pi ≠ {0} is a finite bounded poset with

Z(Pi) = {0} for every i ∈ {1, . . . , k}. The following statements are equivalent.

(1) Gc(P ) is Eulerian.

(2) Gc(P ) has an Eulerian trail.

(3) k ≥ 3 and ∣Pi∣ is even for every i ∈ {1, . . . , k}.

Proof. Note that (1) implies (2) trivially, and (3) implies (1) by Lemmas 3.1 and 3.3. To show
(2) implies (3), note that k ≥ 3 by Lemma 3.1. Suppose that there exists i ∈ {1, . . . , k} such
that ∣Pi∣ is odd. If ∣Pi∣ is odd for every i ∈ {1, . . . , k} then Lemma 3.3 implies deg(x) is
odd for every x ∈ V (Gc(P )). But ∣V (Gc(P ))∣ ≥ 3 since k ≥ 3 (e.g., P has at least three
atoms), so Gc(P ) has no Eulerian trail. Thus, let j ∈ {1, . . . , k} such that ∣Pj ∣ is even. Then
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∣{x ∈ V (Gc(P )) ∣ x(j) = 0}∣ ≥ 3 (e.g., since k ≥ 3, at least three vertices x satisfy x(j) = 0 with
either x(s) ≠ 0, x(t) ≠ 0, or x(s), x(t) ≠ 0 for some distinct s, t ∈ {1, . . . , k} ∖ {j}). Hence, by
Lemma 3.3, Gc(P ) has at least three vertices of odd degree. Therefore, Gc(P ) has no Eulerian
trail.

Recall that if R is a reduced Artinian ring with exactly k prime ideals then there exist fields
F1, . . . , Fk such that R ≅ F1 × ⋯ × Fk ([3, Theorem 8.7]). By endowing every Fi with a linear
order such that 0 and 1 are the least and the greatest elements of Fi, respectively, a poset∏k

i=1 Fi

is obtained such that Z(Fi) = {0} for every i ∈ {1, . . . , k}. In this case, it is straightforward
to check that the ring-theoretic zero-divisor graph Γ(∏

k
i=1 Fi) equals the poset-theoretic zero-

divisor graph G(∏
k
i=1 Fi) (cf. [14, Remark 3.4]). Since ∣Fi∣ is even if and only if Fi is finite and

has characteristic 2, the following application of Theorem 3.4 is immediate.

Corollary 3.5. If R is a finite reduced commutative ring then Γ
c(R) is Eulerian if and only if R

is of characteristic 2 and has at least three prime ideals.

Next, we turn the focus to the graphs (G∗)c(P ).

Theorem 3.6. Let P = ∏
k
i=1 Pi (k ∈ N) such that Pi ≠ {0} is a finite bounded poset with

Z(Pi) = {0} for every i ∈ {1, . . . , k}. Then (G∗)c(P ) is Eulerian if and only if one of the
following statements holds.

(1) k ≥ 3 and ∣Pi∣ = 2 for every i ∈ {1, . . . , k}.

(2) ∣Pi∣ is odd for every i ∈ {1, . . . , k}.

Proof. If (1) holds then (G∗)c(P ) = Gc(P ) is Eulerian by Theorem 3.4, and if (2) holds then
Lemmas 3.1 and 3.2(2) imply that (G∗)c(P ) is Eulerian. Conversely, assume that (G∗)c(P ) is
Eulerian. If there exist i, j ∈ {1, . . . , k} such that ∣Pi∣ is odd and ∣Pj ∣ is even then consider the
element x ∈ P such that x(i) = 0, while x(t) = 1 for every t ∈ {1, . . . , k} ∖ {i}. It is clear from
Lemma 3.2(2) that deg(x) is odd in (G∗)c(P ), which is a contradiction. Therefore, either ∣Pi∣

is even for every i ∈ {1, . . . , k}, or ∣Pi∣ is odd for every i ∈ {1, . . . , k}.
To complete the proof, suppose that ∣Pi∣ is even for every i ∈ {1, . . . , k}. If ∣Pi∣ > 2 for

