SPLIT DOMINATION OF CARTESIAN PRODUCT GRAPHS

Girish V. R. and P. Usha

Communicated by Ayman Badawi

MSC 2010 Classifications: Primary 05C69.

Keywords and phrases: Cartesian product, domination number, split domination, split domination number.

Abstract. A set of vertices S is said to *dominate* the graph G if for each $v \notin S$, there is a vertex $u \in S$ with u adjacent to v. The minimum cardinality of any *dominating set* is called the *domination number* of G and is denoted by $\gamma(G)$. A *dominating set* D of a graph G = (V, E) is a *split dominating set* if the induced graph $\langle V - D \rangle$ is disconnected. The *split domination number* $\gamma_s(G)$ is the minimum cardinality of a *split domination set*. The Cartesian graph product of $G_1 \times G_2$ called graph product of graphs with disjoint vertex sets and edge sets and is the graph with the vertex set $V_1 \times V_2$ and $u = (u_1, u_2)$ adjacent with $v = (v_1, v_2)$ whenever $[u_1 = v_1$ and u_2 adj v_2] or $[u_2 = v_2$ and u_1 adj v_1]. In this paper we have obtained the bounds for the cartesian product of paths, cycles and path with a cycle.

1 Introduction

Let G be a simple graph with vertex set V(G) and edge set E(G). As usual |V| = n and |E| = q denote the number of vertices and edges of the graph G. Any undefined term will confirm to that in [1].

A subgraph H of G is a graph such that $V(H) \subseteq V(G)$ and $E(H) \subseteq E(G)$. An induced subgraph H of G is a subgraph with the added property that if $u, v \in V(H)$, then $uv \in E(H)$ if and only if $uv \in E(G)$ and it is denoted by $\langle H \rangle$.

The Cartesian graph product $G_1 \times G_2$ called graph product of graphs with disjoint vertex sets and edge sets and is the graph with the vertex set $V_1 \times V_2$ and $u = (u_1, u_2)$ adjacent with $v = (v_1, v_2)$ whenever $[u_1 = v_1$ and u_2 adj v_2] or $[u_2 = v_2$ and u_1 adj v_1].

A set of vertices S is said to *dominate* the graph G if for each $v \notin S$, there is a vertex $u \in S$ with u adjacent to v. The minimum cardinality of any *dominating set* is called the *domination number* of G and is denoted by $\gamma(G)$. For a complete review on the topic of domination and its related parameters, see [6].

The concept of split domination has been studied by V. R. Kulli and B. Janikiram [2]. A dominating set D of a graph G = (V, E) is a split dominating set if the induced graph $\langle V - D \rangle$ is disconnected. The split domination number $\gamma_s(G)$ is the minimum cardinality of a split domination set. In this paper we have obtained the bounds for the cartesian product of paths, cycles and path with a cycle.

2 Main Results

Cartesian product of $P_m \times P_n$:

Theorem [4]: For $n \ge 2$, $\gamma(P_2 \times P_n) = \lfloor \frac{n+2}{2} \rfloor$.

Theorem 2.1. *For* $n \ge 2$

$$\gamma_s(P_2 \times P_n) = \begin{cases} \lfloor \frac{n+2}{2} \rfloor & n \text{ is even or } n = 3\\ \lfloor \frac{n+2}{2} \rfloor + 1 & Otherwise. \end{cases}$$

Proof. Let $V(P_2 \times P_n) = \{(u_1, v_i), (u_2, v_i), i = 1, 2, 3, \dots, n\}$ be the vertices of first and second row, respectively. We consider the following cases: Case 1: n = 2. The set $A = \{(u_2, v_1), (u_1, v_2)\}$ is the γ -set of the graph $P_2 \times P_n$ and $\langle (P_2 \times P_n) - A \rangle$ is disconnected. Hence $\gamma_s(P_2 \times P_n) = |A| = 2 = \lfloor \frac{n+2}{2} \rfloor$. Case 2: n = 3.

The set $B = \{(u_1, v_2), (u_2, v_2)\}$ is the γ -set of the graph $P_2 \times P_n$ and $\langle (P_2 \times P_n) - B \rangle$ is disconnected. Hence $\gamma_s(P_2 \times P_n) = |B| = 2 = \lfloor \frac{n+2}{2} \rfloor$.

Case 3: *n* is even and $n \cong 0 \pmod{4}$.

The set $C = \{(u_2, v_n), (u_1, v_i), i = 4p - 1, 1 \le p \le \frac{n}{4}, (u_2, v_i), i = 4p - 3, 1 \le p \le \frac{n}{4}\}$ is the γ -set of $P_2 \times P_n$ and the graph $\langle (P_2 \times P_n) - C \rangle$ is disconnected. Hence $\gamma_s(P_2 \times P_n) = |C| = \lfloor \frac{n+2}{2} \rfloor$. Case 4: n is even and $n \not\cong 0 \pmod{4}$.

The set $D = \{(u_1, v_n), (u_1, v_i), i = 4p - 1, 1 \le p \le \lceil \frac{n-3}{4} \rceil, (u_2, v_i), i = 4p - 3, 1 \le p \le \lceil \frac{n-1}{4} \rceil\}$ is the γ -set of $P_2 \times P_n$ and the graph $\langle (P_2 \times P_n) - D \rangle$ is disconnected. Hence $\gamma_s(P_2 \times P_n) = |D| = \lfloor \frac{n+2}{2} \rfloor$.

Case 5: n is odd and $n = 4k + 1, k \ge 1$.

The set $E = \{(u_1, v_i), i = 4p - 1, 1 \le p \le \lceil \frac{n-2}{4} \rceil, (u_2, v_i), i = 4p - 3, 1 \le p \le \lceil \frac{n}{4} \rceil\}$ is the γ -set of $P_2 \times P_n$. No other γ -set with |E| splits the graph and the graph $\langle (P_2 \times P_n) - (E \cup (u_1, v_{n-1})) \rangle$ is disconnected. Hence $\gamma_s(P_2 \times P_n) = \lfloor \frac{n+2}{2} \rfloor + 1$. Case 6: n is odd and $n \ne 4k + 1, k \ge 1$.

The set $F = \{(u_1, v_i), i = 4p - 1, 1 \le p \le \lceil \frac{n}{4} \rceil, (u_2, v_i), i = 4p - 3, 1 \le p \le \lceil \frac{n-2}{4} \rceil\}$ is the γ -set of $P_2 \times P_n$. No other γ -set with |F| splits the graph and the graph $\langle (P_2 \times P_n) - (F \cup (u_1, v_{n-1})) \rangle$ is disconnected. Hence $\gamma_s(P_2 \times P_n) = \lfloor \frac{n+2}{2} \rfloor + 1.\Box$

Theorem [4]: For $n \ge 3$, $\gamma(P_3 \times P_n) = \lfloor \frac{3n+4}{4} \rfloor$.

Theorem 2.2. For $n \ge 3$

$$\gamma_s(P_3 \times P_n) = \begin{cases} \lfloor \frac{3n+4}{4} \rfloor & n \cong 0 \pmod{4} \text{ or } n = 3\\ \lfloor \frac{3n+4}{4} \rfloor + 1 & \text{otherwise.} \end{cases}$$

Proof. Let $V(P_3 \times P_n) = \{(u_1, v_i), (u_2, v_i), (u_3, v_i), i = 1, 2, 3, \dots, n\}$ be the vertices of first, second and third row, respectively. We consider the following cases: Case 1: n = 3.

The set $A = \{(u_1, v_1), (u_2, v_2), (u_3, v_3)\}$ is the γ_s set of $P_3 \times P_n$ and the graph $\langle (P_3 \times P_n) - A \rangle$ is disconnected. Hence $\gamma_s(P_3 \times P_n) = |A| = 3 = \lfloor \frac{3n+4}{4} \rfloor$.

Case 2: $n \cong 0 \pmod{4}$.

