SPLIT DOMINATION OF CARTESIAN PRODUCT GRAPHS

Girish V. R. and P. Usha
Communicated by Ayman Badawi

MSC 2010 Classifications: Primary 05C69.
Keywords and phrases: Cartesian product, domination number, split domination, split domination number.

Abstract

A set of vertices S is said to dominate the graph G if for each $v \notin S$, there is a vertex $u \in S$ with u adjacent to v. The minimum cardinality of any dominating set is called the domination number of G and is denoted by $\gamma(G)$. A dominating set D of a graph $G=(V, E)$ is a split dominating set if the induced graph $\langle V-D\rangle$ is disconnected. The split domination number $\gamma_{s}(G)$ is the minimum cardinality of a split domination set. The Cartesian graph product of $G_{1} \times G_{2}$ called graph product of graphs with disjoint vertex sets and edge sets and is the graph with the vertex set $V_{1} \times V_{2}$ and $u=\left(u_{1}, u_{2}\right)$ adjacent with $v=\left(v_{1}, v_{2}\right)$ whenever $\left[u_{1}=v_{1}\right.$ and u_{2} adj $\left.v_{2}\right]$ or $\left[u_{2}=v_{2}\right.$ and $\left.u_{1} \operatorname{adj} v_{1}\right]$. In this paper we have obtained the bounds for the cartesian product of paths, cycles and path with a cycle.

1 Introduction

Let G be a simple graph with vertex set $V(G)$ and edge set $E(G)$. As usual $|V|=n$ and $|E|=q$ denote the number of vertices and edges of the graph G. Any undefined term will confirm to that in [1].

A subgraph H of G is a graph such that $V(H) \subseteq V(G)$ and $E(H) \subseteq E(G)$. An induced subgraph H of G is a subgraph with the added property that if $u, v \in V(H)$, then $u v \in E(H)$ if and only if $u v \in E(G)$ and it is denoted by $\langle H\rangle$.

The Cartesian graph product $G_{1} \times G_{2}$ called graph product of graphs with disjoint vertex sets and edge sets and is the graph with the vertex set $V_{1} \times V_{2}$ and $u=\left(u_{1}, u_{2}\right)$ adjacent with $v=\left(v_{1}, v_{2}\right)$ whenever $\left[u_{1}=v_{1}\right.$ and u_{2} adj $\left.v_{2}\right]$ or $\left[u_{2}=v_{2}\right.$ and u_{1} adj $\left.v_{1}\right]$.

A set of vertices S is said to dominate the graph G if for each $v \notin S$, there is a vertex $u \in S$ with u adjacent to v. The minimum cardinality of any dominating set is called the domination number of G and is denoted by $\gamma(G)$. For a complete review on the topic of domination and its related parameters, see [6].

The concept of split domination has been studied by V. R. Kulli and B. Janikiram [2]. A dominating set D of a graph $G=(V, E)$ is a split dominating set if the induced graph $\langle V-$ $D\rangle$ is disconnected. The split domination number $\gamma_{s}(G)$ is the minimum cardinality of a split domination set. In this paper we have obtained the bounds for the cartesian product of paths, cycles and path with a cycle.

2 Main Results

Cartesian product of $P_{m} \times P_{n}$:
Theorem [4]: For $n \geq 2, \gamma\left(P_{2} \times P_{n}\right)=\left\lfloor\frac{n+2}{2}\right\rfloor$.
Theorem 2.1. For $n \geq 2$

$$
\gamma_{s}\left(P_{2} \times P_{n}\right)= \begin{cases}\left\lfloor\frac{n+2}{2}\right\rfloor & n \text { is even or } n=3 \\ \left\lfloor\frac{n+2}{2}\right\rfloor+1 & \text { Otherwise. }\end{cases}
$$

Proof. Let $V\left(P_{2} \times P_{n}\right)=\left\{\left(u_{1}, v_{i}\right),\left(u_{2}, v_{i}\right), i=1,2,3, \ldots \ldots . n\right\}$ be the vertices of first and second row, respectively. We consider the following cases:
Case 1: $n=2$.

The set $A=\left\{\left(u_{2}, v_{1}\right),\left(u_{1}, v_{2}\right)\right\}$ is the γ-set of the graph $P_{2} \times P_{n}$ and $\left\langle\left(P_{2} \times P_{n}\right)-A\right\rangle$ is disconnected. Hence $\gamma_{s}\left(P_{2} \times P_{n}\right)=|A|=2=\left\lfloor\frac{n+2}{2}\right\rfloor$.
Case 2: $n=3$.
The set $B=\left\{\left(u_{1}, v_{2}\right),\left(u_{2}, v_{2}\right)\right\}$ is the γ-set of the graph $P_{2} \times P_{n}$ and $\left\langle\left(P_{2} \times P_{n}\right)-B\right\rangle$ is disconnected. Hence $\gamma_{s}\left(P_{2} \times P_{n}\right)=|B|=2=\left\lfloor\frac{n+2}{2}\right\rfloor$.
Case 3: n is even and $n \cong 0(\bmod 4)$.
The set $C=\left\{\left(u_{2}, v_{n}\right),\left(u_{1}, v_{i}\right), i=4 p-1,1 \leq p \leq \frac{n}{4},\left(u_{2}, v_{i}\right), i=4 p-3,1 \leq p \leq \frac{n}{4}\right\}$ is the γ set of $P_{2} \times P_{n}$ and the graph $\left\langle\left(P_{2} \times P_{n}\right)-C\right\rangle$ is disconnected. Hence $\gamma_{s}\left(P_{2} \times P_{n}\right)=|C|=\left\lfloor\frac{n+2}{2}\right\rfloor$. Case 4: n is even and $n \not \equiv 0(\bmod 4)$.
The set $D=\left\{\left(u_{1}, v_{n}\right),\left(u_{1}, v_{i}\right), i=4 p-1,1 \leq p \leq\left\lceil\frac{n-3}{4}\right\rceil,\left(u_{2}, v_{i}\right), i=4 p-3,1 \leq p \leq\left\lceil\frac{n-1}{4}\right\rceil\right\}$ is the γ-set of $P_{2} \times P_{n}$ and the graph $\left\langle\left(P_{2} \times P_{n}\right)-D\right\rangle$ is disconnected. Hence $\gamma_{s}\left(P_{2} \times P_{n}\right)=$ $|D|=\left\lfloor\frac{n+2}{2}\right\rfloor$.
Case 5: n is odd and $n=4 k+1, k \geq 1$.
The set $E=\left\{\left(u_{1}, v_{i}\right), i=4 p-1,1 \leq p \leq\left\lceil\frac{n-2}{4}\right\rceil,\left(u_{2}, v_{i}\right), i=4 p-3,1 \leq p \leq\left\lceil\frac{n}{4}\right\rceil\right\}$ is the γ-set of $P_{2} \times P_{n}$. No other γ-set with $|E|$ splits the graph and the graph $\left\langle\left(P_{2} \times P_{n}\right)-\left(E \cup\left(u_{1}, v_{n-1}\right)\right)\right\rangle$ is disconnected. Hence $\gamma_{s}\left(P_{2} \times P_{n}\right)=\left\lfloor\frac{n+2}{2}\right\rfloor+1$.
Case 6: n is odd and $n \neq 4 k+1, k \geq 1$.
The set $F=\left\{\left(u_{1}, v_{i}\right), i=4 p-1,1 \leq p \leq\left\lceil\frac{n}{4}\right\rceil,\left(u_{2}, v_{i}\right), i=4 p-3,1 \leq p \leq\left\lceil\frac{n-2}{4}\right\rceil\right\}$ is the γ-set of $P_{2} \times P_{n}$. No other γ-set with $|F|$ splits the graph and the graph $\left\langle\left(P_{2} \times P_{n}\right)-\left(F \cup\left(u_{1}, v_{n-1}\right)\right)\right\rangle$ is disconnected. Hence $\gamma_{s}\left(P_{2} \times P_{n}\right)=\left\lfloor\frac{n+2}{2}\right\rfloor+1 . \square$