some i ∈ {1, . . . , k}, then consider x ∈ P such that x(i) ∈ Pi ∖ {0,1}, while x(j) = 1 for every
j ∈ {1, . . . , k} ∖ {i}. Then deg(x) = ∏k

i=1 ∣Pi∣ − (1) − 2 in (G∗)c(P ) by Lemma 3.2(2), which
is odd. This is a contradiction, and therefore ∣Pi∣ = 2 for every i ∈ {1, . . . , k}. In particular,
(G∗)c(P ) = Gc(P ), and hence k ≥ 3 by Theorem 3.4.

Remark 3.7. In contrast to Theorem 3.4, it can happen that (G∗)c(P ) has an Eulerian trail, but
is not Eulerian. For example, this is the case if P = {0,1} × {0,1,2}.

Conditions were given in [6, Theorem 5.1] in order to characterize the intersection graphs of
the principal ideal rings Zn. However, the result contains a minor oversight since, for example,
the characterization implies the false assertion that IG(Z6) is Eulerian (the error is the omission
of the condition “k ≥ 3” in the case when n = p1⋯pk for distinct primes p1, . . . , pk). The
following corollaries generalize (and correct) [6, Theorem 5.1].

Let R be a commutative ring with identity. Recall that R is a special principal ideal ring
(or, SPIR for brevity) if R is a local Artinian principal ideal ring (cf. [9]). If R is an SPIR with
maximal ideal M then there exists n ∈ N such that Mn = {0}, Mn−1 ≠ {0}, and if I is an ideal
of R then I = M i for some i ∈ {0,1, . . . , n} ([9, Proposition 4]). In this case, M is nilpotent
with the index of nilpotency equal to n, and the lattice of ideals of R is isomorphic to the poset
{0,1, . . . , n}.

By [9, Lemma 10], R is an Artinian principal ideal ring if and only if there exist SPIRs
R1, . . . ,Rk such that R ≅ R1 ×⋯ ×Rk (it is also a straightforward consequence of the structure
theorem of Artinian rings in [3, Theorem 8.7]). The next corollary characterizes Eulerian graphs
IG(R) for such rings R.

Corollary 3.8. Suppose that R is a commutative Artinian principal ideal ring, and let R1, . . . ,Rk

(k ∈ N) be SPIRs such that R ≅ R1 × ⋯ ×Rk. If Mi is the maximal ideal of Ri (i ∈ {1, . . . , k}),
then IG(R) is Eulerian if and only if one of the following statements holds.
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(1) k ≥ 3 and Ri is a field for every i ∈ {1, . . . , k}.

(2) The index of nilpotency of Mi is even for every i ∈ {1, . . . , k}.

In particular, if R is a reduced commutative Artinian ring with at least three prime ideals then
IG(R) is Eulerian.

Proof. For every i ∈ {1, . . . , k}, let ni be the index of nilpotency of Mi. Hence, the lattice of ide-
als of Ri is isomorphic to the poset {0,1, . . . , ni}, and thus IG(R) ≅ (G∗)c(∏k

i=1{0,1, . . . , ni}).
Also, Ri is a field if and only if ∣{0,1, . . . , ni}∣ = 2. Therefore, the first assertion follows by The-
orem 3.6, and the “in particular” statement holds by (1) and [3, Theorem 8.7].

The next corollary provides the correction to [6, Theorem 5.1], and generalizes the result by
relaxing the “distinct primes” condition.

Corollary 3.9. If p1, . . . , pk ∈ N are (not necessarily distinct) prime numbers then the graph
IG(Zp

n1
1
× ⋯ × Zp

nk
k

) is Eulerian if and only if either k ≥ 3 and n1 = ⋯ = nk = 1, or ni ∈ N is
even for every i ∈ {1, . . . , k}.

Proof. The result is an immediate consequence of Corollary 3.8 since Zp
ni
i

is an SPIR whose
maximal ideal has the index of nilpotency equal to ni for every i ∈ {1, . . . , k}.