The set $B = \{(u_1, v_i), (u_3, v_i), i = 4p - 1, 1 \le p \le \lceil \frac{n-1}{4} \rceil, (u_2, v_i), i = 4p - 3, 1 \le p \le \lceil \frac{n-3}{4} \rceil, (u_2, v_n) \}$ is the γ -set of $P_3 \times P_n$ and the graph $\langle (P_2 \times P_n) - B \rangle$ is disconnected. Hence $\gamma_s(P_3 \times P_n) = |B| = \lfloor \frac{3n+4}{4} \rfloor$.

Case 3: $n = 4k + 1, k \ge 1$. The set $C = \{(u_1, v_i), (u_3, v_i), i = 4p - 1, 1 \le p \le \lceil \frac{n-2}{4} \rceil, (u_2, v_i), i = 4p - 3, 1 \le p \le \lceil \frac{n}{4} \rceil\}$ is

the γ -set of $P_3 \times P_n$. No other γ -set with |C| splits the graph and the graph $\langle (P_3 \times P_n) - (C \cup (u_3, v_{n-1})) \rangle$ is disconnected. Hence $\gamma_s(P_3 \times P_n) = |C \cup (u_3, v_{n-1})| = \lfloor \frac{3n+4}{4} \rfloor + 1$. Case 4: $n = 4k + 2, k \ge 1$.

The set $D = \{(u_1, v_i), (u_3, v_i), i = 4p - 1, 1 \le p \le \lceil \frac{n-3}{4} \rceil, (u_2, v_i), i = 4p - 3, 1 \le p \le \lceil \frac{n-1}{4} \rceil, (u_2, v_n) \}$ is the γ -set of $P_3 \times P_n$. No other γ -set with |D| splits the graph and the graph $\langle (P_3 \times P_n) - (D \cup (u_3, v_{n-1})) \rangle$ is disconnected. Hence $\gamma_s(P_3 \times P_n) = |D \cup (u_3, v_{n-1})| = \lfloor \frac{3n+4}{4} \rfloor + 1$.

Case 5:
$$n = 4k + 3, k \ge 1$$
.

The set $E = \{(u_1, v_i), (u_3, v_i), i = 4p - 1, 1 \le p \le \lceil \frac{n-4}{4} \rceil, (u_2, v_i), i = 4p - 3, 1 \le p \le \lceil \frac{n-2}{4} \rceil, (u_2, v_n), (u_2, v_{n-1})\}$ is the γ -set of $P_3 \times P_n$. No other γ -set with |E| splits the graph and the graph $\langle (P_3 \times P_n) - (E \cup (u_3, v_{n-1})) \rangle$ is disconnected. Hence $\gamma_s(P_3 \times P_n) = |E \cup (u_3, v_{n-1})| = \lfloor \frac{3n+4}{4} \rfloor + 1.\Box$

Theorem [4]: For $n \ge 4$,

$$\gamma(P_4 \times P_n) = \begin{cases} n+1 & n=5,6,9\\ n & \text{otherwise.} \end{cases}$$

Theorem 2.3. For $n \ge 4$, $\gamma_s(P_4 \times P_n) = n + 1$.

Proof. Let $V(P_4 \times P_n) = \{(u_1, v_i), (u_2, v_i), (u_3, v_i), (u_4, v_i), i = 1, 2, 3,, n\}$ be the vertices of first, second, third and fourth row, respectively. We consider the following cases: Case 1: $n = 4k, k \ge 1$. The set $A = \{(u_1, v_i), i = 4p - 2, 1 \le p \le \frac{n}{4}, (u_2, v_i), i = 4p, 1 \le p \le \frac{n}{4}, (u_3, v_i), i = 4p - 3, 1 \le p \le \frac{n}{4}, (u_4, v_i), i = 4p - 1, 1 \le p \le \frac{n}{4}\}$ is the γ -set of $P_4 \times P_n$. No other γ -set with |A| splits the graph and the induced graph $\langle (P_4 \times P_n) - (A \cup (u_4, v_2)) \rangle$ is disconnected. Hence $\gamma_s(P_4 \times P_n) = |A \cup (u_4, v_2)| = n + 1$. Case 2: n = 5 or 9. The set $B = \{(u_1, v_i), i = 4p - 2, 1 \le p \le \lceil \frac{n-3}{4} \rceil, (u_1, v_n), (u_2, v_i), i = 4p, 1 \le p \le \lceil \frac{n-3}{4} \rceil, (u_1, v_n), (u_2, v_i), i = 4p, 1 \le p \le \lceil \frac{n-3}{4} \rceil, (u_1, v_n), (u_2, v_i), i = 4p, 1 \le p \le \lceil \frac{n-3}{4} \rceil, (u_1, v_n), (u_2, v_i), i = 4p, 1 \le p \le \lceil \frac{n-3}{4} \rceil$.

 $\begin{bmatrix} n-1 \\ 4 \end{bmatrix}, (u_1, v_i), i = 4p - 3, 1 \le p \le \lceil \frac{n}{4} \rceil, (u_4, v_i), i = 4p - 1, 1 \le p \le \lceil \frac{n-2}{4} \rceil \}$ is the γ -set of $P_4 \times P_n$ and the graph $\langle (P_4 \times P_n) - B \rangle$ is disconnected. Hence $\gamma_s(P_4 \times P_n) = |B| = n + 1$. Case 3: n = 6.

The set $C = \{(u_1, v_i), i = 4p - 2, 1 \le p \le \lceil \frac{n}{4} \rceil, (u_2, v_4), (u_3, v_1), (u_3, v_6), (u_4, v_3), (u_4, v_5)\}$ is the γ -set of $P_4 \times P_n$ and the graph $\langle (P_4 \times P_n) - C \rangle$ is disconnected. Hence $\gamma_s(P_4 \times P_n) = |C| = 7 = n + 1$.

Case 4:
$$n \neq 4k, 5, 6, 9, k \ge 1$$

We divide $P_4 \times P_n$ into *m* number of $P_4 \times P_4$ and $P_4 \times P_3$ blocks $B_i, i = 1, 2, 3...m$ such that *m* is minimum, $|V(B_i)| \ge |V(B_{i+1})|$ and $V(B_i) \cap V(B_{i+1}) = \phi$. Denote the vertices of $P_4 \times P_4$ as $(u_i, v_j), i = j = 1, 2, 3, 4$ and $P_4 \times P_3$ as $(p_i, q_j), i = 1, 2, 3, 4, j = 1, 2, 3$. Let $D = \{(u_3, v_1), (u_1, v_2), (u_2, v_4), (u_4, v_3)\}$ is the γ -set of each block of $P_4 \times P_4$. We consider the following sub-cases:

(i) When B_i contains only one copy of $P_4 \times P_3$.

Let the set $H = \{(p_1, q_2), (p_3, q_3), (p_4, q_1)\}$ are the vertices belongs to $P_4 \times P_3$ block. Then, the set $\{D \cup H\}$ is the γ -set of $(P_4 \times P_n)$ with $|D \cup H| = n$ and $\langle (P_4 \times P_n) - (D \cup H \cup (u_4, v_2)) \rangle, (u_4, v_2) \in B_1$ is disconnected. Hence $\gamma_s(P_4 \times P_n) = n + 1$. (ii) When B_i contains two copies of $P_4 \times P_3$ say (B_i, B_{i+1}) .

Let the set $F = \{(p_1, q_2), (p_3, q_3), (p_4, q_1)\}$ are the vertices belongs to B_i and $K = \{(p_1, q_1), (p_2, q_3), (p_4, q_2)\}$ are the vertices belongs to B_{i+1} . Then, the set $\{F \cup K \cup D\}$ is the γ -set of $(P_4 \times P_n)$ with $|F \cup K \cup D| = n$ and $\langle (P_4 \times P_n) - (D \cup F \cup K \cup (u_4, v_2)) \rangle, (u_4, v_2) \in B_1$ is disconnected. Hence $\gamma_s(P_4 \times P_n) = n + 1$.

(iii) When B_i contains three copies of $P_4 \times P_3$ say (B_i, B_{i+1}, B_{i+2}) .