Theorem [4]: For $n \geq 3, \gamma\left(P_{3} \times P_{n}\right)=\left\lfloor\frac{3 n+4}{4}\right\rfloor$.
Theorem 2.2. For $n \geq 3$

$$
\gamma_{s}\left(P_{3} \times P_{n}\right)= \begin{cases}\left\lfloor\frac{3 n+4}{4}\right\rfloor & n \cong 0(\bmod 4) \text { or } n=3 \\ \left\lfloor\frac{3 n+4}{4}\right\rfloor+1 & \text { otherwise } .\end{cases}
$$

Proof. Let $V\left(P_{3} \times P_{n}\right)=\left\{\left(u_{1}, v_{i}\right),\left(u_{2}, v_{i}\right),\left(u_{3}, v_{i}\right), i=1,2,3, \ldots \ldots n\right\}$ be the vertices of first, second and third row, respectively. We consider the following cases:
Case 1: $n=3$.
The set $A=\left\{\left(u_{1}, v_{1}\right),\left(u_{2}, v_{2}\right),\left(u_{3}, v_{3}\right)\right\}$ is the γ_{s} set of $P_{3} \times P_{n}$ and the graph $\left\langle\left(P_{3} \times P_{n}\right)-A\right\rangle$ is disconnected. Hence $\gamma_{s}\left(P_{3} \times P_{n}\right)=|A|=3=\left\lfloor\frac{3 n+4}{4}\right\rfloor$.
Case 2: $n \cong 0(\bmod 4)$.
The set $B=\left\{\left(u_{1}, v_{i}\right),\left(u_{3}, v_{i}\right), i=4 p-1,1 \leq p \leq\left\lceil\frac{n-1}{4}\right\rceil,\left(u_{2}, v_{i}\right), i=4 p-3,1 \leq p \leq\right.$ $\left.\left\lceil\frac{n-3}{4}\right\rceil,\left(u_{2}, v_{n}\right)\right\}$ is the γ-set of $P_{3} \times P_{n}$ and the graph $\left\langle\left(P_{2} \times P_{n}\right)-B\right\rangle$ is disconnected. Hence $\gamma_{s}\left(P_{3} \times P_{n}\right)=|B|=\left\lfloor\frac{3 n+4}{4}\right\rfloor$.
Case 3: $n=4 k+1, k \geq 1$.
The set $C=\left\{\left(u_{1}, v_{i}\right),\left(u_{3}, v_{i}\right), i=4 p-1,1 \leq p \leq\left\lceil\frac{n-2}{4}\right\rceil,\left(u_{2}, v_{i}\right), i=4 p-3,1 \leq p \leq\left\lceil\frac{n}{4}\right\rceil\right\}$ is the γ-set of $P_{3} \times P_{n}$. No other γ-set with $|C|$ splits the graph and the graph $\left\langle\left(P_{3} \times P_{n}\right)-(C \cup\right.$ $\left.\left.\left(u_{3}, v_{n-1}\right)\right)\right\rangle$ is disconnected. Hence $\gamma_{s}\left(P_{3} \times P_{n}\right)=\left|C \cup\left(u_{3}, v_{n-1}\right)\right|=\left\lfloor\frac{3 n+4}{4}\right\rfloor+1$.
Case 4: $n=4 k+2, k \geq 1$.
The set $D=\left\{\left(u_{1}, v_{i}\right),\left(u_{3}, v_{i}\right), i=4 p-1,1 \leq p \leq\left\lceil\frac{n-3}{4}\right\rceil,\left(u_{2}, v_{i}\right), i=4 p-3,1 \leq p \leq\right.$ $\left.\left\lceil\frac{n-1}{4}\right\rceil,\left(u_{2}, v_{n}\right)\right\}$ is the γ-set of $P_{3} \times P_{n}$. No other γ-set with $|D|$ splits the graph and the graph $\left\langle\left(P_{3} \times P_{n}\right)-\left(D \cup\left(u_{3}, v_{n-1}\right)\right)\right\rangle$ is disconnected. Hence $\gamma_{s}\left(P_{3} \times P_{n}\right)=\left|D \cup\left(u_{3}, v_{n-1}\right)\right|=$ $\left\lfloor\frac{3 n+4}{4}\right\rfloor+1$.
Case 5: $n=4 k+3, k \geq 1$.
The set $E=\left\{\left(u_{1}, v_{i}\right),\left(u_{3}, v_{i}\right), i=4 p-1,1 \leq p \leq\left\lceil\frac{n-4}{4}\right\rceil,\left(u_{2}, v_{i}\right), i=4 p-3,1 \leq p \leq\right.$ $\left.\left\lceil\frac{n-2}{4}\right\rceil,\left(u_{2}, v_{n}\right),\left(u_{2}, v_{n-1}\right)\right\}$ is the γ-set of $P_{3} \times P_{n}$. No other γ-set with $|E|$ splits the graph and the graph $\left\langle\left(P_{3} \times P_{n}\right)-\left(E \cup\left(u_{3}, v_{n-1}\right)\right)\right\rangle$ is disconnected. Hence $\gamma_{s}\left(P_{3} \times P_{n}\right)=\left|E \cup\left(u_{3}, v_{n-1}\right)\right|=$ $\left\lfloor\frac{3 n+4}{4}\right\rfloor+1 . \square$

Theorem [4]: For $n \geq 4$,

$$
\gamma\left(P_{4} \times P_{n}\right)= \begin{cases}n+1 & n=5,6,9 \\ n & \text { otherwise }\end{cases}
$$

Theorem 2.3. For $n \geq 4, \gamma_{s}\left(P_{4} \times P_{n}\right)=n+1$.