Remark 3.10. Corollary 3.8 can fail if R is not a principal ideal ring. In fact, if
R = Z2[X,Y ]/(X,Y )2 then R is a finite local ring whose maximal ideal M = (X,Y ) has
even index of nilpotency, but IG(R) ≅ K1,3 (with vertices (X), (Y ), (X + Y ), and M ) is not
Eulerian.

4 Hamiltonian graphs

The goal in this section is to prove the following theorem, which characterizes Hamiltonian
Gc(P ) for finite pseudocomplemented posets P . It is observed in the discussion that follows
the proof of Lemma 4.8 that Gc(P ) can be Hamiltonian without P being pseudocomplemented,
but also that the pseudocomplemented condition is necessary to prove the assertion. As a conse-
quence, it is shown in Corollary 4.10 that complements of zero-divisor graphs of finite reduced
commutative rings with at least three prime ideals are Hamiltonian.

Theorem 4.1. If P is a finite pseudocomplemented poset then Gc(P ) is a Hamiltonian graph if
and only if P has at least three atoms.

The “only if” statement is clear since Gc(P ) is null if P has only one atom, and if P has
exactly two atoms a and b then Gc(P ) is the disjoint union of the complete graphs induced by
a∨ ∩ V (Gc(P )) and b∨ ∩ V (Gc(P )) (cf. the illustration discussed prior to Figure 2). The next
seven lemmas will be sufficient to prove the “if” statement. For Lemmas 4.2, 4.3, and 4.4, let
p1, p2, . . . , pk (2 ≤ k ∈ N) be the atoms of P . Observe that if d ∈ D then p ≤ d for every atom p of
P . Thus, set Ap1 = p∨1 ∖D, and define Apj

= p∨j ∖ (D ∪ (⋃
j−1
i=1 Api

)) for every j ∈ {2, . . . , k}.

Lemma 4.2. Let P be finite poset with 0 that has at least two atoms, and let p be an atom
of P . The elements of p∨ ∖ D induce a maximal complete subgraph of Gc(P ). Moreover, if
p1, p2, . . . , pk (2 ≤ k ∈ N) are the atoms of P then Api

induces a complete subgraph of Gc(P )

for every i ∈ {1, . . . , k}, and V (Gc(P )) = ⊍
k
i=1 Api

.

Proof. It is clear that V (Gc(P )) = ⊍
k
i=1 Api

, and the sets p∨i ∖D and Api
(i ∈ {1, . . . , k}) induce

complete subgraphs of Gc(P ). If p is an atom then the complete subgraph of Gc(P ) induced by
p∨ ∖D is maximal since a vertex x ∈ V (Gc(P )) is adjacent to p if and only if x ∈ p∨ ∖D.

As in [15], a bounded poset P is called distributive if, for all a, b, c ∈ P , the equality
{{a} ∪ {b, c}∨}∧ = {{a, b}∧ ∪ {a, c}∧}∨∧ holds. By [15, Theorem 1], this definition general-
izes the usual notion of a distributive lattice (i.e., a bounded lattice is distributive in the usual



36 Sarika Devhare, Vinayak Joshi and John D. LaGrange

sense if and only if it is a distributive poset). Moreover, as in [7], P is called Boolean if P is dis-
tributive and complemented. Clearly, every Boolean algebra is a Boolean poset but the converse
can fail (in fact, by [7, Theorem 3], there exists a Boolean poset of order 2n for every n ∈ N).

It is well-known that a complement of an element of a Boolean poset P is the pseudocomple-
ment (cf. [10, Lemma 2.4]). In particular, if P is Boolean then P is pseudocomplemented, and
every element x ∈ P has the unique complement x′. This observation is used in the following
result, which shows that Api

does not contain any dual atoms for i ≥ 3.

