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Abstract. We present—as an alternative to the standard technique deployed historically—a
matrix based method that delivers both of the characteristic root dependent closed forms for the
general term of the celebrated Horadam sequence.

1 Introduction

Denote by {wn}∞n=0 = {wn}∞0 = {wn(a, b; p, q)}∞0 , in standard format, the four-parameter
Horadam sequence arising from the second order linear recursion

wn+2 = pwn+1 − qwn, n ≥ 0, (1.1)

for which w0 = a and w1 = b are initial values and whose associated characteristic equation is

λ2 − pλ+ q = 0. (1.2)

In the non-degenerate characteristic roots case (p2 6= 4q) the distinct roots

λ1(p, q) = (p+
√
p2 − 4q)/2, λ2(p, q) = (p−

√
p2 − 4q)/2) (1.3)

combine in a closed (traditionally referred to as a Binet) form

wn(a, b; p, q) = wn(λ1(p, q), λ2(p, q), a, b) =
(b− aλ2)λn1 − (b− aλ1)λn2

λ1 − λ2
, (1.4)

while in the degenerate characteristic roots case (p2 = 4q)

wn(a, b; p, p2/4) = wn(λr(p), a, b) = bnλn−1
r − a(n− 1)λnr , (1.5)

the roots co-inciding as λ1 = λ2 = p/2 = λr(p), say.
The standard method of deriving these closed forms uses the characteristic roots as building

blocks for a general closed form (in either of the aforementioned cases), followed by application
of initial conditions (that is, the sequence start values w0, w1) to evaluate unknown constants; the
details are omitted here, as the exercise is a very familiar undergraduate level one. In this paper
we present a different line of argument, reproducing the representations (1.4) and (1.5) using
matrix methods—while routine diagonalisation drawn from linear algebra yields (1.4) easily
enough, the route to (1.5) has added features which are not without interest and do not appear to
have been documented in the literature.

2 Derivations

Noting that the recursion (1.1) readily delivers the matrix power relation (for n ≥ 1)(
wn

wn−1

)
= An−1(p, q)

(
b

a

)
, (2.1)

where

A(p, q) =

(
p −q
1 0

)
, (2.2)

our results are immediate from appropriate decompositions of A(p, q) to use in (2.1).
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2.1 Non-Degenerate Roots Case

This is straightforward using diagonalisation of A(p, q) as

A(p, q) = P(λ1, λ2)D(λ1, λ2)P
−1(λ1, λ2), (D.1)

with λ1,2 = λ1,2(p, q) according to (1.3). It is routine to find that the distinct eigenvalues (charac-
teristic roots) λ1,2 of A(p, q) have eigenvectors (λ1,2, 1)T , where T denotes transposition (reader
exercise: as a check we see that A(p, q)(λ1,2, 1)T = (pλ1,2 − q, λ1,2)T = (λ2

1,2, λ1,2)T (each of
λ1,2 satisfy the characteristic equation (1.2)) = λ1,2(λ1,2, 1)T ), so that

D(λ1, λ2) =

(
λ1 0
0 λ2

)
(D.2)

and

P(λ1, λ2) =

(
λ1 λ2

1 1

)
, (D.3)

in conventional fashion. Equation (D.1) now gives

An−1(p, q) = P(λ1, λ2)D
n−1(λ1, λ2)P

−1(λ1, λ2)

=

(
λ1 λ2

1 1

)
·

(
λn−1

1 0
0 λn−1

2

)
· 1
λ1 − λ2

(
1 −λ2

−1 λ1

)

=
1

λ1 − λ2

(
λn1 − λn2 λ1λ

n
2 − λn1 λ2

λn−1
1 − λn−1

2 λ1λ
n−1
2 − λn−1

1 λ2

)
(D.4)

after a little algebra, whence, from (2.1),

wn(λ1(p, q), λ2(p, q), a, b) =
(λn1 − λn2 )b+ (λ1λ

n
2 − λn1 λ2)a

λ1 − λ2

=
(b− aλ2)λn1 − (b− aλ1)λn2

λ1 − λ2
, (D.5)

which is wn(a, b; p, q) of (1.4).
This method does not accommodate the degenerate roots case (for with λ1 = λ2 the matrix P

would be singular), the closed form for which can be found as limλ2→λ1=λr
{wn(λ1, λ2, a, b)} =

wn(λr, a, b) directly from (D.5).1 We can, however, deploy quasi-diagonalisation as a modified
version of the above eigendecomposition which has its own mathematical nuances in our context.

2.2 Degenerate Roots Case

As stated, the diagonalisation seen in the above case breaks down here, for the matrix P(λr)
would become singular (having identical columns). Noting that q = q(p) = p2/4, we instead
appeal to a matrix

J(λr) =

(
λr 1
0 λr

)
(D.6)

which drives a decomposition

A(p, q(p)) = S(λr)J(λr)S
−1(λr), (D.7)

and takes the so called Jordan normal (or canonical) form with λr(p) = p/2 being an eigenvalue
of algebraic multiplicity two. The matrix S(λr) is such that

A(p, q(p))S(λr) = S(λr)J(λr) (D.8)
1The limiting procedure is set out in the Appendix of [1] after a novel, and little known, construction of the Horadam

sequence term closed form in the non-degenerate characteristic roots case; as a point of interest concerning the latter, this
most unusual variant of method—found in a 1960 textbook authored by Niven and Zuckerman and seemingly applicable to
linear recurrence equations of degree two only—is explained fully therein.
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and, upon writing