Proof. Let $V\left(P_{4} \times P_{n}\right)=\left\{\left(u_{1}, v_{i}\right),\left(u_{2}, v_{i}\right),\left(u_{3}, v_{i}\right),\left(u_{4}, v_{i}\right), i=1,2,3, \ldots \ldots . n\right\}$ be the vertices of first, second, third and fourth row, respectively. We consider the following cases:
Case 1: $n=4 k, k \geq 1$.
The set $A=\left\{\left(u_{1}, v_{i}\right), i=4 p-2,1 \leq p \leq \frac{n}{4},\left(u_{2}, v_{i}\right), i=4 p, 1 \leq p \leq \frac{n}{4},\left(u_{3}, v_{i}\right), i=\right.$ $\left.4 p-3,1 \leq p \leq \frac{n}{4},\left(u_{4}, v_{i}\right), i=4 p-1,1 \leq p \leq \frac{n}{4}\right\}$ is the γ-set of $P_{4} \times P_{n}$. No other γ-set with $|A|$ splits the graph and the induced graph $\left\langle\left(P_{4} \times P_{n}\right)-\left(A \cup\left(u_{4}, v_{2}\right)\right)\right\rangle$ is disconnected. Hence $\gamma_{s}\left(P_{4} \times P_{n}\right)=\left|A \cup\left(u_{4}, v_{2}\right)\right|=n+1$.
Case 2: $n=5$ or 9 .
The set $B=\left\{\left(u_{1}, v_{i}\right), i=4 p-2,1 \leq p \leq\left\lceil\frac{n-3}{4}\right\rceil,\left(u_{1}, v_{n}\right),\left(u_{2}, v_{i}\right), i=4 p, 1 \leq p \leq\right.$ $\left.\left\lceil\frac{n-1}{4}\right\rceil,\left(u_{3}, v_{i}\right), i=4 p-3,1 \leq p \leq\left\lceil\frac{n}{4}\right\rceil,\left(u_{4}, v_{i}\right), i=4 p-1,1 \leq p \leq\left\lceil\frac{n-2}{4}\right\rceil\right\}$ is the γ-set of $P_{4} \times P_{n}$ and the graph $\left\langle\left(P_{4} \times P_{n}\right)-B\right\rangle$ is disconnected. Hence $\gamma_{s}\left(P_{4} \times P_{n}\right)=|B|=n+1$. Case 3: $n=6$.
The set $C=\left\{\left(u_{1}, v_{i}\right), i=4 p-2,1 \leq p \leq\left\lceil\frac{n}{4}\right\rceil,\left(u_{2}, v_{4}\right),\left(u_{3}, v_{1}\right),\left(u_{3}, v_{6}\right),\left(u_{4}, v_{3}\right),\left(u_{4}, v_{5}\right)\right\}$ is the γ-set of $P_{4} \times P_{n}$ and the graph $\left\langle\left(P_{4} \times P_{n}\right)-C\right\rangle$ is disconnected. Hence $\gamma_{s}\left(P_{4} \times P_{n}\right)=|C|=$ $7=n+1$.
Case 4: $n \neq 4 k, 5,6,9, k \geq 1$.
We divide $P_{4} \times P_{n}$ into m number of $P_{4} \times P_{4}$ and $P_{4} \times P_{3}$ blocks $B_{i}, i=1,2,3 \ldots . m$ such that m is minimum, $\left|V\left(B_{i}\right)\right| \geq\left|V\left(B_{i+1}\right)\right|$ and $V\left(B_{i}\right) \cap V\left(B_{i+1}\right)=\phi$. Denote the vertices of $P_{4} \times P_{4}$ as $\left(u_{i}, v_{j}\right), i=j=1,2,3,4$ and $P_{4} \times P_{3}$ as $\left(p_{i}, q_{j}\right), i=1,2,3,4, j=1,2,3$. Let $D=\left\{\left(u_{3}, v_{1}\right),\left(u_{1}, v_{2}\right),\left(u_{2}, v_{4}\right),\left(u_{4}, v_{3}\right)\right\}$ is the γ-set of each block of $P_{4} \times P_{4}$. We consider the following sub-cases:
(i) When B_{i} contains only one copy of $P_{4} \times P_{3}$.

Let the set $H=\left\{\left(p_{1}, q_{2}\right),\left(p_{3}, q_{3}\right),\left(p_{4}, q_{1}\right)\right\}$ are the vertices belongs to $P_{4} \times P_{3}$ block. Then, the set $\{D \cup H\}$ is the γ-set of $\left(P_{4} \times P_{n}\right)$ with $|D \cup H|=n$ and $\left\langle\left(P_{4} \times P_{n}\right)-(D \cup H \cup\right.$ $\left.\left.\left(u_{4}, v_{2}\right)\right)\right\rangle,\left(u_{4}, v_{2}\right) \in B_{1}$ is disconnected. Hence $\gamma_{s}\left(P_{4} \times P_{n}\right)=n+1$.
(ii) When B_{i} contains two copies of $P_{4} \times P_{3}$ say $\left(B_{i}, B_{i+1}\right)$.

Let the set $F=\left\{\left(p_{1}, q_{2}\right),\left(p_{3}, q_{3}\right),\left(p_{4}, q_{1}\right)\right\}$ are the vertices belongs to B_{i} and $K=\left\{\left(p_{1}, q_{1}\right),\left(p_{2}, q_{3}\right),\left(p_{4}, q_{2}\right)\right\}$ are the vertices belongs to B_{i+1}. Then, the set $\{F \cup K \cup D\}$ is the γ-set of $\left(P_{4} \times P_{n}\right)$ with $|F \cup K \cup D|=n$ and $\left\langle\left(P_{4} \times P_{n}\right)-\left(D \cup F \cup K \cup\left(u_{4}, v_{2}\right)\right)\right\rangle,\left(u_{4}, v_{2}\right) \in B_{1}$ is disconnected. Hence $\gamma_{s}\left(P_{4} \times P_{n}\right)=n+1$.
(iii) When B_{i} contains three copies of $P_{4} \times P_{3}$ say $\left(B_{i}, B_{i+1}, B_{i+2}\right)$.

The set $M=\left\{\left(p_{1}, q_{2}\right),\left(p_{3}, q_{3}\right),\left(p_{4}, q_{1}\right)\right\}$ are the vertices belongs to each of B_{i} and B_{i+2} and $N=\left\{\left(p_{1}, q_{1}\right),\left(p_{2}, q_{3}\right),\left(p_{4}, q_{2}\right)\right\}$ are the vertices belongs to B_{i+1}. Then, the set $\{M \cup N \cup D\}$ is the γ-set of $\left(P_{4} \times P_{n}\right)$ with $|M \cup N \cup D|=n$ and $\left\langle\left(P_{4} \times P_{n}\right)-\left(D \cup M \cup N \cup\left(u_{4}, v_{2}\right)\right)\right\rangle,\left(u_{4}, v_{2}\right) \in B_{1}$ is disconnected. Hence $\gamma_{s}\left(P_{4} \times P_{n}\right)=n+1 . \square$

Theorem 2.4. For $m, n \geq 2, \gamma_{s}\left(P_{m} \times P_{n}\right)=n+3(p-1)+2(p-1)(q-1)+1, m=3 p+1, n=$ $3 q+1, p \geq 1, q \geq 1$.

Proof. Let $V\left(P_{m} \times P_{n}\right)=\left\{\left(u_{1}, v_{i}\right),\left(u_{2}, v_{i}\right), \ldots \ldots \ldots .\left(u_{m}, v_{i}\right), i=1,2,3, \ldots . . n\right\}$.
Where $\left(u_{1}, v_{i}\right),\left(u_{2}, v_{i}\right), \ldots \ldots . .\left(u_{m}, v_{i}\right)$ are the vertices of first column, second column, third column and so on, respectively.
$1^{\text {st }}$ column: Let $H_{1}=\left\{\left(u_{1}, v_{i}\right), i \equiv 0(\bmod 6) \cup\left(u_{1}, v_{i}\right), i=6 k-4, k \geq 1, i=1\right.$ to $\left.n\right\}$.
$2^{\text {nd }}$ column: Let $H_{2}=\left\{\left(u_{2}, v_{i}\right), i=6 k-2, k \geq 1, i=1\right.$ to $\left.n\right\}$.
$3^{\text {rd }}$ column: Let $H_{3}=\left\{\left(u_{3}, v_{i}\right), i=6 k-5, k \geq 1, i=1\right.$ to $\left.n\right\}$.
$4^{\text {th }}$ column: Let $H_{4}=\left\{\left(u_{4}, v_{i}\right), i=6 k-3 \cup\left(u_{4}, v_{i}\right), i=6 k-1, k \geq 1, i=1\right.$ to $\left.n\right\}$.
$5^{\text {th }}$ column: Let $H_{5}=\left\{\left(u_{5}, v_{i}\right), i=6 k-5, k \geq 1, i=1\right.$ to $\left.n\right\}$.
$6^{\text {th }}$ column: Let $H_{6}=\left\{\left(u_{3}, v_{i}\right), i=6 k-2, k \geq 1, i=1\right.$ to $\left.n\right\}$.
$7^{\text {th }}$ column onwards: For each $n=1,2,3,4,5 \ldots \ldots$, .
$H_{j+6 n}=H_{j}, j=1,2,3,4,5,6$, and $u_{j+6}=u_{j}$, for $j=1,2,3,4,5,6$.
Then $D=\left(H_{1} \cup H_{2} \cup H_{3} \cup H_{4} \cup H_{5} \cup H_{6} \cup H_{7} \ldots \ldots \ldots \ldots \ldots\right)$ is the γ-set of the graph $P_{m} \times P_{n}$
with $\left|H_{1} \cup H_{2} \cup H_{3} \cup H_{4}\right|=n$ and $\left|H_{5} \cup H_{6} \cup H_{7} \cup \ldots \ldots \ldots \ldots.\right|=3(p-1)+2(p-1)(q-1)$
with $|D|=n+3(p-1)+2(p-1)(q-1)$ and the induced graph $\left\langle\left(P_{m} \times P_{n}\right)-D\right\rangle$ is connected and the induced graph $\left\langle\left(P_{m} \times P_{n}\right)-\left(D \cup\left(u_{2}, v_{1}\right)\right)\right\rangle$ is disconnected. Hence $\gamma_{s}\left(P_{m} \times P_{n}\right)=$ $n+3(p-1)+2(p-1)(q-1)+1 . \square$