The set $M = \{(p_1, q_2), (p_3, q_3), (p_4, q_1)\}$ are the vertices belongs to each of B_i and B_{i+2} and $N = \{(p_1, q_1), (p_2, q_3), (p_4, q_2)\}$ are the vertices belongs to B_{i+1} . Then, the set $\{M \cup N \cup D\}$ is the γ -set of $(P_4 \times P_n)$ with $|M \cup N \cup D| = n$ and $\langle (P_4 \times P_n) - (D \cup M \cup N \cup (u_4, v_2)) \rangle, (u_4, v_2) \in B_1$ is disconnected. Hence $\gamma_s(P_4 \times P_n) = n + 1$.

Theorem 2.4. For $m, n \ge 2$, $\gamma_s(P_m \times P_n) = n + 3(p-1) + 2(p-1)(q-1) + 1$, m = 3p+1, n = 3q+1, $p \ge 1$, $q \ge 1$.

Proof. Let $V(P_m \times P_n) = \{(u_1, v_i), (u_2, v_i), \dots, (u_m, v_i), i = 1, 2, 3, \dots, n\}$. Where $(u_1, v_i), (u_2, v_i), \dots, (u_m, v_i)$ are the vertices of first column, second column, third column and so on, respectively. 1^{st} column: Let $H_1 = \{(u_1, v_i), i \equiv 0 \pmod{6} \cup (u_1, v_i), i = 6k - 4, k \ge 1, i = 1 \text{ to } n\}$. 2^{nd} column: Let $H_2 = \{(u_2, v_i), i = 6k - 2, k \ge 1, i = 1 \text{ to } n\}$. 3^{rd} column: Let $H_3 = \{(u_3, v_i), i = 6k - 5, k \ge 1, i = 1 \text{ to } n\}$. 4^{th} column: Let $H_4 = \{(u_4, v_i), i = 6k - 3 \cup (u_4, v_i), i = 6k - 1, k \ge 1, i = 1 \text{ to } n\}$. 5^{th} column: Let $H_5 = \{(u_3, v_i), i = 6k - 5, k \ge 1, i = 1 \text{ to } n\}$. 6^{th} column: Let $H_6 = \{(u_3, v_i), i = 6k - 2, k \ge 1, i = 1 \text{ to } n\}$. 7^{th} column onwards: For each $n = 1, 2, 3, 4, 5, \dots, H_{j+6n} = H_j, j = 1, 2, 3, 4, 5, 6, \text{ and } u_{j+6} = u_j, \text{for } j = 1, 2, 3, 4, 5, 6, \dots$. Then $D = (H_1 \cup H_2 \cup H_3 \cup H_4 \cup H_5 \cup H_6 \cup H_7, \dots, M)$ is the γ -set of the graph $P_m \times P_n$ with $|H_1 \cup H_2 \cup H_3 \cup H_4| = n$ and $|H_5 \cup H_6 \cup H_7 \cup \dots, M| = 3(p-1) + 2(p-1)(q-1)$

with |D| = n + 3(p-1) + 2(p-1)(q-1) and the induced graph $\langle (P_m \times P_n) - D \rangle$ is connected and the induced graph $\langle (P_m \times P_n) - (D \cup (u_2, v_1)) \rangle$ is disconnected. Hence $\gamma_s(P_m \times P_n) = n + 3(p-1) + 2(p-1)(q-1) + 1$.

Cartesian Product of $C_m \times P_n$:

Theorem [3]: For $n \ge 2$,

$$\gamma(C_3 \times P_n) = \begin{cases} \left\lceil \frac{3n}{4} \right\rceil + 1 & n \cong 0 (mod4) \\ \left\lceil \frac{3n}{4} \right\rceil & \text{otherwise.} \end{cases}$$

Theorem 2.5. For $n \ge 2$, $\gamma_s(C_3 \times P_n) = \lceil \frac{3n}{4} \rceil + 1$.

Proof. Let $V(C_3 \times P_n) = \{(u_1, v_i), (u_2, v_i), (u_3, v_i), i = 1, 2, 3, \dots, n\}$ be the vertices of first, second and third row, respectively. We consider the following cases: Case 1: n = 2.

The set $A = \{(u_1, v_2), (u_3, v_1)\}$ is the γ -set of $C_3 \times P_n$. No other γ -set with |A| splits the graph and the graph $\langle (C_3 \times P_n) - (A \cup (u_2, v_2)) \rangle$ is disconnected. Hence $\gamma_s(C_3 \times P_n) = |A \cup (u_2, v_2)| = 3 = \lceil \frac{3n}{4} \rceil + 1$.

Case 2:
$$n = 3$$
.

The set $B = \{(u_1, v_3), (u_2, v_2), (u_3, v_1)\}$ is the γ -set of $C_3 \times P_n$. No other γ -set with |B| splits the graph and the graph $\langle (C_3 \times P_n) - (B \cup (u_3, v_3)) \rangle$ is disconnected. Hence $\gamma_s(C_3 \times P_n) = |B \cup (u_3, v_3)| = 4 = \lfloor \frac{3n}{4} \rfloor + 1$.

Case 3: $n = 4k, k \ge 1$.

The set $C = \{(u_1, v_i), i = 4p - 3, 1 \le p \le \lceil \frac{n-3}{4} \rceil, (u_2, v_i), (u_3, v_i), i = 4p - 1, 1 \le p \le \lceil \frac{n-1}{4} \rceil, (u_1, v_n)\}$ is the γ -set of $C_3 \times P_n$ and the graph $\langle (C_3 \times P_n) - C \rangle$ is disconnected. Hence $\gamma_s(C_3 \times P_n) = |C| = \lceil \frac{3n}{4} \rceil + 1$.

Case 4:
$$n = 4k + 1.k \ge 1$$
.

The set $D = \{(u_1, v_i), i = 4p - 3, 1 \le p \le \lceil \frac{n}{4} \rceil, (u_2, v_i), (u_3, v_i), i = 4p - 1, 1 \le p \le \lceil \frac{n-2}{4} \rceil\}$ is the γ -set of $C_3 \times P_n$. No other γ -set with |D| splits the graph and the graph $\langle (C_3 \times P_n) - (D - (u_1, v_n)) \cup ((u_1, v_{n-1}), (u_2, v_n)) \rangle$ is disconnected. Hence $\gamma_s(C_3 \times P_n) = |(D - (u_1, v_n)) \cup ((u_1, v_{n-1}), (u_2, v_n))| = \lceil \frac{3n}{4} \rceil + 1$.

Case 5: $n = 4k + 2, k \ge 1$.

The set $E = \{(u_1, v_i), i = 4p - 3, 1 \le p \le \lceil \frac{n-1}{4} \rceil, (u_2, v_i), (u_3, v_i), i = 4p - 1, 1 \le p \le \lceil \frac{n-3}{4} \rceil, (u_2, v_n) \}$ is the γ -set of $C_3 \times P_n$. No other γ -set with |E| splits the graph and the graph $\angle (C_3 \times P_n) - (E \cup (u_3, v_n)) \rangle$ is disconnected. Hence $\gamma_s(C_3 \times P_n) = |E \cup (u_3, v_n)| = \lceil \frac{3n}{4} \rceil + 1$. Case 6: $n = 4k + 3, k \ge 1$.

The $F = \{(u_1, v_i), i = 4p - 3, 1 \le p \le \lceil \frac{n-2}{4} \rceil, (u_2, v_i), (u_3, v_i), i = 4p - 1, 1 \le p \le \lceil \frac{n}{4} \rceil\}$ is the γ -set of $C_3 \times P_n$. No other γ -set with |E| splits the graph and the graph $\langle C_3 \times P_n - (F \cup (u_1, v_{n-1})) \rangle$ is disconnected. Hence $\gamma_s(C_3 \times P_n) = |F \cup (u_1, v_{n-1})| = \lceil \frac{3n}{4} \rceil + 1.\Box$

Theorem [3]: For $n \ge 2$, $\gamma(C_4 \times P_n) = n$.