Lemma 4.3. Let P be a finite Boolean poset, and let p1, . . . , pk (3 ≤ k ∈ N) be the atoms of
P . Then Ap1 ∩ {p′1, . . . , p

′
k} = {p′2, . . . , p

′
k}, Ap2 ∩ {p′1, . . . , p

′
k} = {p′1}, and if i ∈ {3, . . . k} then

Api
∩ {p′1, . . . , p

′
k} = ∅.

Proof. Clearly, {p1, pj}
∧ = {0} for every j ∈ {2, . . . , k}. Since complementation in a Boolean

poset is pseudocomplementation, p1 ≤ p′j for every j ∈ {2, . . . , k}. Now, from the construction of
Ap1 , it is clear that Ap1 ∩ {p′1, . . . , p

′
k} = {p′2, . . . , p

′
k}. Similarly, p2 ≤ p′1, so

Ap2 ∩ {p′1, . . . , p
′
k} = {p′1}. Thus, {p′1, . . . , p

′
k} ⊆ Ap1 ∪Ap2 , and therefore Api

∩ {p′1, . . . , p
′
k} = ∅

for every i ∈ {3, . . . , k}.

Next, the main result of this section is proved for the special case when P is Boolean. For
this, note that V (Gc(P )) = P ∖ {0,1} (e.g., since P is complemented).

Lemma 4.4. If P is a finite Boolean poset with at least three atoms then Gc(P ) is Hamiltonian.

Proof. Let p1, . . . , pk (3 ≤ k ∈ N) be the atoms of P . Define Bp1 = Ap1 ∖ {p′2, . . . , p
′
k},

Bp2 = Ap2 ∖ {p′1}, and set Bpi
= Api

for every i ∈ {3, . . . , k}. By Lemmas 4.2 and 4.3, it
follows that V (Gc(P )) = (⊍

k
i=1 Bpi

) ⊍ {p′1, . . . , p
′
k}. Also, if i ∈ {1, . . . , k} then Lemma 4.2

implies Bpi
induces a complete subgraph of Gc(P ), which therefore has a Hamiltonian path that

begins at pi and ends at, say, xi ∈ Bpi
.

If i, j ∈ {1, . . . , k} with i ≠ j then {xi, p
′
j}
∧ ≠ {0}; otherwise, 0 < xi ≤ p′′j = pj , i.e., xi = pj

(since pj is an atom), which contradicts the containment xi ∈ Bpi
. Moreover, {pi, p′j}

∧ ≠ {0} (as
{pi, pj}

∧ = {0} implies pi ≤ p′j) . Hence, the subgraph of Gc(P ) induced by {p′k, p
′
1}∪Bpk−1 has

a Hamiltonian path that begins at p′k (which is adjacent to pk−1 ∈ Bpk−1 by setting i = k − 1 and
j = k) and ends at p′1 (which is adjacent to xk−1 ∈ Bpk−1 by setting i = k − 1 and j = 1 in the first
statement of this paragraph). Similarly, the subgraph induced by {p′1, p

′
2}∪Bpk

has a Hamiltonian
path that begins at p′1 and ends at p′2, and if i ∈ {1, . . . , k − 2} then the subgraph induced by
{p′i+1, p

′
i+2} ∪ Bpi

has a Hamiltonian path that begins at p′i+1 and ends at p′i+2. Therefore, since
V (Gc(P )) = (⊍

k
i=1 Bpi

) ⊍ {p′1, . . . , p
′
k}, a Hamiltonian cycle in Gc(P ) is given by the union of

these Hamiltonian paths (see Figure 1).

pk to xk

Hamiltonian
path

on Bpk

p1 to x1
Hamiltonian

path
on Bp1

pk−1 to xk−1
Hamiltonian

path
on Bpk−1

p2 to x2
Hamiltonian

path
on Bp2

p′2

p′1 p′3

p′4p′k

Figure 1. A Hamiltonian cycle of Gc(P )
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The condition of having at least three atoms in Lemma 4.4 is necessary. For example, if P is
the Boolean poset that is depicted in Figure 2 then Gc(P ) is not Hamiltonian (in fact, it is not
connected).