Cartesian Product of $C_{m} \times P_{n}$:

Theorem [3]: For $n \geq 2$,

$$
\gamma\left(C_{3} \times P_{n}\right)= \begin{cases}\left\lceil\frac{3 n}{4}\right\rceil+1 & n \cong 0(\bmod 4) \\ \left\lceil\frac{3 n}{4}\right\rceil & \text { otherwise }\end{cases}
$$

Theorem 2.5. For $n \geq 2, \gamma_{s}\left(C_{3} \times P_{n}\right)=\left\lceil\frac{3 n}{4}\right\rceil+1$.
Proof. Let $V\left(C_{3} \times P_{n}\right)=\left\{\left(u_{1}, v_{i}\right),\left(u_{2}, v_{i}\right),\left(u_{3}, v_{i}\right), i=1,2,3, \ldots \ldots n\right\}$ be the vertices of first, second and third row, respectively. We consider the following cases:
Case 1: $n=2$.
The set $A=\left\{\left(u_{1}, v_{2}\right),\left(u_{3}, v_{1}\right)\right\}$ is the γ-set of $C_{3} \times P_{n}$. No other γ-set with $|A|$ splits the graph and the graph $\left\langle\left(C_{3} \times P_{n}\right)-\left(A \cup\left(u_{2}, v_{2}\right)\right)\right\rangle$ is disconnected. Hence $\gamma_{s}\left(C_{3} \times P_{n}\right)=\left|A \cup\left(u_{2}, v_{2}\right)\right|=$ $3=\left\lceil\frac{3 n}{4}\right\rceil+1$.
Case 2: $n=3$.
The set $B=\left\{\left(u_{1}, v_{3}\right),\left(u_{2}, v_{2}\right),\left(u_{3}, v_{1}\right)\right\}$ is the γ-set of $C_{3} \times P_{n}$. No other γ-set with $|B|$ splits the graph and the graph $\left\langle\left(C_{3} \times P_{n}\right)-\left(B \cup\left(u_{3}, v_{3}\right)\right)\right\rangle$ is disconnected. Hence $\gamma_{s}\left(C_{3} \times P_{n}\right)=$ $\left|B \cup\left(u_{3}, v_{3}\right)\right|=4=\left\lceil\frac{3 n}{4}\right\rceil+1$.
Case 3: $n=4 k, k \geq 1$.
The set $C=\left\{\left(u_{1}, v_{i}\right), i=4 p-3,1 \leq p \leq\left\lceil\frac{n-3}{4}\right\rceil,\left(u_{2}, v_{i}\right),\left(u_{3}, v_{i}\right), i=4 p-1,1 \leq p \leq\right.$ $\left.\left\lceil\frac{n-1}{4}\right\rceil,\left(u_{1}, v_{n}\right)\right\}$ is the γ-set of $C_{3} \times P_{n}$ and the graph $\left\langle\left(C_{3} \times P_{n}\right)-C\right\rangle$ is disconnected. Hence $\gamma_{s}\left(C_{3} \times P_{n}\right)=|C|=\left\lceil\frac{3 n}{4}\right\rceil+1$.
Case 4: $n=4 k+1 . k \geq 1$.
The set $D=\left\{\left(u_{1}, v_{i}\right), i=4 p-3,1 \leq p \leq\left\lceil\frac{n}{4}\right\rceil,\left(u_{2}, v_{i}\right),\left(u_{3}, v_{i}\right), i=4 p-1,1 \leq p \leq\left\lceil\frac{n-2}{4}\right\rceil\right\}$ is the γ-set of $C_{3} \times P_{n}$. No other γ-set with $|D|$ splits the graph and the graph $\left\langle\left(C_{3} \times P_{n}\right)-\right.$ $\left.\left(D-\left(u_{1}, v_{n}\right)\right) \cup\left(\left(u_{1}, v_{n-1}\right),\left(u_{2}, v_{n}\right)\right)\right\rangle$ is disconnected. Hence $\gamma_{s}\left(C_{3} \times P_{n}\right)=\mid\left(D-\left(u_{1}, v_{n}\right)\right) \cup$ $\left(\left(u_{1}, v_{n-1}\right),\left(u_{2}, v_{n}\right)\right) \left\lvert\,=\left\lceil\frac{3 n}{4}\right\rceil+1\right.$.
Case 5: $n=4 k+2, k \geq 1$.
The set $E=\left\{\left(u_{1}, v_{i}\right), i=4 p-3,1 \leq p \leq\left\lceil\frac{n-1}{4}\right\rceil,\left(u_{2}, v_{i}\right),\left(u_{3}, v_{i}\right), i=4 p-1,1 \leq p \leq\right.$ $\left.\left\lceil\frac{n-3}{4}\right\rceil,\left(u_{2}, v_{n}\right)\right\}$ is the γ-set of $C_{3} \times P_{n}$. No other γ-set with $|E|$ splits the graph and the graph $\left.\angle\left(C_{3} \times P_{n}\right)-\left(E \cup\left(u_{3}, v_{n}\right)\right)\right\rangle$ is disconnected. Hence $\gamma_{s}\left(C_{3} \times P_{n}\right)=\left|E \cup\left(u_{3}, v_{n}\right)\right|=\left\lceil\frac{3 n}{4}\right\rceil+1$. Case 6: $n=4 k+3, k \geq 1$.
The $F=\left\{\left(u_{1}, v_{i}\right), i=4 p-3,1 \leq p \leq\left\lceil\frac{n-2}{4}\right\rceil,\left(u_{2}, v_{i}\right),\left(u_{3}, v_{i}\right), i=4 p-1,1 \leq p \leq\left\lceil\frac{n}{4}\right\rceil\right\}$ is the γ-set of $C_{3} \times P_{n}$. No other γ-set with $|E|$ splits the graph and the graph $\left\langle C_{3} \times P_{n}-(F \cup\right.$ $\left.\left.\left(u_{1}, v_{n-1}\right)\right)\right\rangle$ is disconnected. Hence $\gamma_{s}\left(C_{3} \times P_{n}\right)=\left|F \cup\left(u_{1}, v_{n-1}\right)\right|=\left\lceil\frac{3 n}{4}\right\rceil+1 . \square$