Theorem 2.6. For $n \ge 2$, $\gamma_s(C_4 \times P_n) = n + 2$.

Proof. Let $V(C_4 \times P_n) = \{(u_1, v_i), (u_2, v_i), (u_3, v_i), (u_4, v_i), i = 1, 2, 3, \dots, n\}$ be the vertices of first, second, third and fourth row, respectively. We consider the following cases: Case 1: n is even.

The set $A = \{(u_2, v_i), i = 2p - 1, 1 \le p \le \lceil \frac{n-1}{2} \rceil, (u_4, v_i), i = 2p, 1 \le p \le \frac{n}{2}\}$ is the γ -set of $C_4 \times P_n$. No other γ -set with |A| splits the graph and the graph $\langle (C_4 \times P_n) - (A \cup (u_1, v_1), u_3, v_1)) \rangle$ is disconnected. Hence $\gamma_s(C_3 \times P_n) = |A \cup ((u_1, v_1), (u_3, v_1))| = n + 2$. Case 2: n is odd.

The set $B = \{(u_2, v_i), i = 2p - 1, 1 \le p \le \lceil \frac{n}{2} \rceil, (u_4, v_i), i = 2p, 1 \le p \le \lceil \frac{n-1}{2} \rceil\}$ is the γ -set of $C_4 \times P_n$. No other- γ set with |B| splits the graph and the graph $\langle (C_4 \times P_n) - (B \cup (u_1, v_1), u_3, v_1)) \rangle$ is disconnected. Hence $\gamma_s(C_4 \times P_n) = |B \cup ((u_1, v_1), (u_3, v_1))| = n + 2.\Box$

Theorem [3]: For $n \ge 2$

$$\gamma(C_5 \times P_n) = \begin{cases} 3 & n = 2\\ 4 & n = 3\\ n + 2 & \text{otherwise} \end{cases}$$

Theorem 2.7. *For* $n \ge 2$

$$\gamma_s(C_5 \times P_n) = \begin{cases} n+2 & n=2\\ n+3 & otherwise \end{cases}$$