0

qp

1

Figure 2. Boolean poset P

To afford an application of Lemma 4.4, it will be important to define and establish properties
of a certain poset of equivalence classes of P . For a poset P with 0, an equivalence relation ∼ is
given on P by a ∼ b if and only if a⊥ = b⊥. The set of equivalence classes of P will be denoted by
[P ] = {[a] ∣ a ∈ P}, where [a] = {x ∈ P ∣ x ∼ a}. Clearly [0] = {0}, and if d ∈ D then [d] = D.

Note that [P ] is a poset under the partial order given by [a] ≤ [b] if and only if b⊥ ⊆ a⊥. From
the observation that b⊥ ⊆ a⊥ whenever a, b ∈ P with a ≤ b, it follows that the canonical mapping
P → [P ] defined by a ↦ [a] is an order-preserving surjection. Furthermore, if a is an atom of
the poset P then, for every b ∈ P ∖{0}, either a ≤ b, or b ∈ a⊥∖b⊥ (so that a⊥ /⊆ b⊥). It follows that
if a is an atom of P then [a] is an atom of [P ] (the converse is not true; e.g., consider the case
where [a] contains an atom p of P with a ≠ p). Moreover, it is clear that if a and b are distinct
atoms of P then [a] ≠ [b].

Let P be a pseudocomplemented poset. If a, b ∈ P then a∗ ≤ b∗ if and only if a∗ ∈ b⊥, if and
only if a⊥ = (a∗)∧ ⊆ b⊥. That is, a∗ ≤ b∗ if and only if [b] ≤ [a] and, in particular, a∗ = b∗ if and
only if [a] = [b]. These observations are recorded in (1), (2), and (3) of the following lemma.

Lemma 4.5. Let P be a poset with 0. If a, b ∈ P then the following statements hold.

(1) If a, b ∈ P are distinct atoms then [a] and [b] are distinct atoms of [P ].

(2) If a ≤ b then [a] ≤ [b].

(3) If P is pseudomomplemented then a∗ ≤ b∗ if and only if [b] ≤ [a].

(4) {a, b}∧ = {0} if and only if {[a], [b]}∧ = {[0]}.

Proof. The statements in (1), (2), and (3) follow by the above discussion. Moreover, the “if”
statement of (4) is clear by (2). Conversely, assume that {a, b}∧ = {0} and [t] ∈ {[a], [b]}∧.
Then a ∈ b⊥ ⊆ t⊥. Hence, t ∈ a⊥ ⊆ t⊥. Thus, t = 0, i.e., [t] = [0].

While a pseudocomplemented poset need not be Boolean (e.g., consider the lattice
N5 = {∅,{1},{2},{1,3},{1,2,3}} under inclusion), [11, Lemma 2.5] and [17, Corollary 6]
show that if [P ] is pseudocomplemented then [P ] is Boolean. This result is specialized in the
next lemma.

Lemma 4.6. If P is a pseudocomplemented poset then [P ] is Boolean.

Proof. By [11, Lemma 2.5] and [17, Corollary 6], it suffices to prove [P ] is pseudocomple-
mented. Let [a] ∈ [P ]. The equality {[a], [a∗]}∧ = {[0]} holds by Lemma 4.5(4). Let [x] ∈ [P ]

such that {[x], [a]}∧ = {[0]}. By Lemma 4.5(4), {x, a}∧ = {0} in P . As P is pseudocomple-
mented, we have x ≤ a∗. Thus, [x] ≤ [a∗] by Lemma 4.5(2). Hence, [a∗] = [a]∗, and therefore
[P ] pseudocomplemented.

Lemma 4.8 is the final result prior to the proof of Theorem 4.1. First, we observe the next
lemma, which establishes subgraphs of Gc(P ) with Hamiltonian paths.
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Lemma 4.7. Let P be a poset with 0, and let x ∈ V (Gc(P )). The elements of [x] form a complete
subgraph of Gc(P ). In particular, if P is finite and y ∈ [x] ∖ {x} then the subgraph of Gc(P )

induced by [x] contains a Hamiltonian path that begins with x and ends with y.