Theorem [3]: For $n \geq 2, \gamma\left(C_{4} \times P_{n}\right)=n$.
Theorem 2.6. For $n \geq 2, \gamma_{s}\left(C_{4} \times P_{n}\right)=n+2$.
Proof. Let $V\left(C_{4} \times P_{n}\right)=\left\{\left(u_{1}, v_{i}\right),\left(u_{2}, v_{i}\right),\left(u_{3}, v_{i}\right),\left(u_{4}, v_{i}\right), i=1,2,3, \ldots \ldots n\right\}$ be the vertices of first, second, third and fourth row, respectively. We consider the following cases:
Case 1: n is even.
The set $A=\left\{\left(u_{2}, v_{i}\right), i=2 p-1,1 \leq p \leq\left\lceil\frac{n-1}{2}\right\rceil,\left(u_{4}, v_{i}\right), i=2 p, 1 \leq p \leq \frac{n}{2}\right\}$ is the γ-set of $C_{4} \times P_{n}$. No other γ-set with $|A|$ splits the graph and the graph $\left.\left\langle\left(C_{4} \times P_{n}\right)-\left(A \cup\left(u_{1}, v_{1}\right), u_{3}, v_{1}\right)\right)\right\rangle$ is disconnected. Hence $\gamma_{s}\left(C_{3} \times P_{n}\right)=\left|A \cup\left(\left(u_{1}, v_{1}\right),\left(u_{3}, v_{1}\right)\right)\right|=n+2$.
Case 2: n is odd.
The set $B=\left\{\left(u_{2}, v_{i}\right), i=2 p-1,1 \leq p \leq\left\lceil\frac{n}{2}\right\rceil,\left(u_{4}, v_{i}\right), i=2 p, 1 \leq p \leq\left\lceil\frac{n-1}{2}\right\rceil\right\}$ is the γ-set of $C_{4} \times P_{n}$. No other- γ set with $|B|$ splits the graph and the graph $\left.\left\langle\left(C_{4} \times P_{n}\right)-\left(B \cup\left(u_{1}, v_{1}\right), u_{3}, v_{1}\right)\right)\right\rangle$ is disconnected. Hence $\gamma_{s}\left(C_{4} \times P_{n}\right)=\left|B \cup\left(\left(u_{1}, v_{1}\right),\left(u_{3}, v_{1}\right)\right)\right|=n+2 . \square$

Theorem [3]: For $n \geq 2$

$$
\gamma\left(C_{5} \times P_{n}\right)= \begin{cases}3 & n=2 \\ 4 & \mathrm{n}=3 \\ n+2 & \text { otherwise }\end{cases}
$$

Theorem 2.7. For $n \geq 2$

$$
\gamma_{s}\left(C_{5} \times P_{n}\right)= \begin{cases}n+2 & n=2 \\ n+3 & \text { otherwise }\end{cases}
$$

Proof. Let $V\left(C_{5} \times P_{n}\right)=\left\{\left(u_{1}, v_{i}\right),\left(u_{2}, v_{i}\right),\left(u_{3}, v_{i}\right),\left(u_{4}, v_{i}\right),\left(u_{5}, v_{i}\right), i=1,2,3, \ldots \ldots n\right\}$ be the vertices of first, second, third, fourth and fifth row, respectively. We consider the following cases: Case 1: $n=2$.
The set $A=\left\{\left(u_{1}, v_{1}\right),\left(u_{3}, v_{2}\right),\left(u_{4}, v_{2}\right)\right\}$ is the γ-set of $C_{5} \times P_{n}$. No other γ-set with $|A|$ splits the graph and the graph $\left\langle\left(C_{5} \times P_{n}\right)-\left(A-\left(u_{3}, v_{2}\right)\right) \cup\left(\left(u_{2}, v_{2}\right),\left(u_{3}, v_{1}\right)\right)\right\rangle$ is disconnected. Hence $\gamma_{s}\left(C_{5} \times P_{n}\right)=\left|\left(A-\left(u_{3}, v_{2}\right)\right) \cup\left(\left(u_{2}, v_{2}\right),\left(u_{3}, v_{1}\right)\right)\right|=4=n+2$.
Case 2: $n=3$.
The set $B=\left\{\left(u_{1}, v_{2}\right),\left(u_{3}, v_{1}\right),\left(u_{3}, v_{3}\right),\left(u_{5}, v_{2}\right)\right\}$ is the γ-set of $C_{5} \times P_{n}$. No other γ-set with $|B|$ splits the graph and the graph $\left\langle\left(C_{5} \times P_{n}\right)-\left(B \cup\left(\left(u_{1}, v_{3}\right),\left(u_{2}, v_{2}\right)\right)\right\rangle\right.$ is disconnected. Hence $\left.\gamma_{s}\left(C_{5} \times P_{n}\right)=\mid B \cup\left(u_{1}, v_{3}\right),\left(u_{2}, v_{2}\right)\right) \mid=6=n+3$.
Case 3: $n=5 k-2, k \geq 2$.
The set $C=\left\{\left(u_{1}, v_{i}\right), i=5 p-3,1 \leq p \leq\left\lceil\frac{n-1}{5}\right\rceil,\left(u_{1}, v_{n}\right),\left(u_{2}, v_{i}\right), i=5 p, 1 \leq p \leq\right.$ $\frac{n-3}{5},\left(u_{3}, v_{i}\right), i=5 p-2,1 \leq p \leq\left\lceil\frac{n}{5}\right\rceil,\left(u_{3}, v_{1}\right),\left(u_{4}, v_{i}\right), i=5 p+1,1 \leq p \leq\left\lfloor\frac{n-2}{5}\right\rfloor$, $\left.\left(u_{5}, v_{i}\right), i=5 p-1,1 \leq p \leq\left\lceil\frac{n-4}{5}\right\rceil,\left(u_{5}, v_{2}\right)\right\}$ is the γ-set of $C_{5} \times P_{n}$. No other γ-set with $|C|$ splits the graph and the graph $\left\langle\left(C_{5} \times P_{n}\right)-\left(C \cup\left(u_{2}, v_{n-1}\right)\right)\right\rangle$ is disconnected. Hence $\gamma_{s}\left(C_{5} \times P_{n}\right)=\left|C \cup\left(u_{2}, v_{n-1}\right)\right|=n+3$.
Case 4: $n=5 k-1, k \geq 1$.
The set $D=\left\{\left(u_{1}, v_{i}\right), i=5 p-3, p \geq 1,1 \leq p \leq\left\lceil\frac{n-2}{5}\right\rceil,\left(u_{2}, v_{i}\right), i=5 p, 1 \leq p \leq\left\lceil\frac{n-4}{5}\right\rceil, n \geq\right.$ $9,\left(u_{2}, v_{n}\right),\left(u_{3}, v_{i}\right), i=5 p-2,1 \leq p \leq\left\lceil\frac{n-1}{5}\right\rceil,\left(u_{3}, v_{1}\right),\left(u_{4}, v_{i}\right), i=5 p+1,1 \leq p \leq\left\lfloor\frac{n-3}{5}\right\rfloor, n \geq$ $\left.9,\left(u_{5}, v_{i}\right), i=5 p-1,1 \leq p \leq\left\lceil\frac{n}{5}\right\rceil,\left(u_{5}, v_{2}\right)\right\}$ is the γ-set of $C_{5} \times P_{n}$. No other γ-set with $|D|$ splits the graph and $\left\langle\left(C_{5} \times P_{n}\right)-\left(D \cup\left(u_{4}, v_{n}\right)\right)\right\rangle$ is disconnected. Hence $\gamma_{s}\left(C_{5} \times P_{n}\right)=$ $\mid\left(D \cup\left(\left(u_{4}, v_{n}\right)\right) \mid=n+3\right.$.
Case 5: $n=5 k, k \geq 1$.
The set $E=\left\{\left(u_{1}, v_{i}\right), i=5 p-3,1 \leq p \leq\left\lceil\frac{n-3}{5}\right\rceil,\left(u_{2}, v_{i}\right), i=5 p, 1 \leq p \leq\left\lceil\frac{n}{5}\right\rceil,\left(u_{3}, v_{i}\right), i=\right.$ $5 p-2,1 \leq p \leq\left\lceil\frac{n-2}{5}\right\rceil,\left(u_{3}, v_{1}\right),\left(u_{4}, v_{i}\right), i=5 p+1,1 \leq p \leq\left\lfloor\frac{n-4}{5}\right\rfloor, n \geq 10,\left(u_{4}, v_{n}\right)$, $\left.\left(u_{5}, v_{i}\right), i=5 p-1,1 \leq p \leq\left\lceil\frac{n-1}{5}\right\rceil,\left(u_{5}, v_{2}\right)\right\}$ is the γ-set of $C_{5} \times P_{n}$. No other γ-set with $|E|$ splits the graph and $\left\langle\left(C_{5} \times P_{n}\right)-\left(E \cup\left(u_{3}, v_{n-1}\right)\right)\right\rangle$ is disconnected. Hence $\gamma_{s}\left(C_{5} \times P_{n}\right)=$ $\mid\left(E \cup\left(\left(u_{3}, v_{n-1}\right)\right) \mid=n+3\right.$.
Case 6: $n=5 k+1, k \geq 1$.
The set $F=\left\{\left(u_{1}, v_{i}\right), i=5 p-3,1 \leq p \leq\left\lceil\frac{n-4}{5}\right\rceil,\left(u_{2}, v_{i}\right), i=5 p, 1 \leq p \leq\left\lceil\frac{n-1}{5}\right\rceil,\left(u_{2}, v_{n}\right)\right.$, $\left(u_{3}, v_{i}\right), i=5 p-2,1 \leq p \leq\left\lceil\frac{n-3}{5}\right\rceil,\left(u_{3}, v_{1}\right),\left(u_{4}, v_{i}\right), i=5 p+1,1 \leq p \leq\left\lfloor\frac{n-5}{6}\right\rfloor, n \geq$ $\left.11,\left(u_{4}, v_{n}\right),\left(u_{5}, v_{i}\right), i=5 p-1,1 \leq p \leq\left\lceil\frac{n-2}{5}\right\rceil,\left(u_{5}, v_{2}\right)\right\}$ is the γ-set of $C_{5} \times P_{n}$. No other γ-set with $|F|$ splits the graph and $\left\langle\left(C_{5} \times P_{n}\right)-\left(F \cup\left(u_{3}, v_{n-1}\right)\right)\right\rangle$ is disconnected. Hence $\gamma_{s}\left(C_{5} \times P_{n}\right)=\mid\left(E \cup\left(\left(u_{3}, v_{n-1}\right)\right) \mid=n+3\right.$.
Case 7: $n=5 k+2, k \geq 1$.
The set $H=\left\{\left(u_{1}, v_{i}\right), i=5 p-3,1 \leq p \leq\left\lceil\frac{n}{5}\right\rceil,\left(u_{2}, v_{i}\right), i=5 p, 1 \leq p \leq\left\lceil\frac{n-2}{5}\right\rceil,\left(u_{3}, v_{i}\right), i=\right.$ $5 p-2,1 \leq p \leq\left\lceil\frac{n-3}{5}\right\rceil,\left(u_{3}, v_{1}\right),\left(u_{3}, v_{n}\right),\left(u_{4}, v_{i}\right), i=5 p+1,1 \leq p \leq\left\lfloor\frac{n-1}{5}\right\rfloor,\left(u_{5}, v_{i}\right), i=$ $\left.5 p-1,1 \leq p \leq\left\lceil\frac{n-3}{5}\right\rceil,\left(u_{5}, v_{2}\right)\right\}$ is the γ-set of $C_{5} \times P_{n}$. No other γ-set with $|H|$ splits the graph and $\left\langle\left(C_{5} \times P_{n}\right)-\left(H \cup\left(u_{2}, v_{n-1}\right)\right)\right\rangle$ is disconnected. Hence $\gamma_{s}\left(C_{5} \times P_{n}\right)=\mid\left(H \cup\left(\left(u_{2}, v_{n-1}\right)\right) \mid=\right.$ $n+3$. \square