Proof. Let $V(C_5 \times P_n) = \{(u_1, v_i), (u_2, v_i), (u_3, v_i), (u_4, v_i), (u_5, v_i), i = 1, 2, 3, \dots, n\}$ be the vertices of first, second, third, fourth and fifth row, respectively. We consider the following cases: Case 1: n = 2. The set $A = \{(u_1, v_1), (u_3, v_2), (u_4, v_2)\}$ is the γ -set of $C_5 \times P_n$. No other γ -set with |A| splits the graph and the graph $\langle (C_5 \times P_n) - (A - (u_3, v_2)) \cup ((u_2, v_2), (u_3, v_1)) \rangle$ is disconnected. Hence $\gamma_s(C_5 \times P_n) = |(A - (u_3, v_2)) \cup ((u_2, v_2), (u_3, v_1))| = 4 = n + 2.$ Case 2: n = 3. The set $B = \{(u_1, v_2), (u_3, v_1), (u_3, v_3), (u_5, v_2)\}$ is the γ -set of $C_5 \times P_n$. No other γ -set with |B| splits the graph and the graph $\langle (C_5 \times P_n) - (B \cup ((u_1, v_3), (u_2, v_2))) \rangle$ is disconnected. Hence $\gamma_s(C_5 \times P_n) = |B \cup (u_1, v_3), (u_2, v_2))| = 6 = n + 3.$ Case 3: $n = 5k - 2, k \ge 2$. $\frac{n-3}{5}, (u_3, v_i), i = 5p - 2, 1 \le p \le \lceil \frac{n}{5} \rceil, (u_3, v_1), (u_4, v_i), i = 5p + 1, 1 \le p \le \lfloor \frac{n-2}{5} \rfloor,$ $(u_5, v_i), i = 5p - 1, 1 \le p \le \lfloor \frac{n-4}{5} \rfloor, (u_5, v_2) \}$ is the γ -set of $C_5 \times P_n$. No other γ -set with |C| splits the graph and the graph $\langle (C_5 \times P_n) - (C \cup (u_2, v_{n-1})) \rangle$ is disconnected. Hence $\gamma_s(C_5 \times P_n) = |C \cup (u_2, v_{n-1})| = n + 3.$ Case 4: $n = 5k - 1, k \ge 1$. The set $D = \{(u_1, v_i), i = 5p - 3, p \ge 1, 1 \le p \le \lceil \frac{n-2}{5} \rceil, (u_2, v_i), i = 5p, 1 \le p \le \lceil \frac{n-4}{5} \rceil, n \ge 1\}$ $9, (u_2, v_n), (u_3, v_i), i = 5p - 2, 1 \le p \le \lceil \frac{n-1}{5} \rceil, (u_3, v_1), (u_4, v_i), i = 5p + 1, 1 \le p \le \lfloor \frac{n-3}{5} \rfloor, n \ge 1 \le n \le \lfloor \frac{n-3}{5} \rfloor$ 9, $(u_5, v_i), i = 5p - 1, 1 \le p \le \lfloor \frac{n}{5} \rfloor, (u_5, v_2) \}$ is the γ -set of $C_5 \times P_n$. No other γ -set with |D| splits the graph and $\langle (C_5 \times P_n) - (D \cup (u_4, v_n)) \rangle$ is disconnected. Hence $\gamma_s(C_5 \times P_n) = 0$ $|(D \cup ((u_4, v_n)))| = n + 3.$ Case 5: $n = 5k, k \ge 1$. The set $E = \{(u_1, v_i), i = 5p - 3, 1 \le p \le \lceil \frac{n-3}{5} \rceil, (u_2, v_i), i = 5p, 1 \le p \le \lceil \frac{n}{5} \rceil, (u_3, v_i), i = 5p, 1 \le p \le \lceil \frac{n}{5} \rceil, (u_3, v_i), i = 5p, 1 \le p \le \lceil \frac{n}{5} \rceil, (u_3, v_i), i = 5p, 1 \le p \le \lceil \frac{n}{5} \rceil, (u_3, v_i), i = 5p, 1 \le p \le \lceil \frac{n}{5} \rceil, (u_3, v_i), i = 5p, 1 \le p \le \lceil \frac{n}{5} \rceil, (u_3, v_i), i = 5p, 1 \le p \le \lceil \frac{n}{5} \rceil, (u_3, v_i), i = 5p, 1 \le p \le \lceil \frac{n}{5} \rceil, (u_3, v_i), i = 5p, 1 \le p \le \lceil \frac{n}{5} \rceil, (u_3, v_i), i = 5p, 1 \le p \le \lceil \frac{n}{5} \rceil, (u_3, v_i), i = 5p, 1 \le p \le \lceil \frac{n}{5} \rceil, (u_3, v_i), i = 5p, 1 \le p \le \lceil \frac{n}{5} \rceil, (u_3, v_i), i = 5p, 1 \le p \le \lceil \frac{n}{5} \rceil, (u_3, v_i), i = 5p, 1 \le p \le \lceil \frac{n}{5} \rceil, (u_3, v_i), i = 5p, 1 \le p \le \lceil \frac{n}{5} \rceil, (u_3, v_i), i = 5p, 1 \le p \le \lceil \frac{n}{5} \rceil, (u_3, v_i), i = 5p, 1 \le p \le \lceil \frac{n}{5} \rceil, (u_3, v_i), i = 5p, 1 \le p \le \lceil \frac{n}{5} \rceil, (u_3, v_i), i = 5p, 1 \le p \le \lfloor \frac{n}{5} \rceil, (u_3, v_i), i = 5p, 1 \le p \le \lfloor \frac{n}{5} \rceil, (u_3, v_i), i = 5p, 1 \le p \le \lfloor \frac{n}{5} \rceil, (u_3, v_i), i = 5p, 1 \le p \le \lfloor \frac{n}{5} \rceil, (u_3, v_i), i = 5p, 1 \le p \le \lfloor \frac{n}{5} \rceil, (u_3, v_i), i = 5p, 1 \le p \le \lfloor \frac{n}{5} \rceil, (u_3, v_i), i = 5p, 1 \le p \le \lfloor \frac{n}{5} \rceil, (u_3, v_i), i = 5p, 1 \le \lfloor \frac{n}{5} \rceil, (u_3, v_i), i = 5p, 1 \le \lfloor \frac{n}{5} \rceil, (u_3, v_i), i = 5p, 1 \le \lfloor \frac{n}{5} \rceil, (u_3, v_i), i = 5p, 1 \le \lfloor \frac{n}{5} \rceil, (u_3, v_i), i = 5p, 1 \le \lfloor \frac{n}{5} \rceil, (u_3, v_i), i = 5p, 1 \le \lfloor \frac{n}{5} \rceil, (u_3, v_i), i = 5p, 1 \le \lfloor \frac{n}{5} \rceil, (u_3, v_i), i = 5p, 1 \le \lfloor \frac{n}{5} \rceil, (u_3, v_i), i = 5p, 1 \le \lfloor \frac{n}{5} \rceil, (u_3, v_i), i = 5p, 1 \le \lfloor \frac{n}{5} \rceil, (u_3, v_i), i = 5p, 1 \le \lfloor \frac{n}{5} \rceil, (u_3, v_i), i = 5p, 1 \le \lfloor \frac{n}{5} \rceil, (u_3, v_i), i = 5p, 1 \le \lfloor \frac{n}{5} \rceil, (u_3, v_i), i = 5p, 1 \le \lfloor \frac{n}{5} \rceil, (u_3, v_i), (u_3, v_i$ $5p-2, 1 \leq p \leq \lceil \frac{n-2}{5} \rceil, (u_3, v_1), (u_4, v_i), i = 5p+1, 1 \leq p \leq \lfloor \frac{n-4}{5} \rfloor, n \geq 10, (u_4, v_n), (u$ $(u_5, v_i), i = 5p - 1, 1 \le p \le \lceil \frac{n-1}{5} \rceil, (u_5, v_2) \}$ is the γ -set of $C_5 \times P_n$. No other γ -set with |E| splits the graph and $\langle (C_5 \times P_n) - (E \cup (u_3, v_{n-1})) \rangle$ is disconnected. Hence $\gamma_s(C_5 \times P_n) = \langle P_1 \rangle \langle P_1 \rangle \langle P_2 \rangle \langle P_1 \rangle \langle P_2 \rangle \langle P_1 \rangle \langle P_2 \rangle \langle P_2 \rangle \langle P_1 \rangle \langle P_2 \rangle \langle P_2 \rangle \langle P_1 \rangle \langle P_2 \rangle \langle P_2$ $|(E \cup ((u_3, v_{n-1})))| = n + 3.$ Case 6: $n = 5k + 1, k \ge 1$. The set $F = \{(u_1, v_i), i = 5p - 3, 1 \le p \le \lceil \frac{n-4}{5} \rceil, (u_2, v_i), i = 5p, 1 \le p \le \lceil \frac{n-1}{5} \rceil, (u_2, v_n), i \le p \le \lceil \frac{n-1}{5} \rceil, (u_2, v_n), i \le p \le \lceil \frac{n-1}{5} \rceil, (u_2, v_n), i \le p \le \lceil \frac{n-1}{5} \rceil, (u_2, v_n), i \le p \le \lceil \frac{n-1}{5} \rceil, (u_2, v_n), i \le p \le \lceil \frac{n-1}{5} \rceil, (u_2, v_n), i \le p \le \lceil \frac{n-1}{5} \rceil, (u_2, v_n), i \le p \le \lceil \frac{n-1}{5} \rceil, (u_2, v_n), i \le p \le \lceil \frac{n-1}{5} \rceil, (u_2, v_n), i \le p \le \lceil \frac{n-1}{5} \rceil, (u_2, v_n), i \le p \le \lceil \frac{n-1}{5} \rceil, (u_2, v_n), i \le p \le \lceil \frac{n-1}{5} \rceil, (u_2, v_n), i \le p \le \lceil \frac{n-1}{5} \rceil, (u_2, v_n), i \le p \le \lfloor \frac{n-1}{5} \rceil, (u_2, v_n), i \le p \le \lfloor \frac{n-1}{5} \rceil, (u_2, v_n), i \le p \le \lfloor \frac{n-1}{5} \rceil, (u_2, v_n), i \le p \le \lfloor \frac{n-1}{5} \rceil, (u_2, v_n), i \le p \le \lfloor \frac{n-1}{5} \rceil, (u_2, v_n), i \le p \le \lfloor \frac{n-1}{5} \rceil, (u_2, v_n), i \le p \le \lfloor \frac{n-1}{5} \rceil, (u_2, v_n), i \le p \le \lfloor \frac{n-1}{5} \rceil, (u_2, v_n), i \le p \le \lfloor \frac{n-1}{5} \rceil, (u_2, v_n), i \le p \le \lfloor \frac{n-1}{5} \rceil, (u_2, v_n), i \le p \le \lfloor \frac{n-1}{5} \rceil, (u_2, v_n), i \le p \le \lfloor \frac{n-1}{5} \rceil, (u_2, v_n), i \le p \le \lfloor \frac{n-1}{5} \rceil, (u_2, v_n), i \le p \le \lfloor \frac{n-1}{5} \rceil, (u_2, v_n), i \le \lfloor \frac{n-1}{5} \rceil, (u_2, v_n), (u_2,$ $(u_3, v_i), i = 5p - 2, 1 \le p \le \lfloor \frac{n-3}{5} \rfloor, (u_3, v_1), (u_4, v_i), i = 5p + 1, 1 \le p \le \lfloor \frac{n-5}{6} \rfloor, n \ge 1, 1 \le p \le \lfloor \frac{n-5}{6} \rfloor$ $11,(u_4,v_n),(u_5,v_i), i = 5p-1, 1 \le p \le \lceil \frac{n-2}{5} \rceil,(u_5,v_2) \}$ is the γ -set of $C_5 \times P_n$. No other γ -set with |F| splits the graph and $\langle (C_5 \times P_n) - (F \cup (u_3, v_{n-1})) \rangle$ is disconnected. Hence $\gamma_s(C_5 \times P_n) = |(E \cup ((u_3, v_{n-1})))| = n + 3.$ Case 7: $n = 5k + 2, k \ge 1$. The set $H = \{(u_1, v_i), i = 5p - 3, 1 \le p \le \lceil \frac{n}{5} \rceil, (u_2, v_i), i = 5p, 1 \le p \le \lceil \frac{n-2}{5} \rceil, (u_3, v_i), i = 5p \le \lceil \frac{n-2}{5} \rceil, (u_3, v_i), (u_3, v_i), (u_3, v_i), (u_3, v_i), (u_3, v_i), (u_3, v_i),$ $5p-2, 1 \leq p \leq \lfloor \frac{n-3}{5} \rfloor, (u_3, v_1), (u_3, v_n), (u_4, v_i), i = 5p+1, 1 \leq p \leq \lfloor \frac{n-1}{5} \rfloor, (u_5, v_i), i = 5p+1, 1 \leq p \leq \lfloor \frac{n-1}{5} \rfloor, (u_5, v_i), i = 5p+1, 1 \leq p \leq \lfloor \frac{n-1}{5} \rfloor, (u_5, v_i), i = 5p+1, 1 \leq p \leq \lfloor \frac{n-1}{5} \rfloor, (u_5, v_i), i = 5p+1, 1 \leq p \leq \lfloor \frac{n-1}{5} \rfloor, (u_5, v_i), i = 5p+1, 1 \leq p \leq \lfloor \frac{n-1}{5} \rfloor, (u_5, v_i), i = 5p+1, 1 \leq p \leq \lfloor \frac{n-1}{5} \rfloor, (u_5, v_i), i = 5p+1, 1 \leq p \leq \lfloor \frac{n-1}{5} \rfloor, (u_5, v_i), i = 5p+1, 1 \leq p \leq \lfloor \frac{n-1}{5} \rfloor, (u_5, v_i), i = 5p+1, 1 \leq p \leq \lfloor \frac{n-1}{5} \rfloor, (u_5, v_i), i = 5p+1, 1 \leq p \leq \lfloor \frac{n-1}{5} \rfloor, (u_5, v_i), i = 5p+1, 1 \leq p \leq \lfloor \frac{n-1}{5} \rfloor, (u_5, v_i), i = 5p+1, 1 \leq p \leq \lfloor \frac{n-1}{5} \rfloor, (u_5, v_i), i = 5p+1, 1 \leq p \leq \lfloor \frac{n-1}{5} \rfloor, (u_5, v_i), i = 5p+1, 1 \leq p \leq \lfloor \frac{n-1}{5} \rfloor, (u_5, v_i), i = 5p+1, 1 \leq p \leq \lfloor \frac{n-1}{5} \rfloor, (u_5, v_i), i = 5p+1, 1 \leq p \leq \lfloor \frac{n-1}{5} \rfloor, (u_5, v_i), i = 5p+1, 1 \leq p \leq \lfloor \frac{n-1}{5} \rfloor, (u_5, v_i), i = 5p+1, 1 \leq p \leq \lfloor \frac{n-1}{5} \rfloor, (u_5, v_i), i = 5p+1, 1 \leq p \leq \lfloor \frac{n-1}{5} \rfloor, (u_5, v_i), i = 5p+1, 1 \leq p \leq \lfloor \frac{n-1}{5} \rfloor, (u_5, v_i), i = 5p+1, 1 \leq p \leq \lfloor \frac{n-1}{5} \rfloor, (u_5, v_i), i = 5p+1, 1 \leq p \leq \lfloor \frac{n-1}{5} \rfloor, (u_5, v_i), i = 5p+1, 1 \leq p \leq \lfloor \frac{n-1}{5} \rfloor, (u_5, v_i), i = 5p+1, 1 \leq p \leq \lfloor \frac{n-1}{5} \rfloor, (u_5, v_i), i = 5p+1, 1 \leq p \leq \lfloor \frac{n-1}{5} \rfloor, (u_5, v_i), i = 5p+1, 1 \leq p \leq \lfloor \frac{n-1}{5} \rfloor, (u_5, v_i), i = 5p+1, 1 \leq p \leq \lfloor \frac{n-1}{5} \rfloor, (u_5, v_i), i = 5p+1, 1 \leq p \leq \lfloor \frac{n-1}{5} \rfloor, (u_5, v_i), i = 5p+1, 1 \leq \lfloor \frac{n-1}{5} \rfloor, (u_5, v_i), i = 5p+1, 1 \leq \lfloor \frac{n-1}{5} \rfloor, (u_5, v_i), i = 5p+1, 1 \leq \lfloor \frac{n-1}{5} \rfloor, (u_5, v_i), i = 5p+1, 1 \leq \lfloor \frac{n-1}{5} \rfloor, (u_5, v_i), i = 5p+1, 1 \leq \lfloor \frac{n-1}{5} \rfloor, (u_5, v_i), i = 5p+1, 1 \leq \lfloor \frac{n-1}{5} \rfloor, (u_5, v_i), i = 5p+1, 1 \leq \lfloor \frac{n-1}{5} \rfloor, (u_5, v_i), i = 5p+1, 1 \leq \lfloor \frac{n-1}{5} \rfloor, (u_5, v_i), i = 5p+1, 1 \leq \lfloor \frac{n-1}{5} \rfloor, (u_5, v_i), i = 5p+1, 1 \leq \lfloor \frac{n-1}{5} \rfloor, (u_5, v_i), i = 5p+1, 1 \leq \lfloor \frac{n-1}{5} \rfloor, (u_5, v_i), i = 5p+1, 1 \leq \lfloor \frac{n-1}{5} \rfloor, (u_5, v_i), i = 5p+1, 1 \leq \lfloor \frac{n-1}{5} \rfloor, (u_5, v_i), i = 5p+1, 1 \leq \lfloor \frac{n-1}{5} \rfloor, (u_5, v_i), i = 5p+1, 1 \leq \lfloor \frac{n-1}{5} \rfloor, (u_5, v_i), (u_5, v_i), (u_5, v_i), (u_5, v_i), (u_5, v_i), (u_5, v_i),$ $5p-1, 1 \le p \le \lfloor \frac{n-3}{5} \rfloor, (u_5, v_2) \}$ is the γ -set of $C_5 \times P_n$. No other γ -set with |H| splits the graph and $\langle (C_5 \times P_n) - (H \cup (u_2, v_{n-1})) \rangle$ is disconnected. Hence $\gamma_s(C_5 \times P_n) = |(H \cup ((u_2, v_{n-1})))| = |(H \cup ((u_2, v_{n-1})))|$ $n + 3.\square$