S(λr) =

(
s1 s2

s3 s4

)
, (D.9)

(D.8) yields the equation set

ps1 − qs3 = λrs1,

ps2 − qs4 = s1 + λrs2,

s1 = λrs3,

s2 = s3 + λrs4, (D.10)

for the unknowns s1(λr), . . . , s4(λr) of S(λr). The third of these, when substituted into the first,
gives p(λrs3)− qs3 = λr(λrs3)⇒ 0 = (λ2

r − pλr + q)s3 = (0)s3 = 0 which, being identically
true, means that s3 becomes an arbitrary parameter s3 = Ω, say, and in turn s1 = λrs3 = λrΩ.
The second and fourth equations now read, respectively,

(p− λr)s2 − qs4 = λrΩ (D.11)

and
s2 − λrs4 = Ω, (D.12)

elimination of s4 delivering the equation (λ2
r − pλr + q)s2 = (q−λ2

r)Ω so that, both sides being
identically zero (q = q(p) = p2/4 = λ2

r), s2 = θ is also arbitrary. Equations (D.12),(D.11)
separately give s4 as (resp.)

s4 = (θ −Ω)/λr and s4 = [pθ − (θ + Ω)λr]/q, (D.13)

from reconciliation of which

0 = (θ + Ω)λ2
r − pθλr + (θ −Ω)q. (D.14)

Thus, for consistency with the characteristic equation (1.2), it follows that θ = 1 and θ + Ω =
θ −Ω = 1⇒ Ω = 0, and so now s1 = λrΩ = 0 and s2 = θ = 1, together with s3 = Ω = 0 and
(from (D.13)) s4 = 1/λr. However, while

S(λr) =

(
0 1
0 1/λr

)
(D.15)

indeed satisfies (D.8), its singularity rules out the decomposition (D.7) sought and our efforts
are wasted. Fortunately, we are at liberty (with s1 = λrΩ, s3 = Ω settled as earlier) to choose
θ = Ω as a way forward,2 whence s2 = θ = Ω and s4 = 0 (by (D.13)), offering

S(λr; Ω) =

(
λrΩ Ω

Ω 0

)
(D.16)

for use in (D.7); setting Ω = 1 for simplicity, we take

S(λr) =

(
λr 1
1 0

)
. (D.17)

We are now in a position to apply (D.7) which, noting that for integer m ≥ 1,

Jm(λr) =

(
λmr mλm−1

r

0 λmr

)
(D.18)

2The justification for this is that the quadratic (D.14) collapses to read 0 = Ωλr(2λr − p), which holds since (dismissing
the trivial solution λr = 0) it confirms λr = p/2.
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(easily proven by induction, for instance), gives us

An−1(p, q(p)) = S(λr)J
n−1(λr)S

−1(λr)

=

(
λr 1
1 0

)
·

(
λn−1
r (n− 1)λn−2

r

0 λn−1
r

)
·

(
0 1
1 −λr

)

=

(
nλn−1

r −(n− 1)λnr
(n− 1)λn−2

r −(n− 2)λn−1
r

)
, (D.19)

the closed form (1.5) being immediate via (2.1).
As in the earlier non-degenerate roots case diagonalisation (D.1), in (D.7) A(p, q(p)) is rep-

resenting a similarity transformation of a matrix which this time is J(λr) (D.6) in normal Jor-
dan form (the theory for which began, by all accounts, to be pulled together in the 1930s [2])
that comprises a single block where (a) the repeated eigenvalue features on the diagonal, (b)
unity is the superdiagonal element, and (c) zero is the remaining entry. In the previous in-
stance the algebraic multiplicity of each of λ1,2 is one—so that each geometric multiplicity
(that is, the dimension of the associated eigenspace) is also automatically one and the matrix
is diagonalisable—whereas here the geometric multiplicity of λr, being also one, is less than
its algebraic multiplicity and so standard diagonalisation is not possible. Any reader familiar
with the theory of eigendecomposition will recognise the structure of S(λr) (D.17) as being
formed by two columns—one being the components of the λr-eigenvector (λr, 1)T , and the
other being those of the generalised eigenvector g = (1, 0)T which is a solution of the equation
(A − λrI2)g = (λr, 1)T (denoting by I2 the 2-square identity matrix).3 Note that ρ = 2 is the
smallest integer for which (A − λrI2)ρ = 02 (where 02 is the 2-square zero matrix)—left as a
trivial reader exercise to check, this index of nilpotency reflects the fact that the largest (and in
this case the only) Jordan block is of size 2.

3 Summary

This short note presents a matrix based approach to the formulation of (characteristic root de-
pendent) closed forms for the general term of the Horadam sequence. What looks to be an
undemanding and slightly uninspiring piece of analysis becomes more intricate in the degener-
ate roots instance, and the work provides an interesting departure from the classic formulations
that lie behind those closed forms which have—over many decades—proven to be so integral to
research on this sequence.
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3The separated equations of which are, writing g = (g1, g2)
T , (p − λr)g1 − qg2 = λr and g1 − λrg2 = 1, delivering

the solution vector g = (φ, (φ − 1)/λr)T which we use with arbitrary φ chosen to be 1 for convenience; not surprisingly,
these equations (in g1, g2) are the Ω = 1 versions of (D.11) and (D.12) for the column two variables s2, s4 of S(λr) (D.9).
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