Theorem 2.8. For any graph $m, n \geq 2, \gamma_{s}\left(C_{m} \times P_{n}\right)=\frac{m n}{4}+2$, $m=4 p, n=3 q, p, q \geq 1$.
Proof. Let $V\left(C_{m} \times P_{n}\right)=\left\{\left(u_{1}, v_{i}\right),\left(u_{2}, v_{i}\right), \ldots \ldots \ldots \ldots\left(u_{m}, v_{i}\right)\right\}$. Where $\left(u_{1}, v_{i}\right),\left(u_{2}, v_{i}\right)$ denotes the vertices of first row, second row and so on, respectively. Divide $V\left(C_{m} \times P_{n}\right)$ into $m \times 3$ blocks and let $B_{i}, i=1,2,3$, \qquad .$\left(\frac{n}{3}\right)$ be such blocks. For each block B_{i} denote the vertex set as $\left(u_{i}, v_{j}\right), i=1,2,3, \ldots m, j=1,2,3$. The set $A=\left\{\left(u_{4 r}, v_{1}\right),\left(u_{4 r}, v_{3}\right),\left(u_{4 r-2}, v_{2}\right), r \geq 1, r=1\right.$ to $\left.\frac{m}{4}\right\}$ with $|A|=\frac{3 m}{4}$ is the γ-set of each block B_{i}. Let D be the γ set of $C_{m} \times P_{n}$ with $|D|=\frac{3 m}{4} * \frac{n}{3}$. Therefore $\gamma\left(C_{m} \times P_{n}\right)=\left(\frac{m n}{4}\right)$. No γ-set with $|D|$ or $|D+1|$ splits the graph and the induced graph $\left\langle\left(C_{m} \times P_{n}\right)-\left(D \cup\left(u_{m-1}, v_{2}\right) \cup\left(u_{m-2}, v_{1}\right)\right)\right\rangle$ is disconnected. Hence $\gamma_{s}\left(C_{m} \times P_{n}\right)=\frac{m n}{4}+2 . \square$

Cartesian product of $C_{m} \times C_{n}$:

Theorem[3]: For $n \geq 3, \gamma_{s}\left(C_{3} \times C_{n}\right)=\left\lceil\frac{3 n}{4}\right\rceil$.
Theorem 2.9. For $n \geq 4$

$$
\gamma_{s}\left(C_{3} \times C_{n}\right)= \begin{cases}\left\lceil\frac{3 n}{4}\right\rceil+1 & n=4 k+2, k \geq 1, n=3 \\ \left\lceil\frac{3 n}{4}\right\rceil+2 & n \neq 4 k+2, k \geq 1\end{cases}
$$