Theorem 2.8. For any graph $m, n \ge 2$, $\gamma_s(C_m \times P_n) = \frac{mn}{4} + 2, m = 4p, n = 3q, p, q \ge 1$.

Proof. Let $V(C_m \times P_n) = \{(u_1, v_i), (u_2, v_i), \dots, (u_m, v_i)\}$. Where $(u_1, v_i), (u_2, v_i)$ denotes the vertices of first row, second row and so on, respectively. Divide $V(C_m \times P_n)$ into $m \times 3$ blocks and let B_i , $i = 1, 2, 3, \dots, (\frac{n}{3})$ be such blocks. For each block B_i denote the vertex set as $(u_i, v_j), i = 1, 2, 3, \dots, j = 1, 2, 3$. The set $A = \{(u_{4r}, v_1), (u_{4r}, v_3), (u_{4r-2}, v_2), r \ge 1, r = 1$ to $\frac{m}{4}\}$ with $|A| = \frac{3m}{4}$ is the γ -set of each block B_i . Let D be the γ set of $C_m \times P_n$ with $|D| = \frac{3m}{4} * \frac{n}{3}$. Therefore $\gamma(C_m \times P_n) = (\frac{mn}{4})$. No γ -set with |D| or |D + 1| splits the graph and the induced graph $\langle (C_m \times P_n) - (D \cup (u_{m-1}, v_2) \cup (u_{m-2}, v_1)) \rangle$ is disconnected. Hence $\gamma_s(C_m \times P_n) = \frac{mn}{4} + 2.\Box$

Cartesian product of $C_m \times C_n$:

Theorem[3]: For $n \ge 3$, $\gamma_s(C_3 \times C_n) = \lceil \frac{3n}{4} \rceil$.

Theorem 2.9. For $n \ge 4$

$$\gamma_s(C_3 \times C_n) = \begin{cases} \left\lceil \frac{3n}{4} \right\rceil + 1 & n = 4k + 2, k \ge 1, n = 3 \\ \left\lceil \frac{3n}{4} \right\rceil + 2 & n \ne 4k + 2, k \ge 1. \end{cases}$$

Proof. Let $V(C_3 \times C_n) = \{(u_1, v_i), (u_2, v_i), (u_3, v_i), i = 1, 2, 3, \dots, n\}$ be the vertices of first, second and third row, respectively. We consider the following cases: Case 1: n = 3

In $C_3 \times C_n$, the subset $H = \{(u_1, v_1), (u_2, v_1), (u_3, v_3)\}$ is the γ -set of $C_3 \times C_n$ with $|H| = 3 = \lceil \frac{3n}{4} \rceil$. No other γ -set with |H| splits the graph. The set $H \cup \{(u_3, v_2)\}$ is the γ_s set of $C_3 \times C_n$. Hence $\gamma_s(C_3 \times C_n) = \lceil \frac{3n}{4} \rceil + 1$.

Case 2: $n = 4k + 2, k \ge 1$.