Proof. Let a, b ∈ [x] with a ≠ b. On the contrary, suppose that a and b are not adjacent in Gc(P ),
that is, {a, b}∧ = {0}. As a, b ∈ [x], we have a⊥ = b⊥ = x⊥. But from {a, b}∧ = {0}, we have
a ∈ b⊥ = a⊥, a contradiction. Hence, the elements of [x] form a complete subgraph of Gc(P ).
The “in particular” statement is clear.

Lemma 4.8. If P is a finite poset with 0 such that Gc([P ]) is Hamiltonian then Gc(P ) is Hamil-
tonian.

Proof. Suppose that x1, . . . , xn ∈ V (Gc(P )) such that [x1] − [x2] − ⋯ − [xn] − [x1] is a
Hamiltonian cycle in Gc([P ]). For every i ∈ {1, . . . , n}, choose yi ∈ [xi] ∖ {xi} if ∣[xi]∣ > 1,
and otherwise let yi = xi. By Lemma 4.5(4), yn is adjacent to x1, and yi is adjacent to xi+1 for
every i ∈ {1, . . . , n − 1}. Hence, Lemma 4.7 implies that the subgraph of Gc(P ) induced by
{yn−1, x1} ∪ [xn] has a Hamiltonian path containing the edges yn−1xn and ynx1 that begins at
yn−1 and ends at x1. Similarly, the subgraph induced by {yn, x2} ∪ [x1] has a Hamiltonian path
containing the edges ynx1 and y1x2 that begins at yn and ends at x2, and the subgraph induced by
{yi, xi+2} ∪ [xi+1] has a Hamiltonian path containing the edges yixi+1 and yi+1xi+2 that begins
at yi and ends at xi+2 for every i ∈ {1, . . . , n − 2}. Therefore, since V (Gc(P )) = ⊍

n
i=1[xi], a

Hamiltonian cycle in Gc(P ) is given by the union of these Hamiltonian paths.

The converse of Lemma 4.8 can fail. For example, let P be the poset depicted in Figure 3(A).
The poset [P ] is given in Figure 3(B), and it is clear that Gc(P ) is Hamiltonian whereas Gc([P ])

is not Hamiltonian (see Figure 4). Also, it is clear that P is neither pseudocomplemented nor
complemented (e.g., consider the element b ∈ P ). In particular, Gc(P ) is Hamiltonian without
P being pseudocomplemented, and Gc([P ]) shows that the “pseudocomplemented” condition
of Theorem 4.1 is necessary. However, if P is pseudocomplemented then we have the pleasant
situation mentioned in Theorem 4.1, which can now be readily proved.

P

0

a b c

d e

f g

[P ]

[0]

[a] [b] [c]

[d] = [f] [e] = [g]

1
[1]

(A) (B)

Figure 3. The posets P and [P ]

f g

d e

b

a c
[a] [d] [e] [c]

[b]

Gc(P ) Gc([P ])

Figure 4. The graphs Gc(P ) and Gc([P ])
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Proof of Theorem 4.1. By Lemmas 4.5(1) and 4.6, [P ] is Boolean with at least three atoms.
Therefore, Gc([P ]) is Hamiltonian by Lemma 4.4. Hence, the result follows from Lemma
4.8.

To close this section, we provide the analogues of Theorem 3.4 and Corollary 3.5 for the
Hamiltonian condition.

Corollary 4.9. If P = ∏
k
i=1 Pi (3 ≤ k ∈ N) such that Pi ≠ {0} is a finite bounded poset with

Z(Pi) = {0} for every i ∈ {1, . . . , k} then Gc(P ) is Hamiltonian.

Proof. By Proposition 2.1, P = ∏
k
i=1 Pi is pseudocomplemented, and hence the result follows

from Theorem 4.1.

Corollary 4.10. If R is a finite reduced commutative ring with at least three prime ideals then
Γ
c(R) is Hamiltonian.

Proof. The result follows immediately by Corollary 4.9 and the discussion prior to Corollary
3.5.
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