Proof. Let $V\left(C_{3} \times C_{n}\right)=\left\{\left(u_{1}, v_{i}\right),\left(u_{2}, v_{i}\right),\left(u_{3}, v_{i}\right), i=1,2,3, \ldots \ldots n\right\}$ be the vertices of first, second and third row, respectively. We consider the following cases:
Case 1: $n=3$
In $C_{3} \times C_{n}$, the subset $H=\left\{\left(u_{1}, v_{1}\right),\left(u_{2}, v_{1}\right),\left(u_{3}, v_{3}\right)\right\}$ is the γ-set of $C_{3} \times C_{n}$ with $|H|=3=$ $\left\lceil\frac{3 n}{4}\right\rceil$. No other γ-set with $|H|$ splits the graph. The set $H \cup\left\{\left(u_{3}, v_{2}\right)\right\}$ is the γ_{s} set of $C_{3} \times C_{n}$.
Hence $\gamma_{s}\left(C_{3} \times C_{n}\right)=\left\lceil\frac{3 n}{4}\right\rceil+1$.
Case 2: $n=4 k+2, k \geq 1$.
In $C_{3} \times C_{n}$, the subset $D=\{A \cup B \cup C\}$ where, $A=\left\{\left(u_{1}, v_{i}\right), i=4 p-3,1 \leq p \leq\left\lceil\frac{n-1}{4}\right\rceil\right\}$, $B=\left\{\left(u_{2}, v_{i}\right),\left(u_{3}, v_{i}\right), i=4 p-1,1 \leq p \leq\left\lceil\frac{n-3}{4}\right\rceil\right\}$ and $C=\left\{\left(u_{2}, v_{n}\right)\right\}$ is the γ-set of $C_{3} \times C_{n}$ with $|D|=\left\lceil\frac{3 n}{4}\right\rceil$. No other γ-set with $|D|$ splits the graph. The set $D \cup\left\{\left(u_{3}, v_{n}\right)\right\}$ is the γ_{s} set of $C_{3} \times C_{n}$. Hence $\gamma_{s}\left(C_{3} \times C_{n}\right)=\left\lceil\frac{3 n}{4}\right\rceil+1$.
Case $3: n \neq 4 k+2, k \geq 1$.
In $C_{3} \times C_{n}$, the subset $F=\{A \cup B\}$ where, $A=\left\{\left(u_{1}, v_{i}\right), i=4 p-3,1 \leq p \leq\left\lceil\frac{n}{4}\right\rceil\right\}$, $B=\left\{\left(u_{2}, v_{i}\right),\left(u_{3}, v_{i}\right), i=4 p-1, p \geq 1, i=1\right.$ to $\left.n\right\}$ is the γ-set of $C_{3} \times C_{n}$ with $|F|=\left\lceil\frac{3 n}{4}\right\rceil$. No other γ-set with $|F|$ splits the graph. The set $F \cup\left\{\left(u_{1}, v_{2}\right) \cup\left(u_{1}, v_{4}\right)\right\}$ is the γ_{s} set of $C_{3} \times C_{n}$. Hence $\gamma_{s}\left(C_{3} \times C_{n}\right)=\left\lceil\frac{3 n}{4}\right\rceil+2 . \square$

Theorem[3]: For $n \geq 4, \gamma\left(C_{4} \times C_{n}\right)=n$.
Theorem 2.10. For $n \geq 4, \gamma_{s}\left(C_{4} \times C_{n}\right)=n+2$.
Proof. Let $V\left(C_{4} \times C_{n}\right)=\left\{\left(u_{1}, v_{i}\right),\left(u_{2}, v_{i}\right),\left(u_{3}, v_{i}\right),\left(u_{4}, v_{i}\right), i=1,2,3, \ldots \ldots n\right\}$ be the vertices of first, second, third and fourth row, respectively. We consider the following cases:
Case 1: $n=4 k, k \geq 1$.
Let $A=\left\{\left(u_{1}, v_{i}\right), i=4 p+1,1 \leq p \leq\left\lfloor\frac{n-3}{4}\right\rfloor, n \geq 8,\left(u_{2}, v_{i}\right), i=4 p-2,1 \leq p \leq\right.$ $\left\lceil\frac{n-2}{4}\right\rceil,\left(u_{2}, v_{n}\right),\left(u_{3}, v_{i}\right), i=4 p, 1 \leq p \leq\left\lceil\frac{n-4}{4}\right\rceil, n \geq 8,\left(u_{4}, v_{i}\right), i=4 p-1,1 \leq p \leq\left\lceil\frac{n-1}{4}\right\rceil$, $\left.\left(u_{4}, v_{1}\right)\right\}$ is the γ-set of $C_{4} \times C_{n}$ with $|A|=n$. No other γ-set with $|D|$ splits the graph. The set $A \cup\left\{\left(u_{1}, v_{2}\right),\left(u_{3}, v_{2}\right)\right\}$ is the γ_{s} set of $C_{4} \times C_{n}$. Hence $\gamma_{s}\left(C_{4} \times C_{n}\right)=n+2$.
Case 2: $n=4 k+1, k \geq 1$.
Let $B=\left\{\left(u_{1}, v_{i}\right), i=4 p+1,1 \leq p \leq\left\lfloor\frac{n}{4}\right\rfloor,\left(u_{2}, v_{i}\right), i=4 p-2,1 \leq p \leq\left\lceil\frac{n-3}{4}\right\rceil,\left(u_{3}, v_{i}\right), i=\right.$ $\left.4 p, 1 \leq p \leq\left\lceil\frac{n-1}{4}\right\rceil,\left(u_{4}, v_{i}\right), i=4 p-1,1 \leq p \leq\left\lceil\frac{n-2}{4}\right\rceil,\left(u_{4}, v_{1}\right)\right\}$ is the γ-set of $C_{4} \times C_{n}$ with $|B|=n$. No other γ-set with $|B|$ splits the graph. The set $B \cup\left\{\left(u_{1}, v_{2}\right),\left(u_{3}, v_{2}\right)\right\}$ is the γ_{s} set of $C_{4} \times C_{n}$. Hence $\gamma_{s}\left(C_{4} \times C_{n}\right)=n+2$.
Case 3: $n=4 k+2, k \geq 1$.
Let $C=\left\{\left(u_{1}, v_{i}\right), i=4 p+1,1 \leq p \leq\left\lfloor\frac{n-1}{4}\right\rfloor,\left(u_{2}, v_{i}\right), i=4 p-2,1 \leq p \leq\left\lceil\frac{n}{4}\right\rceil,\left(u_{3}, v_{i}\right), i=\right.$ $\left.4 p, 1 \leq p \leq\left\lceil\frac{n-2}{4}\right\rceil,\left(u_{4}, v_{i}\right), i=4 p-1,1 \leq p \leq\left\lceil\frac{n-3}{4}\right\rceil,\left(u_{4}, v_{1}\right)\right\}$ is the γ-set of $C_{4} \times C_{n}$ with $|C|=n$. No other γ-set with $|C|$ splits the graph. The set $C \cup\left\{\left(u_{1}, v_{2}\right),\left(u_{3}, v_{2}\right)\right\}$ is the γ_{s} set of $C_{4} \times C_{n}$. Hence $\gamma_{s}\left(C_{4} \times C_{n}\right)=n+2$.
Case 4: $n=4 k+3, k \geq 1$.
Let $D=\left\{\left(u_{1}, v_{i}\right), i=\overline{4} p+1,1 \leq p \leq\left\lfloor\frac{n-2}{4}\right\rfloor,\left(u_{2}, v_{i}\right), i=4 p-2,1 \leq p \leq\left\lceil\frac{n-1}{4}\right\rceil,\left(u_{3}, v_{i}\right), i=\right.$ $\left.4 p, 1 \leq p \leq\left\lceil\frac{n-3}{4}\right\rceil,\left(u_{4}, v_{i}\right), i=4 p-1,1 \leq p \leq\left\lceil\frac{n}{4}\right\rceil,\left(u_{4}, v_{1}\right)\right\}$ is the γ-set of $C_{4} \times C_{n}$ with $|D|=n$. No other γ-set with $|D|$ splits the graph. The set $D \cup\left\{\left(u_{1}, v_{2}\right),\left(u_{3}, v_{2}\right)\right\}$ is the γ_{s} set of $C_{4} \times C_{n}$. Hence $\gamma_{s}\left(C_{4} \times C_{n}\right)=n+2 . \square$