In $C_3 \times C_n$, the subset $D = \{A \cup B \cup C\}$ where, $A = \{(u_1, v_i), i = 4p - 3, 1 \le p \le \lceil \frac{n-1}{4} \rceil\}$, $B = \{(u_2, v_i), (u_3, v_i), i = 4p - 1, 1 \le p \le \lceil \frac{n-3}{4} \rceil\}$ and $C = \{(u_2, v_n)\}$ is the γ -set of $C_3 \times C_n$ with $|D| = \lceil \frac{3n}{4} \rceil$. No other γ -set with |D| splits the graph. The set $D \cup \{(u_3, v_n)\}$ is the γ_s set of $C_3 \times C_n$. Hence $\gamma_s(C_3 \times C_n) = \lceil \frac{3n}{4} \rceil + 1$.

Case $3:n \neq 4k + 2, k \ge 1$.

In $C_3 \times C_n$, the subset $F = \{A \cup B\}$ where, $A = \{(u_1, v_i), i = 4p - 3, 1 \le p \le \lceil \frac{n}{4} \rceil\}$, $B = \{(u_2, v_i), (u_3, v_i), i = 4p - 1, p \ge 1, i = 1 \text{ to } n\}$ is the γ -set of $C_3 \times C_n$ with $|F| = \lceil \frac{3n}{4} \rceil$. No other γ -set with |F| splits the graph. The set $F \cup \{(u_1, v_2) \cup (u_1, v_4)\}$ is the γ_s set of $C_3 \times C_n$. Hence $\gamma_s(C_3 \times C_n) = \lceil \frac{3n}{4} \rceil + 2.\square$

Theorem[3]: For $n \ge 4$, $\gamma(C_4 \times C_n) = n$.

Theorem 2.10. For $n \ge 4$, $\gamma_s(C_4 \times C_n) = n + 2$.

Proof. Let $V(C_4 \times C_n) = \{(u_1, v_i), (u_2, v_i), (u_3, v_i), (u_4, v_i), i = 1, 2, 3, \dots, n\}$ be the vertices of first, second, third and fourth row, respectively. We consider the following cases: Case 1: $n = 4k, k \ge 1$.

Let $A = \{(u_1, v_i), i = 4p + 1, 1 \le p \le \lfloor \frac{n-3}{4} \rfloor, n \ge 8, (u_2, v_i), i = 4p - 2, 1 \le p \le \lfloor \frac{n-2}{4} \rfloor, (u_2, v_n), (u_3, v_i), i = 4p, 1 \le p \le \lfloor \frac{n-4}{4} \rceil, n \ge 8, (u_4, v_i), i = 4p - 1, 1 \le p \le \lfloor \frac{n-1}{4} \rceil, (u_4, v_1)\}$ is the γ -set of $C_4 \times C_n$ with |A| = n. No other γ -set with |D| splits the graph. The set $A \cup \{(u_1, v_2), (u_3, v_2)\}$ is the γ_s set of $C_4 \times C_n$. Hence $\gamma_s(C_4 \times C_n) = n + 2$. Case 2: $n = 4k + 1, k \ge 1$.

Let $B = \{(u_1, v_i), i = 4p + 1, 1 \le p \le \lfloor \frac{n}{4} \rfloor, (u_2, v_i), i = 4p - 2, 1 \le p \le \lceil \frac{n-3}{4} \rceil, (u_3, v_i), i = 4p, 1 \le p \le \lceil \frac{n-1}{4} \rceil, (u_4, v_i), i = 4p - 1, 1 \le p \le \lceil \frac{n-2}{4} \rceil, (u_4, v_1) \}$ is the γ -set of $C_4 \times C_n$ with |B| = n. No other γ -set with |B| splits the graph. The set $B \cup \{(u_1, v_2), (u_3, v_2)\}$ is the γ_s set of $C_4 \times C_n$. Hence $\gamma_s(C_4 \times C_n) = n + 2$.

Case 3: $n = 4k + 2, k \ge 1$.

Let $C = \{(u_1, v_i), i = 4p + 1, 1 \le p \le \lfloor \frac{n-1}{4} \rfloor, (u_2, v_i), i = 4p - 2, 1 \le p \le \lceil \frac{n}{4} \rceil, (u_3, v_i), i = 4p, 1 \le p \le \lceil \frac{n-2}{4} \rceil, (u_4, v_i), i = 4p - 1, 1 \le p \le \lceil \frac{n-3}{4} \rceil, (u_4, v_1)\}$ is the γ -set of $C_4 \times C_n$ with |C| = n. No other γ -set with |C| splits the graph. The set $C \cup \{(u_1, v_2), (u_3, v_2)\}$ is the γ_s set of $C_4 \times C_n$. Hence $\gamma_s(C_4 \times C_n) = n + 2$.

Case 4: $n = 4k + 3, k \ge 1$. Let $D = \{(u_1, v_i), i = 4p + 1, 1 \le p \le \lfloor \frac{n-2}{4} \rfloor, (u_2, v_i), i = 4p - 2, 1 \le p \le \lceil \frac{n-1}{4} \rceil, (u_3, v_i), i = 4p, 1 \le p \le \lceil \frac{n-3}{4} \rceil, (u_4, v_i), i = 4p - 1, 1 \le p \le \lceil \frac{n}{4} \rceil, (u_4, v_1)\}$ is the γ -set of $C_4 \times C_n$ with |D| = n. No other γ -set with |D| splits the graph. The set $D \cup \{(u_1, v_2), (u_3, v_2)\}$ is the γ_s set of $C_4 \times C_n$. Hence $\gamma_s(C_4 \times C_n) = n + 2$. \Box

Theorem[3]: For $n \ge 5$,

$$\gamma(C_5 \times C_n) = \begin{cases} n & n \cong 0 \pmod{5} \\ n+2 & n \cong 3 \pmod{5} \\ n+1 & \text{otherwise} \end{cases}$$

Theorem 2.11. *For* $n \ge 5$, $\gamma_s(C_5 \times C_n) = n + 3$.

Proof. Let $V(C_5 \times C_n) = \{(u_1, v_i), (u_2, v_i), (u_3, v_i), (u_4, v_i), (u_5, v_i), i = 1, 2, 3, \dots, n\}$ be the vertices of first, second, third, fourth and fifth row, respectively. Let $A = \{(u_4, v_1), (u_1, v_2), (u_2, v_n), (u_5, v_{n-1})\}$. We consider the following cases: Case 1: $n \cong 0 \pmod{5}$. Let $B = \{(u_1, v_i), i = 5p + 2, 1 \le p \le \lfloor \frac{n-1}{5} \rfloor, n \ge 10, (u_2, v_i), i = 5p, 1 \le p \le \lceil \frac{n-5}{5} \rceil, n \ge 10, (u_3, v_i), i = 5p - 2, 1 \le p \le \lceil \frac{n-2}{5} \rceil, (u_4, v_i), i = 5p + 1, 1 \le p \le \lfloor \frac{n-4}{5} \rfloor, n \ge 10, (u_4, v_4), i = 5p + 1, 1 \le p \le \lfloor \frac{n-4}{5} \rfloor, n \ge 10, (u_4, v_4), i = 5p + 1, 1 \le p \le \lfloor \frac{n-4}{5} \rfloor, n \ge 10, (u_4, v_4), i = 5p + 1, 1 \le p \le \lfloor \frac{n-4}{5} \rfloor, n \ge 10, (u_4, v_4), i = 5p + 1, 1 \le p \le \lfloor \frac{n-4}{5} \rfloor, n \ge 10, (u_4, v_4), i = 5p + 1, 1 \le p \le \lfloor \frac{n-4}{5} \rfloor, n \ge 10, (u_4, v_4), i = 5p + 1, 1 \le p \le \lfloor \frac{n-4}{5} \rfloor, n \ge 10, (u_4, v_4), i = 5p + 1, 1 \le p \le \lfloor \frac{n-4}{5} \rfloor, n \ge 10, (u_4, v_4), i = 5p + 1, 1 \le p \le \lfloor \frac{n-4}{5} \rfloor, n \ge 10, (u_4, v_4), i = 5p + 1, 1 \le p \le \lfloor \frac{n-4}{5} \rfloor, n \ge 10, (u_4, v_4), i = 5p + 1, 1 \le p \le \lfloor \frac{n-4}{5} \rfloor, n \ge 10, (u_4, v_4), i = 5p + 1, 1 \le p \le \lfloor \frac{n-4}{5} \rfloor, n \ge 10, (u_4, v_4), i = 5p + 1, 1 \le p \le \lfloor \frac{n-4}{5} \rfloor, n \ge 10, (u_4, v_4), i = 5p + 1, 1 \le p \le \lfloor \frac{n-4}{5} \rfloor, n \ge 10, (u_4, v_4), i = 5p + 1, 1 \le p \le \lfloor \frac{n-4}{5} \rfloor, n \ge 10, (u_4, v_4), i = 5p + 1, 1 \le p \le \lfloor \frac{n-4}{5} \rfloor, n \ge 10, (u_4, v_4), i = 5p + 1, 1 \le p \le \lfloor \frac{n-4}{5} \rfloor, n \ge 10, (u_4, v_4), i = 5p + 1, 1 \le p \le \lfloor \frac{n-4}{5} \rfloor, n \ge 10, (u_4, v_4), i = 5p + 1, 1 \le p \le \lfloor \frac{n-4}{5} \rfloor, n \ge 10, (u_4, v_4), i = 5p + 1, 1 \le p \le \lfloor \frac{n-4}{5} \rfloor, n \ge 10, (u_4, v_4), i \le 10, (u_4, v_4), (u_4,$ $(u_5, v_i), i = 5p - 1, 1 \le p \le \lfloor \frac{n-6}{5} \rfloor, n \ge 10 \} \cup A$ is the γ -set of $C_5 \times C_n$ with $|A \cup B| = n$. No other γ -set with $|(B \cup A)|$ splits the graph. The set $\{(A \cup B) \cup (u_3, v_1), (u_5, v_1), (u_4, v_n)\}$ is the γ_s set of $C_5 \times C_n$. Hence $\gamma_s(C_5 \times C_n) = n + 3$. Case 2: $n \cong 3(mod5)$. Let $C = \{(u_1, v_i), i = 5p+2, 1 \le p \le \lfloor \frac{n-6}{5} \rfloor, n \ge 13, (u_2, v_i), i = 5p, 1 \le p \le \lceil \frac{n-3}{5} \rceil, (u_3, v_i), i = 5p-2, 1 \le p \le \lceil \frac{n-5}{5} \rceil, (u_4, v_i), i = 5p+1, 1 \le p \le \lfloor \frac{n-2}{5} \rfloor, (u_5, v_i), i = 5p-1, 1 \le p \le \lfloor \frac{n-2}{5} \rfloor, (u_5, v_i), i = 5p-1, 1 \le p \le \lfloor \frac{n-2}{5} \rfloor$ $\left\lceil \frac{n-4}{5} \right\rceil, (u_3, v_{n-2}), (u_1, v_{n-2}) \} \cup A$ is the γ -set of $C_5 \times C_n$ with $|C \cup B| = n+2$. No other γ -set with $|(C \cup A)|$ splits the graph. The set $\{((A \cup C) \cup (u_2, v_{n-1}))\}$ is the γ_s set of $C_5 \times C_n$. Hence $\gamma_s(C_5 \times C_n) = n + 3.$ Case 3: $n \ncong 0 \pmod{5}$, $n \ncong 3 \pmod{5}$. Let $D = \{(u_1, v_i), i = 5p + 2, p \ge 1, i = 9 \text{ to } n, (u_2, v_i), i = 5p, p \ge 1, i = 5 \text{ to } n, (u_3, v_i), i = 5p, p \ge 1, i = 5 \text{ to } n, (u_3, v_i), i = 5p, p \ge 1, i = 5 \text{ to } n, (u_3, v_i), i = 5p, p \ge 1, i = 5 \text{ to } n, (u_3, v_i), i = 5p, p \ge 1, i = 5 \text{ to } n, (u_3, v_i), i = 5p, p \ge 1, i = 5 \text{ to } n, (u_3, v_i), i = 5p, p \ge 1, i = 5 \text{ to } n, (u_3, v_i), i = 5p, p \ge 1, i = 5 \text{ to } n, (u_3, v_i), i = 5p, p \ge 1, i = 5 \text{ to } n, (u_3, v_i), i = 5p, p \ge 1, i = 5 \text{ to } n, (u_3, v_i), i = 5p, p \ge 1, i = 5 \text{ to } n, (u_3, v_i), i = 5p, p \ge 1, i = 5 \text{ to } n, (u_3, v_i), i = 5p, p \ge 1, i = 5 \text{ to } n, (u_3, v_i), i = 5p, p \ge 1, i = 5 \text{ to } n, (u_3, v_i), i = 5p, p \ge 1, i = 5 \text{ to } n, (u_3, v_i), i = 5p, p \ge 1, i = 5 \text{ to } n, (u_3, v_i), i = 5p, p \ge 1, i = 5 \text{ to } n, (u_3, v_i), i = 5p, p \ge 1, i = 5 \text{ to } n, (u_3, v_i), i = 5p, p \ge 1, i = 5 \text{ to } n, (u_3, v_i), i = 5p, p \ge 1, i = 5p, p \ge 1,$ $5p-2, p \ge 1, i = 3$ to $n, (u_4, v_i), i = 5p+1, p \ge 1, i = 6$ to $n, (u_5, v_i), i = 5p-1, p \ge 1, i = 4$ to $n-2 \cup A$ is the γ -set of $C_5 \times C_n$ with $|A \cup D| = n+1$. No other γ -set with $|(D \cup A)|$ splits the graph. We consider the following sub-cases: (a) n = 5k + 1, k > 1. The set $\{(D \cup A) \cup (u_5, v_1), (u_1, v_n)\}$ is the γ_s set of $C_5 \times C_n$. Hence $\gamma_s(C_5 \times C_n) = n + 3$. (b) $n = 5k + 2, k \ge 1$. The set $\{(D \cup A) \cup (u_1, v_{n-2}), (u_4, v_{n-2}))\}$ is the γ_s set of $C_5 \times C_n$. Hence $\gamma_s(C_5 \times C_n) = n+3$. (c) $n = 5k + 4, k \ge 1$. The set $\{(D \cup A) \cup (u_2, v_{n-2}), (u_1, v_{n-1}))\}$ is the γ_s set of $C_5 \times C_n$. Hence $\gamma_s(C_5 \times C_n) = n+3$.

References

- [1] F. Harary, (1969), Graph Theory, Addison-Wesley, reading mass, New York (1969).
- [2] V. R. Kulli and B. Janikiram, The nonsplit domination number of a graph, *Indian J. Pure Appl. Math.*, **31**, 545–550 (2000).
- [3] Polana Palvic, Janez Zerovnik, A Note on the Domination Number of the Cartesian Product of Paths and Cycles, *Krangujevac Journal of Mathematics.*, **37(2)**, 275–285 (2013).
- [4] Samu Alanko, Siman Crevals, Antan Isopossu, Patric ostergard, Ville Pettersson, Computing the Domination Number of the Grid Graphs, *The Electronic Journal Combinatorics*. **18**, P141(2011).
- [5] Sandi Klavzer, Norbert Seifter, Dominating Cartesian product of cycles, *Discrete Applied Mathematics*. 59,129–136(1995).
- [6] Teresa W. Haynes Stephen T.Hedetniemi,Peter J Slater,Fundamental of domination of graphs Marcel Dekker, Inc.Newyork, (1998).

Author information

Girish V. R., Department of Science and Humanities, PESIT(Bangalore South Campus), Electronic City, Bengaluru-560100, India.

E-mail: giridsi63@gmail.com

P. Usha, Department of Mathematics, Siddaganga Institute of Technology, B. H. Road, Tumakuru-572102, India.

E-mail: ushapmurthy@yahoo.com

Received: July 7, 2017. Accepted: June 4, 2018.