Theorem[3]: For $n \geq 5$,

$$
\gamma\left(C_{5} \times C_{n}\right)= \begin{cases}n & n \cong 0(\bmod 5) \\ n+2 & \mathrm{n} \cong 3(\bmod 5) \\ n+1 & \text { otherwise }\end{cases}
$$

Theorem 2.11. For $n \geq 5, \gamma_{s}\left(C_{5} \times C_{n}\right)=n+3$.
Proof. Let $V\left(C_{5} \times C_{n}\right)=\left\{\left(u_{1}, v_{i}\right),\left(u_{2}, v_{i}\right),\left(u_{3}, v_{i}\right),\left(u_{4}, v_{i}\right),\left(u_{5}, v_{i}\right), i=1,2,3, \ldots \ldots . n\right\}$ be the vertices of first, second, third, fourth and fifth row, respectively.
Let $A=\left\{\left(u_{4}, v_{1}\right),\left(u_{1}, v_{2}\right),\left(u_{2}, v_{n}\right),\left(u_{5}, v_{n-1}\right)\right\}$. We consider the following cases:
Case 1: $n \cong 0(\bmod 5)$.
Let $B=\left\{\left(u_{1}, v_{i}\right), i=5 p+2,1 \leq p \leq\left\lfloor\frac{n-1}{5}\right\rfloor, n \geq 10,\left(u_{2}, v_{i}\right), i=5 p, 1 \leq p \leq\left\lceil\frac{n-5}{5}\right\rceil, n \geq\right.$ $10,\left(u_{3}, v_{i}\right), i=5 p-2,1 \leq p \leq\left\lceil\frac{n-2}{5}\right\rceil,\left(u_{4}, v_{i}\right), i=5 p+1,1 \leq p \leq\left\lfloor\frac{n-4}{5}\right\rfloor, n \geq 10$, $\left.\left(u_{5}, v_{i}\right), i=5 p-1,1 \leq p \leq\left\lceil\frac{n-6}{5}\right\rceil, n \geq 10\right\} \cup A$ is the γ-set of $C_{5} \times C_{n}$ with $|A \cup B|=n$. No other γ-set with $|(B \cup A)|$ splits the graph. The set $\left\{(A \cup B) \cup\left(u_{3}, v_{1}\right),\left(u_{5}, v_{1}\right),\left(u_{4}, v_{n}\right)\right\}$ is the γ_{s} set of $C_{5} \times C_{n}$. Hence $\gamma_{s}\left(C_{5} \times C_{n}\right)=n+3$.
Case 2: $n \cong 3(\bmod 5)$.
Let $C=\left\{\left(u_{1}, v_{i}\right), i=5 p+2,1 \leq p \leq\left\lfloor\frac{n-6}{5}\right\rfloor, n \geq 13,\left(u_{2}, v_{i}\right), i=5 p, 1 \leq p \leq\left\lceil\frac{n-3}{5}\right\rceil,\left(u_{3}, v_{i}\right), i=\right.$ $5 p-2,1 \leq p \leq\left\lceil\frac{n-5}{5}\right\rceil,\left(u_{4}, v_{i}\right), i=5 p+1,1 \leq p \leq\left\lfloor\frac{n-2}{5}\right\rfloor,\left(u_{5}, v_{i}\right), i=5 p-1,1 \leq p \leq$ $\left.\left\lceil\frac{n-4}{5}\right\rceil,\left(u_{3}, v_{n-2}\right),\left(u_{1}, v_{n-2}\right)\right\} \cup A$ is the γ-set of $C_{5} \times C_{n}$ with $|C \cup B|=n+2$. No other γ-set with $|(C \cup A)|$ splits the graph. The set $\left\{\left((A \cup C) \cup\left(u_{2}, v_{n-1}\right)\right)\right\}$ is the γ_{s} set of $C_{5} \times C_{n}$. Hence $\gamma_{s}\left(C_{5} \times C_{n}\right)=n+3$.
Case 3: $n \not \approx 0(\bmod 5), n \nsucceq 3(\bmod 5)$.
Let $D=\left\{\left(u_{1}, v_{i}\right), i=5 p+2, p \geq 1, i=9\right.$ to $n,\left(u_{2}, v_{i}\right), i=5 p, p \geq 1, i=5$ to $n,\left(u_{3}, v_{i}\right), i=$ $5 p-2, p \geq 1, i=3$ to $n,\left(u_{4}, v_{i}\right), i=5 p+1, p \geq 1, i=6$ to $n,\left(u_{5}, v_{i}\right), i=5 p-1, p \geq 1, i=4$ to $n-2\} \cup A$ is the γ-set of $C_{5} \times C_{n}$ with $|A \cup D|=n+1$. No other γ-set with $|(D \cup A)|$ splits the graph. We consider the following sub-cases:
(a) $n=5 k+1, k \geq 1$.

The set $\left.\left\{(D \cup A) \cup\left(u_{5}, v_{1}\right),\left(u_{1}, v_{n}\right)\right)\right\}$ is the γ_{s} set of $C_{5} \times C_{n}$. Hence $\gamma_{s}\left(C_{5} \times C_{n}\right)=n+3$.
(b) $n=5 k+2, k \geq 1$.

The set $\left.\left\{(D \cup A) \cup\left(u_{1}, v_{n-2}\right),\left(u_{4}, v_{n-2}\right)\right)\right\}$ is the γ_{s} set of $C_{5} \times C_{n}$. Hence $\gamma_{s}\left(C_{5} \times C_{n}\right)=n+3$. (c) $n=5 k+4, k \geq 1$.

The set $\left.\left\{(D \cup A) \cup\left(u_{2}, v_{n-2}\right),\left(u_{1}, v_{n-1}\right)\right)\right\}$ is the γ_{s} set of $C_{5} \times C_{n}$. Hence $\gamma_{s}\left(C_{5} \times C_{n}\right)=n+3 . \square$

References

[1] F. Harary,(1969), Graph Theory, Addison-Wesley, reading mass,New York(1969).
[2] V. R. Kulli and B. Janikiram, The nonsplit domination number of a graph, Indian J. Pure Appl. Math., 31 ,545-550 (2000).
[3] Polana Palvic, Janez Zerovnik, A Note on the Domination Number of the Cartesian Product of Paths and Cycles,Krangujevac Journal of Mathematics.,37(2),275-285 (2013).
[4] Samu Alanko, Siman Crevals, Antan Isopossu, Patric ostergard,Ville Pettersson, Computing the Domination Number of the Grid Graphs, The Electronic Journal Combinatorics. 18, P141(2011).
[5] Sandi Klavzer, Norbert Seifter, Dominating Cartesian product of cycles,Discrete Applied Mathematics. 59,129-136(1995).
[6] Teresa W. Haynes Stephen T.Hedetniemi,Peter J Slater,Fundamental of domination of graphs Marcel Dekker, Inc.Newyork, (1998).

Author information

Girish V. R., Department of Science and Humanities, PESIT(Bangalore South Campus), Electronic City, Bengaluru-560100, India.
E-mail: giridsi63@gmail.com
P. Usha, Department of Mathematics, Siddaganga Institute of Technology, B. H. Road, Tumakuru-572102, India.
E-mail: ushapmurthy@yahoo.com
Received: July 7, 2017.
Accepted: June 4, 2018.

